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THE EQUIVALENT CIRCUIT IN THE MOBILITY ANALOGY

OF A MAGNETOSTRICTIVE TRANSDUCER

IN THE PRESENCE OF EDDY CURRENTS

INTRODUCTION

Recent research into the highly magnetostrictive rare earth iron compounds has renewed
an interest in magnetostrictive transducers. A typical magnetostrictive transducer is designed
with the aid of an equivalent circuit. The equivalent circuit is an electrical representation of
the differential equations that govern the motion of the transducer. The equivalent circuit is
used to predict the transmitting responses, receiving response, electrical impedance, and
efficiency of the transducer.

Ohmic losses generated by eddy currents are a primary loss mechanism in metallic
magnetostrictive transducers. These ohmic losses reduce the efficiency and alter the electri-
cal impedance of a magnetostrictive transducer. Thus an equivalent circuit is needed which
can simply and accurately predict the effect of eddy currents on the efficiency and the elec-
trical impedance of a magnetostrictive transducer.

The active elements of a magnetostrictive transducer are typically in the shape of a
thin rod or a stack of thin laminations. For these standard configurations it would be highly
desirable to be able to predict the efficiency, receiving and transmitting responses, and elec-
trical impedance as a function of eddy current loss, which is controlled by the rod diameter
or lamination thickness.

The first purpose of this report is to show how the equivalent circuit of a magnetostric-
tive transducer in the presence of eddy currents is derived. Since the equivalent circuit based
on the exact theory can be time consuming to use, the second purpose of this report is to
present useful approximations to an exact eddy-current theory that can simply and accu-
rately predict the efficienty and electrical impedance of a magnetostrictive transducer in the
presence of eddy currents. The third purpose is to discuss the effects of eddy currents on the
receiving and transmitting responses of a magnetostrictive transducer. The fourth purpose is
to discuss the effect of magnetomechanical coupling on eddy current loss.

THEORY AND DISCUSSION

Eddy Currents in a Rod and a Thin Sheet

When an alternating current is applied to a solenoid, a circumferential electric field is
generated by the time-changing flux. If a conducting rod is placed in the solenoid, the elec-
tric field generates circumferential currents in the rod (Fig. 1). These currents are in a direc-

Manuscript submitted December 7, 1978.
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Fig. 1 -Eddy currents in a conducting rod. The
current i(t) is increasing with time.

tion so as to generate a magnetic field that opposes the applied magnetic field. These circu-
lating currents are known as eddy currents. In a rod the magnitude of the eddy currents
increase in direct proportion to the radial distance from the center of the rod. Thus near the
center of the rod the opposing magnetic field generated by the eddy currents is the largest,
since all the eddy currents encircle this axis. This effectively shields the center of the rod
from the applied magnetic field, leading to the well known skin effect. Since the rod in the
solenoid has a finite resistivity, the eddy currents also generate an ohmic loss. The shielding
effect and ohmic loss generated by the circulating eddy currents alter the electrical imped-
ance of a solenoid with a metallic core. This subsection will present the derivation of the
electrical or blocked impedance of a solenoid with a core composed of a rod or a thin
sheet in the presence of eddy currents.

The penetration of a magnetic field into a conductor is governed by Maxwell's
equations:

atv XK H =j^ +yat (1)

where the current density j = aE (a is the conductivity). Equation (1) can be written in
time-varying form as

s X H = (a + jwe)E. (2)

Since this report deals with good conductors at low frequencies, we is much less than a
and can be neglected. This assumption amounts to neglecting displacement current in com-
parison with conduction current. Thus one has

v X H = ciE, (3)
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and taking the curl of each side yields

vX v X H = v(v *H) - v 2H - v X aE. (4)

Also,

v 13B= O (5)

or

v(v7 *H) =0, (6)

if homogeneity of permeability u is assumed. Therefore, substituting Eq. (6) into Eq. (4),
one has

-v72H = a(v X E) (7)

or

-v 2 rH = at (8)

since

v X E = -i (9)

Hence the differential equation governing the penetration of a magnetic field into a con-
ductor is

v2ti = p (10)

where p is the resistivity and the permeability is independent of time. Equation (10) can be
written in cylindrical coordinates as

2 (V 221 H\ ~ 2 2o . 3H1 Hos (2>
7211 arvHr r =a -2 2)+ a¢, H5 + 2 awz;

r r ~~~~r a 

p [at ar at a at

p_ a (11)
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For a long thin solenoid with a rod-shaped core and with its long axis in the z direction the
following conditions are true:

7211 anI5 a = = ao = ; =_ = 0
30 r 0~ a@ at at

Thus Eq. (11) reduces to

v2Hz =Ip at
P at

(12)

(13)

and with the Laplacian written in cylindrical coordinates is

1 a (rt>
raTr \ r}

1
a2H

a02+

z2 HZ atZ
+ =_a

aZ2 P at 

But for a long thin solenoid

a2 H a2H
z= - = 0.

,a,2 3z2

Thus the differential equation governing the penetration of an alternating magnetic field
into a rod contained within a long thin solenoid is

i a( 311 = _ -LH .
ar arr / Pat

The solution of Eq. (16) is given by Scott [1] as

Hiker)
lI

where r is the radial distance from the cylinder axis to the point in question, d is the
diameter of the rod, and Hs is the magnetic field intensity at the surface of the rod. The
parameter 0 is given by

1

0 = ird(~,Af )2

4
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(16)

(17)
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where p, p, and f are the rod's incremental permeability, resistivity, and frequency respec-
tively in the International System of Units (SI units). The functions ber and bei of Eq. (17)
are the real and imaginary portions of the zeroth-order Bessel function of the first kind re-
spectively and have been tabulated [21.

Define a characteristic frequency fc by setting the parameter 6 = 1. Solving for fc
yields

- _ 2 (19)
sfrd2 p

To examine the physical significance of f4, solve Eq. (17) for the magnitude of HZ(O)IH,
(that is, let r = 0, which is the center of the rod) when 0 = 1, which corresponds to f = fe.
This yields H2(0)/1H = 0.985. Thus the magnetic field at the center of the rod is 98.5% of
its value at the surface at f = f. Therefore f4 corresponds to the frequency for a given diam-
eter, permeability, and resistivity below which the penetration of flux into the rod is essen-
tially uniform.

The electrical impedance of the rod is

No jcN, Bzer} dA
Z = jwL = ' 5 I(20)

I ~~~I

where Bz r) = pHzr). If one carries out the integration indicated by Eq. (20), the result is

= jWL4 (er 0 bei' 0 - bei 0 ber' 0> .2 (er 0 ber' 0 + bei 6 bei' oil
Lo her 2 0 + bei2 0 0 her 2 0 + bei2 0 ,(21)

where

N2 Ap
Lo= - (22)

With the aid of

O =((23)

l =ber(f7)7 bei'(/i - bei($f ber'(f (24)

ber2(4 7) + bei2( ft
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and

A 2iRfL = 2( ber(J)T ber'f)7 + bei( f)T bei'Eft

ber2(fJ± + bei2(t

Eq. (21) can be rewritten as

Z = JuLO(XR - jX) = coLoX1 + iwLOXR (26)

The terms xR and XI are the real and imaginary parts of an eddy current factor X for a rod.
Equation (26) can be alternatively written as

Z = jwL 0 X = jcLOx , (27)

where

2= (X + X2)2

and

t =an-' 10

Thus the electrical impedance can be viewed as an inductor of value LOX. The complex eddy-
current factor X may be attached to the permeability in L., thus accounting for eddy currents
by viewing the permeability as complex. The derivation of XR and XI is originally due to
Scott [1]. The expressions for X} and XI can be found in both Bozorth t3] and Scott 111.

The permeability p' in Eq. (24) is the "apparent permeability"; that is, it is the perme-
ability which the magnetic field sees in the presence of eddy currents. The permeability p in
Eq. (24) is the limiting value of p', approached at low frequencies. The AR in Eq. (25) is the
difference between the measured alternating-current resistive component of the impedance
R and the direct-current resistance R . The difference AR is caused by eddy currents. The
inductance L. in Eq. (22) or (25) is lte limiting value of the measured inductance approached
at low frequencies. Figure 2 shows plots of XR, XI, X0, and '. Several useful approximations
to XR, XI, and g for high and low f/4f are also shown in Fig. 2. The use of Eq. (24) and Fig. 2
shows that the "apparent permeability" p' is a decreasing function of frequency.

6
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Fig. 2 - Eddy current components for a rod

From Eq. (26) it is seen that in the presence of eddy currents the electrical impedance
takes on a resistive component which is proportional to XI. The physical significance of the
resistive component is that it is the energy-dissipating mechanism of the eddy currents. It is
also seen that the imaginary portion of the impedance is proportional to XR* This results in
a reduction in the inductance as a function of frequency. This observation is consistent with
the decrease in the "apparent permeability" as frequency increases. The equivalent circuit
of the electrical impedance of a long thin solenoid with a conducting rod-shaped core in
the presence of eddy currents is shown in the general case in Fig. 3.

The exact equivalent circuit shown in Fig. 3 is inconvenient to use, because both R and
L depend on frequency. A much more convenient expression is a lumped equivalent circuit
in which none of the components vary with frequency. This can be derived by considering
the expressions for XR and XI given by Bozorth [3] for a rod when f < fc:

1(t2 19 ([4
R=1 - + f_ + _ XR ~~~ + 3,7 20 K4) (28)

XI +8%f) Th072(Tf) + 4,343,680 (f ) .

7
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Fig. 3 - The exact equivalent
A/VAf circuit of a long thin solenoid

R -wLOXI L= LOXR with a conducting rod-shaped
core in the presence of eddy
currents

Substitute the first term of XR and XI into Eq. (26). The result is

-rL f2
Z - 4f + jwL0 (30)

for f/7f < 1. This representation is still somewhat inconvenient, since the real term depends
on frequency squared. If the series representation of Eq. (30) is converted to its equivalent
parallel form, the parallel resistance and inductance are

P 16ir(Lo(1 + (31)

and

L L + 2) (32)

When f < f4, the term f2 /64f2 can be neglected with an error of less than 2%. Thus the
lumped equivalent circuit of a conducting rod in the presence of eddy currents shown in
Fig. 4 is obtained. The characteristic frequency fc in Fig. 4 is given by Eq. (19).

A derivation analogous to the one that leads to Fig. 3 can be performed for a conduct-
ing core composed of thin laminated sheets. Only the results will be presented here, The
original derivation can be found in Ref. 1. The eddy current components for a thin sheet
are given by Scott (1] and Bozorth (3] and are

g±*51h( 2ftf 

XR _oT (33)

cosh(2-[2 + cos(9A?
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Fig. 4 - The approximate
equivalent circuit of a
solenoid with a conducting
rod-shaped core in the
presence of eddy currents
for f < f0

sinh(I -
Il= 27rfL0O 2f)

In Eqs. (33) and (34)

f = 2p
Irt2 t

(35)

where p is the resistivity in ohm-meters, t is the thickness in meters, and p is the permeabil-
ity in SI units. The characteristic frequency for the case of a thin sheet again means the
frequency below which the penetration of flux into a sheet is essentially uniform. Plots of
XR I XI, x0 , and t versus f[f/ can be found in Ref. 4. The exact equivalent circuit of the elec-
trical impedance of a long thin solenoid with a conducting core composed of thin lamina-
tions in the presence of eddy currents is also given by Fig. 3, with Eqs. (33) and (34) now
applying to Xfl and XI,

An approximation to the exact equivalent circuit of a long thin solenoid with a core
composed of thin sheets has been obtained in Ref. 4. The approximate equivalent circuit is
similar to Fig. 4 except that the resistance is 61fT4Lo, where f4 is given by Eq. (35).

The complex impedance of the equivalent circuit shown in Fig. 4 is

16irfca2L0 .
1 W2 + (16-fff)2

+ (I 6 ?f,)2 wLo 
L W 2 + (164rff)2 

9

and

Lo

161rfCL0

sin (2fC 1

cosh 9fT+ cos (Y2f)I

(34)

(36)



MEEKS

Let the real and imaginary portions of Eq. (36) equal R. and X, respectively. Thus

f2

_c(t) (37)
equivalent (2+ 64
circuit (c)

and

_XcI = 64(f) (38)

eequivalent + 64
circuit

The exact expressions for RC/wcLo and X/cw.L 0 are given by the real and imaginary por-
tions respectively of Eq. (26) normalized to ci.Lo:

RC f (39)
wcLo c

exact
theory

and

XcI _ R (40)
WCoLO fc

exact
theory

Figure 5 is a comparison of the loci of points predicted by Eqs. (37) and (38) (the
equivalent circuit of Fig. 4) and those predicted by Eqs. (39) and (40) (the exact equivalent
circuit of Fig. 3). The loci of the impedance of the lumped equivalent circuit describes an
arc of a circle (the lower curve in Fig. 5) which agrees within 1% with the exact equivalent
circuit up to f = f. Deviations begin above f = 4c (particularly in the resistance), but agree-
ment is still fair at 3fc and usable up to f = 4f. The loci of the impedance of a lossless in-
ductor, if plotted on Fig. 5, would appear as a straight line on the ordinate with the
frequency scale increasing upward.

The comparison of the exact and approximate equivalent circuits for a core composed
of a stack of thin laminated sheets is given in Ref. 4. In this case the approximate equivalent
circuit is usable up to f = 24.

10
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RC/WCLo

Fig. 5 -The normalized theoretical components of the impedance
of a core composed of a rod (upper curve) and the normalized com-
ponents of the impedance of the equivalent circuit shown (lower
curve)

An enlightening alternate derivation of the equivalent circuit of Fig. 4 can be obtained
through use of Faraday's law. Consider Fig. 1, which shows a conducting rod in the presence
of an alternating magnetic flux. Assume that the flux density is increasing and uniform
across the cross-sectional area of the rod. This assumption means that the rod is very long
and that the frequency is below the characteristic frequency. Faraday's law relates the time-
changing magnetic flux to the electric field produced for a fixed region in space:

E - ds = d a.-f dt cIt

11

(41)

M �M

fc

1,0j f =1
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Now perform the line integral of the electric field about the circular path a distance r from
the axis. The electric field is constant in magnitude and tangential around this path due to
the circular symmetry. The angle between E and ds is 00. The flux density B is also uniform
across the rod, and the angle between B and dA is O0. If one considers only the magnitude,
then

Efds = dB 1/dA. (42)

Thus

E = ±dd (7rr2B) (43)dt

=2 2 dB (44)

which implies that

B = 2dB (45)

The density of the circumferential surface current at a radius r is

j E r dB (461

The total instantaneous power lost is

p(t) ,fp J2 dv (47)

dI 27r 2

= f f p rt(d)j rdriOdz, (48)
zO e =0 rO

which yields

p 7t) = rd2 Q d2 (dB)2' (49)

12
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where E1r 4 Qis the volume of the rod. Let A equal the area of the rod; then

p(t) 3 2- (d=' (50)

The voltage induced in the coil is

e(t) = NA dBt (51)

Solving Eq. (51) for (dB/dt) 2 yields

(dB)2 = e2(a) (52)

Substituting Eq. (52) into Eq. (50) yields

P M = d2 e2 (t)Q = e2 (t) (53)
32pN 2 A R

which implies that

R = 32pN2 A ohms. (54)
d2

The resistance given by Eq. (54) is identical to the resistance 167ff Lo shown in Fig. 4. Thus
both derivations yield the same result for a long rod at frequencies below the characteristic
frequency. The resistance 6wf6cLo of a thin laminated sheet can be obtained in an analogous
manner through use of Faraday's law [ 5] 

Equivalent Circuit of a Magnetostrictive Toroid in the
Presence of Eddy Currents

The equivalent circuits presented thus far have had no mention of magnetostriction.
This subsection will present the equivalent circuit of a magnetostrictive toroid with a core
composed of a circularly cross-sectioned rod or a number of thin laminated sheets in the
presence of eddy currents.

The equivalent circuit of a magnetostrictive transducer can be formed in three ways:

0 by the mobility analogy,

13
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* by shifting force and velocity by 90°, or

* by F.V. Hunt's space operator.

The effect of eddy currents on the equivalent circuit formed by shifting the force and veloc-
ity by 9Q0 is discussed in Refs, 4 and 6. The effect of eddy currents on the equivalent
circuit formed by Hunt's space operator is discussed in Ref. 7 along with an enlightening
discussion of all three representations in the absence of eddy currents. The equivalent
circuits formed by shifting the force and velocity by 900 and formed by Hunt's space
operator have the disadvantage of an imaginary frequency-dependent turns ratio, which
leads to frequency-dependent mechanical elements even in the absence of eddy currents.
The presence of eddy currents further complicates these two equivalent circuits. The mobil-
ity analogy is the simplest to use and the most widely accepted representation of electro-
magnetic transducers. The use of the mobility analogy when eddy currents are present
leads to an equivalent circuit that has frequency-independent elements for a certain fre-
quency range, as will be shown,

The equivalent circuit of a magnetostrictive toroid in the mobility analogy without
eddy current loss is shown in Fig. 6. This equivalent circuit does not include ohmic loss,
which can be accounted for by simply inserting a resistor, whose value is equal to the dc
resistance of the coil, in series with the blocked inductance L0 . In the mobility analogy,
force is analogous to current, and velocity is analogous to voltage. In this figure, Lo is the
blocked or purely electrical impedance, Cm is the mechanical compliance, Mm is the me-
chanical mass, lI m is the inverse of the mechanical resistance, and 1/RA and MA compose
the radiation mobility of a sphere. The toroid in this report is assumed to be end capped,
so that it is a volume expander. At low frequencies the radiation mobility of a sphere is
used to approximate the toroid's radiation mobility. The expressions for the equivalent
circuit parameters are

Lo = ( Al133 (55)

Lo Force Pressure

1 -1- 1 i IRAI
e V VolumeI ~ ~ VlciyVelocity

IA~~~M

Fig. 6 - The equivalent circuit of a magnetostrictive toroid in the
mobility analogy without eddy current loss

14



NRL REPORT 8294

rsH
Cm 323A (56)

Mmn 2irrACD, (57)

Em = Q-C.o (58)

1 4irr2

WA dDC ' ( 0

and

MA = do (60)

where

N is the number of turns of wire,

Ac is the cross-sectional area of the metallic core,

/S3 is the dynamic permeability of the core at a constant strain (the blocked perme-
ability),

r is the radius of the toroid,

D is the density of the core,

s3H is the elastic compliance coefficient measured at constant magnetic-field intensity,38

W0 is 27r times the unloaded (in air) resonance frequency,

Qrn is the mechanical Q measured in air,

r. is the equivalent radius of a sphere which has a surface area equal to the active sur-
face area of the end-capped toroid,

do is the density of water,

Cois the speed of sound in water,

0 is the electromechanical turns ratio, and

15
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A is the mechanoacoustic turns ratio, which in this case is the active surface area of
the toroid.

Eddy currents are accounted for in the equivalent circuit by assuming a complex
permeability as suggested by the LOX term of Eq. (27). The eddy current factor X appears
not only in the blocked impedance but also in the electromechanical turns ratio 0 in the
mobility analogy, as will be shown.

The derivation of the electromechanical turns ratio k begins with the magnetostrictive
equations of state for a thin rod:

S3 =-s T + g B (61)
3 3 3 38 

and

= + v~~T B3 (62)H3 - X33T3 + "ss 3 -

If S3 is set equal to zero, Eq, (61) becomes

33 3 (63)

The flux density in the clamped (S3 = 0) toroid is

B = MS XH (64)

Here the permeability is complex due to the presence of eddy currents. Substitution of
Eq. (64) into Eq. (63) yields

_ US3XH X6
-g3 0~H (5

33

But T= A therefore
3 C

-g 3 3 ,4g3 xA 0 H3F3 3 (66)
3~~3

In a toroid the radial force is related to the circumferential force in the toroid by

Fr = 2rFa . (67)

16
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Also, the magnetic field of a toroid is given by

H3 2I (68)

Substitution of Eqs. (67) and (68) into Eq. (66) yields

Fr -g3 3833XA 0N (69)

By use of

M33 T33 (1 3- k), (70)

g3 3 =-3a, (71)
AL3 3

and

33 = 8 3(1-A )3 (72)
the following equation is produced for magnitude only:

Fr NdaaAcx = |. X (73)

3 3 without
eddy currents

Since the eddy current factor X is a complex number, the turns ratio Fr/I in Eq. (73) is also
a complex number.

The equivalent circuit of Fig. 6 can now be modified to account for eddy current losses
by replacing the blocked inductance Lo by LOX and the electromechanical turns ratio i by
Ox. Figure 7 shows the equivalent circuit of a magnetostrictive toroid in the presence of
eddy currents with the transformers removed. The complex eddy-current factor is reflected
in the mechanical mobility and the radiation mobility. If the individual components of
Fig. 7 are separated into their real and imaginary portions, Fig. 8 results. Each of the com-
ponents in Fig. 8 is a complicated function of frequency, due to the eddy current terms. This
makes the frequency analysis of the circuit difficult.

To make the analysis of the circuit somewhat simpler, it was necessary to convert the
circuit to mechanical units. This is done by moving the electromechanical transformer of
Fig. 6 to the left and the mechanoacoustic transformer to the right. The result is shown in
Fig. 9. The resistors in Fig. 9 represent inverse mechanical resistances with units of seconds
per kilogram. The inductors represent mechanical compliances with units of meters per

17
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82

NI LOX
I = 

ox

a'!1 t% Ii

e =v#

N2

831 Cm# X2

B4 T Mm

_ i41 __ ,22~

tR2x2
851 Rm

_Ni MAA2

B7TI -n IX
B T ?2

Fig. 7 - The equivalent circuit, in electrical units, of a magnetostrictive
toroid in the presence of eddy currents

82 S3

NO

Fig. 8 - The equivalent circuit, in electrical units, of a magnetostrictive toroid in the
presence of eddy currents, with individual elements separated into real and imaginary
components
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B2 53

-wLOXI LOXR

NI #24o N2 #4XO N3

Force =IOX L

f > B4 1 Cm B6 F < > Rm E RB7I

N4
Velocity e Tm 2 MAA2

NO

Fig. 9 - The equivalent circuit, in mechanical units, of a magnetostrictiive
toroid in the presence of eddy currents

newton. The capacitors represent masses with units of kilograms. The through variable is
the force produced by the toroid in newtons. The across variable is the velocity of the
toroid in meters per second. The eddy current terms in Fig. 9 are lumped into three com-
ponents: the two elements of the blocked mechanical mobility (branches 2 and 3 (B2 and
B3)) and the force generator (branch 1). The ideal sinusoidal current generator of Fig. 8
has now become a force generator of value IiX newtons. Figure 2 shows that X0 and thus
the magnitude of the force generator are decreasing functions of frequency. The decrease in
force produced by the magnetostrictive core as a function of frequency is due to the reverse
flux generated by the eddy currents. The monotonic decrease of force with frequency may
be explained by noting that the eddy currents increase with frequency. Hence the opposing
magnetic field increases, thereby resulting in a continual decrease in the net flux that pro-
duces the force from the magnetostrictive core.

The equivalent circuit shown in Fig. 9 can now be used to analyze a magnetostrictive
transducer in the presence of eddy currents. Figure 9 can be used to calculate the efficiency,
transmitting responses, receiving response, and impedance, all as a function of frequency.
Before performing the analysis, one must first observe how the power dissipated in the
circuit elements of Fig. 9 is calculated.

Power is defined as

P = Re (I*e), (74)

where I* is the complex conjugate of the current and e is the voltage. Figure 9 implies that

I*=F (75)
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and

e = VX, (76)

where V is the velocity and F is the force. Thus

P Re[( F*) vI (77)

= Re(F* V X-) (78)

V~~~~~~~~~
But F V ; therefore

m

P = Re (79)

where Ym is the mechanical admittance (mobility), which is equal to the reciprocal of the
mechanical impednace. Equation (79) can be written as

P 1W2 Re(y*) (80)

with the use of V* V= [IV and X/X* =e

Calculation of the efficiency of the transducer depicted by the equivalent circuit of
Fig. 9 begins with the force generator whose magnitude is determined by first calculating
M.' for the particular frequency of interest. The frequency f is the blocked characteristic
frequency and is defined by

7rd2p (81)

for a rod of circular cross section and by

2p (82)
7rt P4 3

for a thin sheet. The sgmbols in Eqs. (81) and (82) are the same as in Eqs. (19) and (35)
respectively, except M. g is the blocked incremental permeability. The blocked characteristic
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frequency is required whenever one is dealing with an equivalent circuit, since the eddy cur-
rent factor (which is written as a series composed of f/4f as in Eqs. (28) and (29)) is
attached to the blocked permeability, as in Eq. (64), and to the blocked inductance of
Fig. 7. Once f/f is determined, X0 is read from Fig. 2 or from Ref. 4 if a thin sheet is being
used. The magnitude of the force generator is thus IiX 0 . The phase angle of X is not put into
the force generator, since one is interested in only the magnitude of the velocity, as indi-
cated in Eq. (80). The analysis of Fig. 9 was carried out on a PDP-11/45 computer using an
ac-circuit analysis program [871. The values of the elements were chosen to be numerically
equal to their mechanical quantities. The branch voltages and currents were therefore inter-
preted as velocities and forces respectively. The power dissipated in each element was cal-
culated using the velocity from the circuit analysis program, the phase angle ¢ from Fig. 2
or Ref. 4, and Eq. (80). It is not necessary to calculate the power dissipated in the blocked
mechanical mobility (branches 2 and 3 of Fig. 9) using the method described. The power
dissipated in these elements is

P = 12 wL 0x 1, (83)

which shows that this power can be determined from known constants and a given
frequency.

The steps necessary to perform an efficiency analysis using Fig. 9 are summarized as
follows:

1. Calculate f~f from the desired frequency and Eqs. (81) or (82).

2. Determine X0 from Fig. 2 or Ref. 4.

3. Input the value of the force generator (IiXO) and the values of mechanical com-
pliances, masses, and resistances into an ac-circuit analysis program.

4. Obtain the magnitude of the velocity across each element (except the blocked
mechanical mobility) and the phase angle ¢ from the graphs to calculate the power
dissipated in each element via Eq. (80).

5. Use the power dissipated in the mechanical elements and Eq. (83) to determine the
efficiency in the presence of eddy currents-

efficiency = + P (84)

where PA is the acoustic power, PM is the mechanical power, and PE is the power
dissipated by eddy currents.

6. To calculate the efficiency'at another frequency, return to step 1 and use the new
f/fs to calculate the new magnitude of the force generator. This new value of the
force generator is input into the ac-circuit analysis program, and the new power
dissipated in each element is calculated from Eq. (80). For each new frequency only
one element (the force generator) of Fig. 9 need be changed to calculate the
efficiency.
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To calculate the transmitting current response, one first calculates the acoustic power
dissipated in the mechanical radiation mobility (1/A 2RA) using the technique described.
Then the on-axis acoustic pressure is calculated via

P r I P,1r do D (85)

where p is the on-axis acoustic pressure, Pa is the acoustic power, do is the density of water,
co is the speed of sound in water, and R is the directivity factor. Since the pressure cal-
culated is for a 1-ampere drive (if the I in IOXO is set equal to unity), the pressure obtained
from Eq. (85) will be the transmitting current response. The free-field voltage sensitivity can
be obtained h91 from

M
J = reciprocity parameter = -7-, (86)

where M is the free-field voltage sensitivity and S is the transmitting current response,
along with

j = d~r X 10-1 2 (87)
dof

in which d is the measurement distance, do is the density of water, and f is the frequency,
all in SI units.

To calculate the electrical impedance, one proceeds as follows:

- Y = el1 _ Ze (88)

or

Ze - F2X(2 = Ox, (89)

where V is the velocity and I is the current. Equation (89) can be simplified for calculation
by noting that the velocity will contain the phase angle -¢ when the force generator has the
angle -{. If one uses only the magnitude of the force generator in the equivalent circuit and
adds -r to the phase angle of the resulting velocity, then

Ze =Ife r l(90)

and if I = 1 ampere and V = I VI e'%, then

Se = IVI XO _eSe - 2r(91)

The procedure for determining Ze from the equivalent circuit of Fig. 9 can be sum-
marized as follows:

1, Follow steps 1, 2, and 3 that were listed for the efficiency analysis.
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2. Calculate the values of the blocked mechanical mobility for the particular frequency
and ratio of f to f. Input these values into the ac-circuit analysis program.

3. Record the magnitude I V I and phase 0 of the input (node 1, Fig. 9) velocity. Use
Eq. (91) to calculate Ze.

4. To calculate Ze at another frequency, return to step 1. Notice that three circuit
elements must be changed for each frequency point. These are the two blocked
mechanical mobilities and the force generator.

The transmitting voltage response is obtained as follows:

1. Follow steps 1 and 2 of the procedure just summarized for calculating Ze.

2. Record the magnitude I V I of the input velocity (node 1, Fig. 9), and use the follow-
ing equation to calculate the input voltage:

I e I = magnitude of the voltage = I VI pXO. (92)

3. Calculate the power dissipated in the radiation mobility (1/A 2 R ) for the input
voltage of step 2. Use Eq. (85) to calculate the on-axis acoustic pressure and divide
this pressure by the result of Eq. (92).

The equivalent circuit of Fig. 9 is based on an exact eddy-current theory that will
work at any frequency subject to the assumptions under which the circuit was derived. But
the wide frequency range of the equivalent circuit of Fig. 9 is a tradeoff with the com-
plexity of the analysis required to obtain results. It would be desirable to have an equivalent
circuit that has lumped components, that is, with none of the elements (capacitors, resistors,
inductors, or current generator) changing with frequency. Such an equivalent circuit is pos-
sible over a limited frequency range and will be described in the succeeding paragraphs.

To derive a lumped equivalent circuit, one must approximate the eddy current factor X
in such a way that the frequency-dependent elements of Fig. 7 become a combination of
frequency-independent elements. This has already been accomplished for the blocked im-
pedance (branch 2) of Fig. 7. When f/f < 2, the blocked impedance (for a circularly cross-
sectioned core) of Fig. 7 can be represented quite accurately by Fig. 4, where L. is given by
Eq. (55) and [S is given by Eq. (81). Figure 4 was derived by assuming XR 1 and
xI t f/18[, which implies that

X = XR - 1x1 (93)

1-] f s(94)
Sfc
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for ftc < 2. Therefore branch 3 of Fig. 7 becomes

j,@Cmq52 X2 i WCm9SjI. 1 2j 8f:
f2]

64 2

- jwCm b2 + fm 

if the last term of Eq. (95) is neglected. Equation (96) can be written in an equivalent
parallel representation shown in Fig. 10. Figure 10 is the lumped form which is desired.
Branch 4 in Fig. 7 becomes

JWMm

1 - 2j. L-
8f:s 64(fffY

M
1@ 

Mj= -

1 +

M
8irfc" o2

(98)jS
(161rf12 MM

(1ot 2

Equation (98) can be represented by Fig+ 11. Branch 5 in Fig. 7 becomes

Rm m( 4S

=M 4f s W 

Tm-

2

Cmt
Fig. 10 - Approximate
equivalent circuit of the

-------- mechanical compliance
in the presence of small
eddy currents

(99)

(100)

81rf 5Cmi 2
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2 8rff Mm (16lrft)2 Mm

Fig. 11 -Approximate equivalent circuit
of the mechanical mass in the presence of
small eddy currents

Equation (100) can be represented by Fig. 12. Branches 6 and 7 are represented similarly.
The resulting lumped equivalent circuit of a magnetostrictive toroid (with a circular-cross-
section core) in the presence of eddy currents (flf4 • 2) is shown in Fig. 13. Figure 13 has
nine nodes and 15 branches compared with three nodes and seven branches for the equiva-
lent circuit without eddy currents. Figure 13 is in electrical units. The efficiency of a trans-
ducer described by Fig. 13 is obtained by analyzing the circuit with an ac-network routine.
The power dissipated in the resistances of Fig. 13 is

p e (101)

where e is the branch voltage and R is the branch resistance. The power dissipated by eddy
currents is that dissipated in branches 3, 4, 7, and 14. The power dissipated in the negative
resistances of branches 7 and 14 must be interpreted as negative power in order to obtain
correct results. The mechanical dissipation occurs in branch 9, and the acoustical dissipa-
tion occurs in branch 11. The efficiency is given by Eq. (84). As eddy currents become
small, fS approaches infinity, which means that the elemeints of Fig. 13 approach those of
the equivalent circuit without eddy currents.

The transmitting current response is calculated from Eq. (85) using the power dis-
sipated in branch 11 for a 1-ampere current generator. The electrical impedance is calculated
from the quotient of the complex voltage at node 1 and the value of the current generator.
The transmitting voltage response is computed from the power dissipated in branch 11 and
the driving voltage at node 1.

An equivalent circuit similar to Fig. 13 can be derived for a magnetostrictive toroid
with a core composed of thin sheets in the presence of small eddy currents. In the case of
a thin-sheet core the eddy current factor X becomes

X = XR A x (102)

t 1-j f, (103)

3f

where fS is given by Eq. (82). Applying Eq. (103) to Fig. 7 yields the desired equivalent
circuit (Fig. 14).
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0 2 _

Rm SR 

B2

Fig. 12 -Approximate equivalent
circuit of the inverse of the
mechanical resistance in the pres-
ence of small eddy currents

B1

NO

Fig. 13 - The 'equivalent circuit of a magnetostrictive toroid with a circular-cross-section
core in the presence of small eddy currents

NO

Fig. 14 - The equivalent circuit of a magnetostrictive toroid with a core composed of
thin sheets in the presence of small eddy currents
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Results and Discussion of Equivalent Circuits

Figure 15 shows the electroacoustic efficiency in decibels versus normalized frequency
and f/f s for a toroid with a circular cross section. This figure was generated from Figs. 13
and 9 for the small-eddy-current approximation and the exact eddy-current theory respec-
tively. Below itg= 1 the exact and approximate theory are in excellent agreement. The
difference between the exact and approximate theory does not reach 1 dB until f/f S = 2.3.c
The point of maximum efficiency need not occur at the point of maximum power output
[/r = 1, since here maximum efficiency occurs at f'fr = 1.3.

Figure 16 shows the electroacoustic efficiency in decibels versus normalized frequency
and f/f for a toroid with a core composed of thin sheets. This graph was generated from
Figs. 14 and 9 for the small-eddy-current approximation and the exact eddy-current theory
respectively. The agreement between the exact and approximate theories is not as good here
as in Fig. 15. There is a 1-dB difference at f/f = 0.75 and 1.7-dB difference at f/f = 1.0.
Therefore the use of Fig. 14 for efficiency calculations should be limited to ratios of f to
f below unity. The predictions of Figs. 13 and 14 yield a greater value of efficiency than
would be measured.

10 log ( El
(dB re
max e

0.05 0.1 015 0.2 0.3 0.5

f/f C
1 1.5 2 2.5 4 5

Fig. 15 -The electroacoustic efficiency of a magnetostrictive toroid
with a circular cross section
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Fig. 16 - The electroacoustic efficiency of a magnetostrictive toroid
with a core composed of thin sheets

Figure 17 shows the electrical impedance versus frequency for a magnetostrictive
toroid with a circular cross section. This figure was generated from Figs. 13 and 9 for the
small-eddy-current approximation and the exact eddy-current theory respectively. The
approximate and exact theories show good agreement over the frequency range covered.
The approximate equivalent circuit of Fig. 13 should give useful impedance information
up to f/ft = 2. Figure 14 can be used to yield similar results for a thin-sheet core, although
it is limited to f/fC 1. A practical, highly efficient magnetostrictive transducer is designed
so that f/fC< 2 over its operating bandwidth. Therefore the approximate equivalent circuits
of Figs. 13 and 14 are quite useful from a practical point of view.

Figure 18 shows the transmitting current response for a theoretical magnetostrictive
toroid with a circular-cross-section core. This figure compares the small-eddy-current
approximation, the exact eddy-current theory, and the equivalent circuit without eddy cur-
rents. The equivalent circuit without eddy currents and the small-eddy-current approxima-
tion show little difference over the frequency range considered. Below f/f S = 2 there is less
than 1-dB difference between the no-eddy-current results and the exact eAdy-current
theory. Therefore, to calculate the transmitting current response at frequency ratios below
f/f = 2, one need use only the equivalent circuit without eddy current loss or the small-
edAy-current approximation, since there is little difference between them. Above f/f = 2
one should use the exact eddy-current theory.
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Fig. 17 - The electrical impedance versus frequency for a magnetostrictive

toroid with a circular cross section
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Fig. 18 -Transmitting current response (TCR) for a magnetostrictive toroid
with a circular cross section

Figure 19 shows the free-field voltage sensitivity for the same magnetostrictive trans-
ducer as Fig. 18. Again this figure shows that below f/f g = 2 one need use only the equiva-
lent circuit without eddy currents or the small-eddy-current approximation to calculate
the FFVS. Above f/fgS = 2 one needs to use the exact eddy-current theory to obtain good
results.

Figure 20 shows the transmitting voltage response versus frequency for the same mag-
netostrictive toroid as Figs. 18 and 19. The equivalent circuit without eddy current loss
(Fig. 6) is only 1 dB above the exact eddy-current theory at f/f = 3. Thus f/f = 3 is the
dividing line between using the exact eddy-current theory and the equivalent circuit without
eddy current loss. In this case the small-eddy-current approximation is not quite as good as
the results obtained from the equivalent circuit without eddy currents.
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Fig. 19- Free-field voltage sensitivity (FFVS) for the transducer of Fig. 18
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Fig. 20 - Transmitting voltage response (TVR) for the transducer of Fig. 18

The Effect of Magnetomechanical Coupling on Eddy Current Loss

Figure 21 shows the equivalent circuit) in electrical units) of an unloaded magnetostric-
tive toroid in the presence of eddy currents. This section will show how magnetoelastic
effects alter the amount of power dissipated by eddy currents.

If one calculates the power dissipated by eddy currents in branches 2, 3, and 4 (no
eddy current power being dissipated in branch 5, only mechanical power), the following
equation results:

Peddy(Wj) = 12 wLoX I I 1

2XRk23 - 2XR k2

+

- $2) + 2}(

32
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Fig. 21 - The equivalent circuit, in electrical units, of
an unloaded magnetostrictive toroid in the presence of
eddy currents

where

2 1WoO C M
m M

2 1
c2 R2

m m

The frequencies wo and wd are the resonance frequency and a damping frequency respec-
tively. Equation (106) implies that as the mechanical damping Rm approaches zero, the
damping frequency approaches infinity. The result of using the small-eddy-current approx-
imations of Eq. (94) in Eq. (104) is

Peddy &)J l +
16rC

I 2 Co2 LL 2k 2
0 833 - I292.L 2k2

2 0 33
co ___

167rfC(1 - k33{(1 -J )2 + £4}

Equation (107) is plotted in Fig. 22 for L = 6.45 H, fC = 1000 Hz, k 33 = 0.45,
wo = (2nr)100 Hz, and Wd = (2ir)389 Hz. Also shown in Fig. 23 is the eddy current loss for
a nonmagnetostrictive toroid (k3 3 = 0) that has a permeability equal to p, (the free
permeability). When c << con, the two curves converge. This can be seen hrom Eq. (107)
by letting co << «o:

Peddy(X)
I2 w2 L(l + k23 )

l6erf{1 - k3 3)
(108)
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Fig. 22 - The power dissipated by eddy currents as a function of frequency
when 33 0.45

Let

LT = free inductance = -
1 - 3

and

fTc 2p = fc (1 - k33) = free characteristic frequency
Thu 13rdq 3 frequency

Thus Eq. (108) becomes

Peddy () =

i2 w2 Lr(1 - kO3)

16,rfT
C

Equation (111) is the same as the expression for the eddy current loss of a nonmagnetostric-
tive toroid with permeability ,U33 for f < fT. Equation (111) means that at frequencies far

34
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A~~~~~~~~~~~~~ k33= 0.45

/~~~~~~~~~~~~ ~ ., ,,,,,, . , , I . I .

(109)

(110)

I2W2L
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below resonance (where the motional impedance is small) the power lost in eddy currents of
a mainetostrictive toroid is the same as in a nonmagnetostrictive toroid with permeability
M = 11T33 When c = Coo Eq. (107) becomes

ted (Wv) = 1 2 L0 (112)
P eddy { Co O ) 16ff

Equation (112) is the same as the expression for the loss of a nonmagnetostrictive toroid
with permeability p = s3 at co = w and f <C . When co >> co, Eq. (107) becomes

12 (J 2 LT(1 - k 2 )2 12 W2Lo~~ (cv) - 0, 33(113)
Peddy M 16 1rfT 16irfs

C

which is the same as Eq. (112) except that w has replaced co0. Equation (113) means that
far above resonance the k 2 = 0.45 curve of Fig. 22 is less than the k33 = 0 curve by a factor
of 11 -k2332 -

The most interesting phenomenon shown in Fig. 22 is the 10-dB drop below the k33 = 0
curve in the eddy current loss at f/fo = 1.11, just past the resonance frequency. Savage and
Abbundi [101 have observed this effect experimentally. This present theory explains that
effect. Physically this drop in the eddy current power dissipated means that the skin depth
of the magnetostrictive material increases over a narrow frequency range just above the reso-
nance frequency. It has been found that the depth of the minimum at f/fo = 1.11 is con-
trolled by both the damping frequency cod and the coupling coefficient k3 3 . The damping
frequency is related to the mechanical resistance Rm via Eq. (106). A small mechanical
damping (large cod) leads to a great drop in the eddy current loss just past w0 . A large
mechanical damping (small cod) leads to a shallow drop in the eddy current power above
resonance. The occurance of such a drop in eddy current loss could lead to a dramatic rise
in the efficiency of a transducer that has a large portion of its loss in eddy current ohmic
loss.

Figure 23 shows the eddy current power dissipated as a function of frequency for
Lo = 7.36 H, fC 1000 Hz, k3 3 - 0.3, co = (2Xr)100 Hz, and CAd = (2ff)875 Hz. The
reduced coupling coefficient moves both the maximum and the minimum closer to fo.
The maximum and minimum occur at 0.95 fo and 1.055 fo respectively. The difference
between the curves above resonance is less than that in Fig. 22. This is expected in light of
Eq. (113).

Extension of the Small-Eddy-Current Approximations to
Additional Equivalent Circuits

The only equivalent circuit discussed so far has been that of a magnetostrictive toroid.
The small-eddy-current approximations presented in Figs. 13 and 14 apply to any magneto-
strictive device with an active core that is circular in cross section or composed of a stack of
thin sheets. Figure 24 shows an example in which the approximations of Fig. 13 have been
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Fig. 24 - The equivalent circuit of a circular magnetostrictive rod clamped at one end
in the presence of small eddy currents near its quarter-wave resonance
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applied to the equivalent circuit of a thin magnetostrictive rod of circular cross section with
one end clamped. Branches 1 through 4 are the blocked impedance. Branches 5 through 9
are Mason's approximations to the mechanical admittance with the approximations of
Fig. 13 applied. Branches 10 and 11 are the reciprocal of the mechanical resistance with the
small-eddy-current approximation applied. In Fig. 24 the constants are given by

N2Aps
Lo £ -- (114)

Nd, 3A
NdH (115)

S33

Cm = 33 (116)

Mm =DAQ, (117)

and

R = 2 Q (118)3

where V is the length of the rod, A is its cross-sectional area, and D is its density, all in SI
units. Several restrictions apply to Fig. 24:

* One end of the rod is rigidly clamped, and the other end is free to move;

* The frequency is near the quarter-wave resonance of the rod;

* The rod is long and thin, so that any demagnetizing effects are small, or equivalently
a well-laminated low-reluctance magnetic return path is provided;

* The frequency range of interest is less than or equal to twice the clamped characteristic
frequency (fs).

SUMMARY AND CONCLUSIONS

The equivalent circuit of a magnetostrictive transducer in the presence of eddy currents
has been derived using an exact eddy-current theory. The exact eddy-current theory can be
time consuming to use but can be reduced to an approximate theory which is simple and
accurate for frequency ranges of practical interest. The approximate eddy-current theory is
useful in predicting the efficiency, the impedance, the transmitting responses, and the re-
ceiving response in a range of frequencies near the clamped characteristic frequency f . At
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frequencies greater than twice the characteristic frequency the exact eddy-current theory
will yield accurate results. The approximate eddy-current theory should have immediate
application by transducer designers working with magnetostrictive transducers.

It was found that the eddy current theory predicted a sharp drop in the eddy-current
loss in a narrow frequency range just past resonance. This effect was experimentally

- obyerved- by Savage and-Abbundi [ 10j-
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