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CURRENTS ON GENERALIZED YAGI STRUCTURES

INTRODUCTION

This report evaluates properties of currents on an infinite linear array of parasitic radia-
tors when one of the radiators is excited. In practical applications Yagi antennas use arrays
of parasitic electric dipoles. Therefore the detailed analysis deals with a generalized Yagi
(dipole) structure. The structure has been generalized by allowing the dipole antennas to be
inclined at an arbitrary angle to the array axis; in a conventional Yagi the dipoles are per-
pendicular to the array axis.

When the array is excited, the currents at each radiator may be decomposed into a
surface-wave component plus a correction component. The surface-wave currents are of
particular importance in design, and their wave properties are found for various angles of
inclination of the dipoles.

Calculations are carried out within the framework of a network formulation. The in-
tegral solution obtained from this formulation is used to demonstrate the interrelation
between the properties of the array of short-circuited radiators excited parasitically and
those of the same structure when each radiator is excited by a real generator, as in a phased
array. Analytical (closed) forms previously obtained in phased-array studies are used to elimi-
nate numerical difficulties due to slow convergence of the series which arise in previous
treatments of long Yagi antennas. For the special case of dipoles inclined at the angle
arctanVW= arcsin./2-T3 = 54.740 to the array axis, the functional form of the solution sim-
plifies remarkably. The surface-wave and (feed) correction currents are then explicitly eval-
uated, in the complex plane, as a pole-residue contribution and a branch-cut contour integral.

As recounted by Professor Uda [1,21, the Yagi-Uda antenna was invented in 1926.
Further practical and theoretical studies were undertaken, but, as noted by Ehrenspeck and
Poehler [3], in the late 1950's there existed no rigorous solution of the Yagi problem. The
experimental results were restricted to special cases, with no attempt made to find a connec-
tion between them. Ehrenspeck and Poehler developed general design principles for long
Yagi antennas. Their experiments demonstrated the dominant role played by the surface-
wave parameters in determining the performance of this antenna. This is now well understood
within the context of surface-wave antenna design [4].

The variation of the phase velocity of the surface wave on infinite Yagi structures was
analyzed by Sengupta [5]. Mailloux [6,7] provided a complete solution, including excita-
tion coefficient, for the infinite Yagi structure excited at one element of the structure. He
then applied these results to finite Yagi arrays, obtaining excellent agreement with experi-
ment and with an alternative theory for such arrays by King and Sandler [8]. Gately et al.
[9] showed that a comparatively simple calculation which treats the dipoles of the Yagi

Manuscript submitted August 30, 1978.
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array as minimum-scattering antennas [ 10,11] also yields similar results for finite arrays. For
any given array configuration, even if it includes a large number of elements, such direct
calculations of radiation from a finite array no doubt now provide the most convenient
route to accurate results.. On the other hand, because of the many variables, estimates for
appropriate designs continue to be most readily derived from the surface-wave point of view.

In the next section of this report the problem posed by a linear array of identical
parasitic radiators is given a generic network formulation. A formal solution in the form of
an integral is obtained for the currents produced on such a structure when a single element
is excited (the Green's function currents.) The technique for solution was described by
Mailloux 6] and follows closely that employed in the analysis of phased arrays 112,131.
In the present report it is shown that the active impedance (the input impedance to any
antenna element when all are excited with uniform amplitude and uniform phase difference t)
is intimately connected with the surfaee--wave parameters. In particular, surface -waves can
occur only for values of t denoted ts corresponding to the "invisible region" in phased-array
parlance. For such values no radiationa occurs, and the active impedance is reactive. The ratio
of surface-wave velocity to the velocity of light is kDlI 6, where 41 is the element spacing in
electrical radians. and t is a zero, of an active impedance as a, function of phasing angle. It
would seem that analyses carried out on a variety of phased-array structures can now be
turned to account in the design of surface-wave antennas.

In Refs. 12 and 13 Wasylkiwskyj and Kahn analyzed an infinite linear array consisting
of dipoles (minimum-scattering antennas) oriented at an arbitrary angle with respect to the
array axis. An essentially closed form for the active impedance is available from Ref. 12.
This form simplifies remarkably for dipoles inclined at the angle 0 o ar 4 arcta
The special nature of this angle for dipoles was first noted by Hazeltine [14].* The third
section of this report is devoted to the Yagi structure consisting of dipoles inclined at this
special angle. For this case the formal inte solution can be evaluated by contour integra-
tion in the complex plane. The surface-wave components of currents at the antenna terminals
are evaluated as pole-residue contributions, and the remaining components of current are
evaluated as branch-cut integrals. On the infinite structure these branch-cut "correction" or
space-wave components. of current are the only ones giving rise to radiation away from the
structure. In contrast to the surface-wave components, which retain a constant amplitude
along the structure, the correction components decrease with distance for antenna elements
removed from the one excited. It is found that this decrease is at least as rapid as 1/n, where
n is number of elements removed from the excited element. In a Yagi array this type, of cur-
rent would be responsible for "feed radiation."

*Hazeltine [141 discovered that the static coupling between parallel magnetic coils (more generally dipoles)
was eliminated when the coils are inclined to aline connecting their centers at the special angle 0
arctan -&i Not only the static coupling term inversely proportional to the cube of the coil separation but
also adynamic term inversely proportional to the square of the separation are eliminated. Only the dynamic
radiation term inversely proportional to the separation remains. The author is grateful to Dr. Harold A.
Wheeler for bringing Hazeltine's discovery to his attention. (Dr. Wheeler has discussed Hazeltine's discovery
in a recent book Hazeltine the Professor, published by the Hazeltine Corporation, Greenlawn, N.Y., in
1978.)
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The last section deals with the parameters of surface-wave components on the general-
ized dipole Yagi structures. On the one hand, except at the one special angle treated in the
third section, the complexity of the integrand in the formal solution would seem to preclude
a corresponding complete evaluation. On the other hand the formobtained for the active.
impedance [12] is convenient for computation. Consequently it becomes economical to
compute the actual variation of surface-wave parameters with frequency for any particular
structure of interest. Examples of such calculations are given. For conventional Yagi struc-
tures (00 = 900) surface-wave solutions have been found only for capacitive (short) dipoles.
It is shown that, for sufficiently small angle of inclination 00, surface waves can also exist on
arrays of inductive dipoles. In the computations the mutual coupling between antennas is
(apart from a scale factor) approximated as the coupling between minimum scattering
antennas having radiation patterns of short dipoles. Theretore results obtained for inductive
dipoles apply, strictly speaking, to short inductively loaded dipoles. Because of the slow
change of the radiation pattern, the theory of mutual coupling between minimum scattering
antennas indicates that these results approximately apply to arrays of (unloaded) dipoles
somewhat longer than 1/2 wavelength.

NETWORK FORMULATION

An infinite array of identical antennas uniformly spaced along a straight line or axis is
characterized at the terminals of the antennas by voltages Vm and currents InX where the
subscripts denote the mth and nth antennas. These terminal quantities are related by the
open-circuit impedance coefficients Zm n

1Vm = Zmn In,-

In view of the symmetry of this array, the impedance coefficients depend only on the separa-
tion between the mth and nth antennas (n - m)D, where D is the separation of adjacent
antennas. Thus Zmn is a function of only the difference

v = n-m. (2)

Lorentz reciprocity in the electromagnetic field implies that the matrix of impedance coeffi-
cients is symmetrical:

Zmn = Znm * (3)

It follows that

Zmn = Z = Z-. - (4)

The basic network relation (1) can therefore be rewritten as

Vm = L ZvIm+v (5)

This is an infinite-order, linear, finite-difference equation.

3
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Let us assume that only one of the antennas, the ith antenna, is excited by a voltage
generator Eg with internal reactance X0 (Fig. 1). The remaining antennas are each terminated
in a like reactance X.; they are excited only parasitically through mutual coupling. These
conditions constrain the terminal voltages and currents to

Vm = Eg6m -JXam (6)

where brz £ is the Kronecker delta:

3m £ = 1, m , (7a)

= 0 m * (7b)

When these constraints are inserted into the difference equation (5), the result is

Eg 6m2 + jiXaW 0v Im+v). (8

To solve the difference equation (8), one can introduce the Fourier transform of the
currents I.:

Q) = e et (9a4

and, inversely,

tt = 9(e.) ej"' dt, (9b)

X-

mnet]1

Eq Fig. 1 - Infinite array of identical antenna,
-with one antenna excited

m-g-- .0
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From this definition it follows that the Fourier transform of the currents Im+V is eimt9Q):

Im+v = [Y(9) eCj`] let dt. (10)

The Kronecker delta is given by

bml; = 2ff1 Cjim"A)t do. (11)

On insertion of the integral representations (10) and (11), difference equation (8) becomes

2 f'TEgeoAm dt =E (Zv + () ej(m+vTh dt. (12)

Interchanging the order of summation and integration and equating the resultant transforms,
one may solve for (Q) =( -:

j 9 ~~~~~~~~~~~~(13)
jXa + Q( )

where

Q~t)= E Z~eIjV. (14)
p=_w

The superscript £ makes explicit the dependence of the solution on excitation at the port of
the Lth antenna only. The currents I4£) which constitute the solution of (8) (in effect a
Green's function solution) may then be recovered from (13):

i 27r fY]X 0 + Q( ) dt. (151

It is clear from (15) that the properties which distinguish the terminal currents on one parti-
cular array from those on another reside entirely in Xa and the functional form of Q(Q) [15].
From symmetry considerations or from (15)

I -= J( . (16)

In the rest of this report the superscript 2 will be suppressed by setting £ = 0.

In the phased-array literature [12,16,1 7] Q(Q) is identified as the active impedance, which
is the input impedance at any element of the infinite array when all elements are excited by
generators of uniform amplitude and constant phase difference (Q radians). Therefore an
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intimate connection exists between the characteristics of the parasitic array and those of the
same array of antennas employed as an active phased array. The implications of this connec-
tion will be developed subsequently.

A significant difficulty arises in the evaluation of the currents l^ from (15) when the in-
tegrand has singularities for values of t in the interval -r < t < r. As will be discussed from
several points of view, particular singularities contribute surface-wave components of current.
These particular singularities occur at the roots of

jX + Q( = 0. (17)

Clearly a necessary condition for occurrence of a root in (17) is that the real part of the active
impedance Q(Q) vanish:

Re Q() = 0. (isa)

It is well known that for closely spaced arrays, 0 < kD < Kr, symmetry considerations dictate
a range of values of t in which (1Ba) holds, the so-called "invisible" region of phasing angles
{12,16,17]

kD< Jtl~~~~~ir. ~(18b)

Therefore real roots of (17) quite generally lie in that range. Further, it can be shown that)
due to the reciprocity conditions (3) and (4), these roots occur in pairs with opposite sign
(Appendix). If (P) is a real root of (17), then -tP) is also a root, which will be denoted

4_p) = t) p = ±1, 2 (19)

Surface-wave components of current (components that maintain a constant magnitude
from one antenna element. to. the next and a constant phase difference from one element to
the next) are found on closely spaced arrays. These waves have phase velocity

u(p) = __= c k , (20)4' - P t jP)

where c is the velocity of light. In view of (18b) they are "slow waves."

The total currents I. are conveniently dissected into surface-wave and correction
components

1n =sn + en, (21a)

where

Isn= s (213)

is by definition a surface-wave component of current (with the superscript p being
omitted, because only one surface wave is assumed for simplicity). The absolute value in

6
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(21b) is justified by the symmetry of the problem. The unknown amplitude 15 can be de-
termined from the Fourier transform of (21a)

t gs(o + qcm, (22a)

where

4S(e) = 'sO Z e~Jln t = 'So (-1 + 1 + ei(ttsV (22b)1 - e1&~s) I -eiTs)

with the requirement that s4$Q) be nonsingular at t = ts [6] . If no other (type of) singularities
are present, the currents I , may then be evaluated straightforwardly from .1(Q) and the
inverse transform (9b). When other types of singularities do occur, these must be examined.
If they are integrable, no further analytical difficulties (but quite possibly further numerical
difficulties) may be involved in the evaluation of ICn:

= I Af co7eJnt dt. (22c)
-if

An alternative means for evaluation of the currents is accessible when the analytical
properties of Q(Q) can be determined in detail. Extension of Q(Q) into the complex t plane

= neit, i7 > 0, (23)

brings with it the elegance and power of function-theoretic techniques for integration. As a
function of the complex variable ¢, the active impedance function will be denoted by q().
When i? = 1,

qQ() = q(qeit) = Q(w). (24)

The currents In are then given by the contour-integral formula

1 Eg ¢-(n+l)d 25
In 2Jf JX+q() d+ ' (25)

C

which is equivalent to (15) when C is the unit circle in the ¢ plane, properly indented about
any singularities. The proper indentations may be determined by introducing a small
amount of dissipation (which moves the singularities off the unit circle) and then passing to
the limit of zero loss [4]. An example of such a contour will be shown in Fig. 4a in connec-
tion with the particular case of inclined dipoles considered in the next section.

7
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When the integral (25) is evaluated by deforming the contour C about the singularities
of the integrand, the residue contribution, due to a simple pole at o = on the unit circle,
is readily identified as a surface-wave current. In general

F ~~~~~~~~~~(26a)Isn g E d 0(

= 9dt (26b)
. Tdt QQ I 

The preceding formulation is readily generalized to an infinite array of a given complex
of antennas [113]. The given complex, termed a subarray of antennas, may comprise one or
more multiport antennas (Fig. 2) or simply an ordinary subarray of several identical one-port
antennas. Suppose the antennas in each subarray have M input ports. Then the impedance
coefficients of the infinite structure may be denoted by Z-- m 13Y, n = 1,2,... ., M, where,
for example, m37 identifies the 113th port of the mth subarray. the Lorentz reciprocity condi-
tion (3) is then replaced by

mn;mn nn; nm (27a)

.tzl

(2)
Fig. 2 - Array of subarray antennas

m'tl miti'2r',-M |__ -~

S
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With the adoption of matrix notation within the subarray,

Z = m (27b)

where Z denotes the transpose of the M-by-M matrix Z . From symmetry (2) it follows
that -nm

Z =Z = Z (28)
-onn =-v -- ,

Accordingly the basic network relation can be written as

v = (29)

where V and I are M-dimensional column matrices:

V [Vl;m V2;m * ;n] (30a)

and

-n = 1;n l2;nX I * *im;n] - (30b)

The solution of (29) proceeds in a fashion entirely parallel to the solution of (5). In particular

J(2) = 1 [ix + Q(Q1 1 E e-fi(nQ) dt (31)
- n 27r JL j 9

-ir

is obtained parallel with (15). Surface-wave currents may o sur and are again attributable to
singularities of the integrand in (31), that is, to real roots t. of the determinant:

det[iX + .Qfj = 0. (32)

APPLICATION TO AN INFINITE ARRAY OF INCLINED DIPOLES

An infinite, uniform, linear array of electric dipoles, each inclined at angle 00 to the
array axis, is shown in Fig. 3a. Let the input impedance to one of the dipole antennas taken
from the array be

9
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Fig. Ba - Infinite linear array of metal rods (radius a and
length b) or short-circuited electric dipole antennas

ANTENNA

LvC b
ACTUAL LOAD

(SHORT CIRCUIT)

EQUIVALENT LOAD
FOR CMS ANTENNA

Fig, 3b - Dipole and equivalent canonica-minimum-
scattering (CMS) antenna circuit

A A A

Za Ra + ]a (33)

in free space. To use theory developed for minimum-scattering antennas to calculate mutual
impedance [9,11,171, each antenna is modified through the addition of the series reactance
circuit shown in Fig. 3b. At terminal 7Th each dipole is closely modeled by a canonical-
minimum-scattering (CMS) antenna with input impedance R0. Terminals cc' are in all respects
equivalent to the original antenna terminals aa. With respect to the terminals bb' the im-
pedance coefficients for the array, normalized to R., are given by [11,12]

V rh(2) h~~~f)(kD~~vI)] kD Iii2zV =D3 2 k Ii)- kDlI sin2O + 3h1 2(kDlvI) 20 v0,
2 0 __ _0 I lvl 0 0 k DIP - OS07 

(34a)

(34b)= 1, V=O,

where the particular spherical Hankel functions are 1181

10
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0(Z) = ] eZ (35a)

and

,42) (Z) -1z(1xi) (35b)

and where h = 27r/X, D is the distance between adjacent dipole centers, and D I VI = D I n - m I
is the distance between the mth and nth dipole centers. It was noted following (1) that the
mutual impedance depends only on the distance between the mth and nth dipole centers and
thus on kD I m - n I = kD I v 1. Impedance quantities without the caret are normalized to Ra.

An infinite Yagi structure is obtained when the dipoles are short-circuited at the termi-
nals ad of the antennas. Putting the short circuit at the terminals cC' shows that the Yagi struc-
ture is equivalent to the array of CMS antennas at terminals bb' terminated in reactances k
When an ideal generator is placed in series with this reactance at one of the antennas, the
problem of finding the terminal currents at all antennas is a particular example of the network
problem formally solved in the preceding section. As was pointed out in that section, the
features distinguishing various infinite Yagi structures are concentrated in the functional form
of the active impedance Q(Q) for all phasing angles t, -ir < t < ir, given by Eq. (14). A highly
convergent form of this impedance was previously obtained by Wasylkiwskyj and Kahn [ 12].

When the dipoles are inclined to the array axis at the special angle

sin 2 0 2 2 (36)

the mutual impedance (34a) simplifies to [12,14*]

Z = h( 2 } (kD vI)V (37)

The active impedance is then given by the closed form

QQ) = UL. -. ln [2 IcoskD - cost 0< ~lI<kD, (38a)

- --51n[2lcos kD -cos te kDD< Itl<rr. (38b)

For dipoles spaced more than 1/2 wavelength apart (klD > 7r) the active impedance has a
nonvanishing real part for all values of t. All surface-wave roots tsP) of (17) can therefore be
found** using (38b):

cosgP) = cos kD -exp (kDX0 ). (39)
*Footnote on page 2.

**Sengupta [5] derived a similar form. However, his result was intended as an approximation for roots of the
conventional Yagi structure, with 60 = ir/2.

11
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In the preceding section (Eq. (25)) the general solution for the currents In was formu-
lated as a contour integral in the complex t = 77eit plane:

fxEr-_(n +1)jg5 ~dt . (40a)n -2jJ +jXa t q(+ )

Here

q(t) = W-Ln (1 - af) + 1- Ln (1 -4) (40b)

-1 -3I Ln (40c)

in which

a = e&fkD 740d)

with q(f) representing the continuation of (38) into the complex p plane, the contour C
being the unit circle I t 1 = 1 indented as shown in Fig. Aa, and the notation Lxx r denoting
the principal branch of the natural logarithm function:

Ln tV = In ' + jl -K <C .7r (41)

The active impedance function q(f), and consequently the integrand in (40a), has four
branch points, at

00= oc, ao . (42)

The branch cuts, corresponding to (41), have been chosen to run between - and a and
between I/f and 0. The integrand also has poles at the zeros of the denominator

- ,P) given by (39), and at a pole of the numerator which occurs at infinity when
n <-1. The contour C is indented about the branch points only to avoid ambiguities in the
drawing, since the singularities at these points are integrable. On the other hand, the indenta-
tions at the surface-wave poles { (P are essential and are dictated by uniqueness of the solu-
tion for the currents. A detailed discussion of these points is contained in the Appendix.

Preparatory to evaluating the integral in (40a), the contour C may be deformed about
the singularities of the integrand as shown in Fig. b for n >0 and as shown in Fig. 4c for
n < 0. In either case the integral naturally separates into the two components given by (21a).
A surface-wave contribution Is arises from the pole, and a correction contribution I arises
from integration around the branch cut. For n >0 the circular arc of large radius in Fig. 4b
does not contribute.

12
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Fig. 4a - Contour of integration C, indented Fig. 4b - Deformed contour equivalent to C in Fig.
around singularities on the unit circle 4a when n> 0

x

VS-
Tr

Fig. 4c - Deformed contour equivalent to C in Fig.
4a when n K 0

13
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The general form of the contributions due to the (simple) poles has already been stated
as (26a) or (26b). Substitution in (26a) of the active impedance function (40c) or substitu-
tion in (26b) of the active impedance (38b) for the dipoles inclined at the special angle (36)
yields

=(P) COSE ) - cos (4P)16n = -gn~p)E(kD}e7JntS g 43)

The function

sgn(p) = +1, p>O,

= -1, p<O,

accounts for the sense in which the contour circling the pole is traced. In view of the relation
(19) which is verified by (39)

sn = Is(-n) '44)

as expected from symmetry.

The integral around the branch cuts must be evaluated numerically. For n > 0 an ap-
propriate form is readily obtained by use of (40b) and the relations

Ln (1 -ar) = ln {- - 1) + ftr, > >n1t (4Ia

for the inward portion of the path of integration and

LEn(l-aC} = ln (,-1) - jir 1 < i Co°° (45b)

for the outward portion. The result is

( + tB) 1 }'JlD) x Ln [(- 0 7 )1 | 1 

+ jX4 - jiLbLn [(7n- 1)(1jI(6

For n >0 it is easy toestimate the variation of In. The denominators in (46) arejX + q()
evaluated near the branch cut. Each denominator has some finite minimum absolute value

14
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independent of n. It does not take on the value zero; that value occurs only at the roots 41')
Integration then yields

l lf | A2 1 n > 0, (47)

where A is independent of n. Thus Ii fn I decreases at least as fast as 1/n.

For n < 0 the integrand diverges as ' -+ -. It is convenient to deform the contour C as
shown in Fig. 4c. An appropriate form of the branch-cut integral is readily formulated by use
of (40b) and the relations

Ln (I _ TO) = In (1 - 71) + jar, 1 > ,1 > 0, (48a)

for the inward portion of the path of integration and

Ln (1 -_j) = ln(1-7-)-jr, 0<7?<l, (48b)

for the outward portion of the path of integration. The result is

+Einge rn71-n-1

Cfl 2wj

(I + L) +iXa -JF kLn 1) n)] 49

Integration then yields

Ien g B1n n<0, (50)

where B is independent of n. Thus IIfn I again is shown to decrease at least as fast as 1/n. In
view of symmetry only one of the integrals in (46) and (49) need be evaluated. In fact, using
the transformation 71 = 1/ti, one verifies directly that

fcn 1c(-n) (51)

The currents Isn and Ifn were computed for a Yagi structure consisting of an array of
dipole antennas inclined to the array axis at the special angle Oo = 54.740 and spaced
D = 0.200 m apart. Each dipole has length b = 0.400 m and radius a = 0.00635 m. Absolute
lengths are specified to emphasize that the curve shows the true frequency dependence of a
Yagi structure of fixed geometry. Of course this structure can be scaled in the usual way
from the assumed frequency or design wavelength of 1 m. The dipole radius was selected to

15
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allow comparison of the results of the next section, for 0 = 9O', with those of Mailloux.
The normalized self-reactance of the dipole Xa has been taken from Jordan [119,201 .The
input reactance is normalized by dividing by the input resistance, This normalized value is
the same whether referred to the loop or the base (center) of the antenna. The formulas for
the antenna impedance are summarized in the next section by (53) and (54). Significant
current ratios are plotted in Fig. 5 for a range of free-space wavelengths around 1 m
(kD = 1.257).

At 1 m or less the self-reactance of the dipole is high, allowing only small parasitic
currents to be induced on the dipole structure. The surface-wave currents, such as do exist,
propagate at nearly free-space velocity. At higher frequencies (kD > 1.257) the dipoles
approach resonant length. The lower self-reactance allows high currents to be induced on the
dipoles. The surface wave is strongly coupled to the slow-wave structure and propagates at a

(0

-

Us

Iin

i"

4
Li
D-(n
PA

10

0R

.4~

LU

LI

.4
Li

1C

U.

) J30 Laim\

ELEMENT SPACING. (RADIANS)

Fig. 5 - Space-wave (correction) component of the
current relative to the surface-wave component at
the feed point and the relative surface-wave veloc-
ity, computed for an infinite array of dipoles inclined
at 00 aretan J7 = 54740 with dipole radius
a = 0.00635 m, dipole length b = 0.400 m, and di-
pole spacing D = 0. 200 m
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velocity much below free-space velocity.* The unattenuated surface-wave component of the
current becomes large relative to the space-wave component, which in addition decays away
from the excited element. The rate of decay of the space-wave component of current is
shown in Fig. 6. It is seen to be slightly more rapid than the lower bound 1/n developed in
(47) and (50).

SURFACE-WAVE CURRENTS ON GENERALIZED
INFINITE YAGI STRUCTURES

In this section the dispersion characteristics of the surface-wave currents on arrays of
arbitrarily oriented dipoles will be computed. As in the case of the specially inclined dipoles

UU10 

0

>-1 BOUND \ \

Ld

Lii
U

.4\L\

a-\ 

ELEMENT NUMBER, N+ I (LOGARITHMIC SCALE)

Fig. 6 - Decay along the Yagi structure of the
space-wave component of the current relative
to the surface-wave component, computed for
an infinite array of inclined dipoles with the
same O., a, b, and D as in Fig. 5 and for a free-
space wavelength of 1 m (kD = 1.257)

*The characteristics of the surface wave are also found by interpolating for 60 = 54.74 on the wavenumber
diagram to be presented as Fig. 7. The slope of a line from the origin to a point on a dispersion curve is the
relative phase velocity of the corresponding surface wave vie, given by (20).
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of the preceding section, the generally oriented dipoles are easily covered by the network
formulation given in the second section. The currents excited by any one driven dipole are
given by (15), and the dispersion relation for the surface-wave components is given by (17).
Nevertheless analytical difficulties arise due to the increased complexity of the active im-
pedance Q(4). Although these difficulties stand in the way of a complete solution along the
lines obtained in the preceding section, the dispersion relation is readily solved numerically
for the surface-wave parameters.

When the more general expression for the mutual impedance (34a) is substituted into
the formula for the active impedance (14), the resulting series may be summed by an exten-
sion of the methods employed in the Appendix. This sum, found in Ref. 12, is

ReQ(U =) si$n J)2)(cos20o 2sn2)+ D sin2 oJt1<kD<Cw , (52a)

= 0, kD< Il< ir,

and

im Q =) =( O)(oS2 Oo - sin200) + w () sin2 % 

where

(52b)

(52c)

FDj rkD+t

(V= 23 2404 + (kD - - x) n 2 sinXdx + (kD + t -)
(kD)3 L xfJ

In 2 sin 2dx}

&Dt Xkf
n n2 sin xdx +2J xf

0

1-t

In 2sixx, lti<kLJ<r,

.- rt-kED t+k
_ __ 2404 + f -kD - x)In2sin-2dx+ Q + L - x)n2I2sinjd(hkD)3L f12 J 

(52e)
F t~kD rt- k

(k L I 2 sin dx - ln 2 sin idxj h i < i 1 < r,

and (with a factor 3/2 added that is missing in Ref. 12)

w() = ln2(cost - coskfD), 11<kD<vr,
= 2kD

= n 2 (cos kf - cos t), kD <ItI< iT1<r
2~kD
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The reactance of the dipole k may be obtained by any independent means. Herein
results quoted from Jordan and Bafnain [19,20] are used. Within the approximations em-
ployed for mutual coupling, the physical dimensions of the dipole (length and radius) enter
only through the value of the input impedance Ra + jXa

1?Ra = 15[(2 + 2 cos b) S1 (b) - (cos b) SI(2b)

-2(sin b) Si(8) + (sin b) Si(2b)] (53)

and

2ii = -15{(sin b) [- 7 + Iln ) + 2Ci5) Ci(2b)]

-(cos b-) [2 Si(b) - Si(2)] -2 Sib (54)

where & is the dipole length kb in electrical radians (b being the dipole length in meters), a is
the dipole radius ha in electrical radians (a being the dipole radius in meters), a/b < 1, y is
Euler's constant (0.5772), and Sl(x), Ci(x), and Si(x) are defined as

S1(x) =fi - cos Y dy, (55a)
0

Ci(x) =fcos Y dy, (55b)
Ox

and

SI(x) =fsxn y dy. (55c)
0

The normalized values of antenna impedance

Ra + jXa = 1 + jXa/ha (56)

do not depend on the current point on the antenna chosen for reference.

The characteristics of the surface wave obtained from the solution of the dispersion re-
lation (19) may be displayed in various ways. Perhaps the most universal way is a wavenumber
diagram: kD vs US. For convenience of scale in Fig. 7 to follow, these parameters will be
divided by 2ir to obtain D/X and D/Xg (fractional wavelengths).
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The general features of the wavenumber diagram are well known [41, and special aspects
for the case of the normal Yagi structure (0t = 90') are discussed by Mailloux [211. In par-
ticular Mailloux discusses the possibility of wave solutions for antennas of length X/2 K b C X
(inductive antennas). He concludes that the antennas must be capacitive to support a surface
wave. The present computations, shown in Fig. 7, agree with those of Mailloux and confirm
this conclusion for the case 00= 90. The region of capacitive antenna length, approximately
bA < 0.5, is restricted to a region of each diagram that is below

D hi 0D
A = -D m= ° 5-R b(57)

For example, in Fig. 7a this capacitive region is below DA = 0.5 Db = 05 (0200)/0.300
= 0.33.

However, when 0 *i- 0, it is evident just from the form of the imaginary part of Q(f),
given by (52c), that inuctive dipoles will generally lead to solutions for some 0 less than
900; unless u(Q) 0, Im Q(Q) will change sign as 0 - 0. Figure 7 shows wave soutitons when
bA > 0.5 for 0 = 300 and 00. In the computations (Fig. 7) the mutual coupling between
antennas has (apart from a scale factor) been approximated by the mutual impedance
between canonical-minimum-scattering antennas having the radiation pattern (in the open-
circuited-array environment) of short dipoles (Eqs. (34) and (52)). Therefore results
obtained for inductive dipoles apply, strictly speaking, only to short inductively loaded
dipoles. Because of the slow change of the radiation pattern with dipole length, however,
the theory of mutual coupling between minimum-scattering antennas 117] indicates that
these results are approximately applicable to arrays of (unloaded) dipoles somewhat longer
than 1/2 wavelength. In Fig. 7 the input impedance given by (53) and (54) is specified in
terms of a fixed dipole length b, fixed dipole radius a, and the free-space wavelength A. Of
course the form of (54) plays a large role in determining the frequency dependence shown.

A part of the active impedance Re Q(Q) in the range 0 < 1 1 kD, although it does
not enter into the resonance calculations (Re Q(Q) 0, h) C < I < Kt), is readily compared
for short and 1/2-wavelength dipoles. This portion of the active-impedance summation can
be rigorously expressed in terms of the radiation patterns [12]

Re ) - kD dt P, cos - - A

where Ri is the input resistance to the antenna element in the open-circuited array environ-
ment, For a CMS antenna R.-R , which has been normalized to 1. In (58) Pa(OsP) is the
radiation pattern of an element inhe open-circuited-may environment, normalized to unit
radiated power. For the readily computed special case of collinear dipoles (00 = 0)

Re Q() -2 F 3 - 2

for short dipoles (52a) and
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Fig. 7 - Wavenumber diagrams for a surface wave on an infinite Yagi structure with a dipole radius
a = 0.00635 m, a dipole spacing D = 0,200 m, and various inclination angles O0
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Re QM = - _6_ L5 (2 ) (60)

for half-wave dipoles [12,17,19]. (In (60) an error in the coefficient of the corresponding
expression (37) of Ref. 12 and (78) of Ref. 17 has been corrected.) Although the functional
form is different4 numerically the patterns and consequent variations of Re Q(Q) are similar.
In the range 0 < I t I < 0.6 hi the two differ by less than 10%.

Figure 8 illustrates several features of significance in the computations. The first feature
is the dependence of the active reactance Im Q(Q) on t. The second is the solution of the
resonance relation ESat the intersection of the negative-antenna-reactance (-Xa) line with
the active-reactance line. The third is the extreme sensitivity of the solution (4t) to small
changes in antenna reactance for larger values of (S (the slowest waves). Because of this
sensitivity the solution becomes unreliable; hence the dispersion curves in Fig. 7 have been
broken off.

Independent results with which the present theory may be compared are available for
only the conventional Yagi structure, with 00 = 900, and consequently only for antenna
reactances corresponding to inductive dipole lengths b < X/2. A comparison with the theory
of Mailloux [7] is shown in Fig. 9. The relatively simple expression for antenna reactance
used (Eq. (54)) is at about the limit of its range of validity in terms of dipole radius (19].

A possible application of the new information on Yagi structures contained in Fig. 7 is
in design of a mechanjcally compensated broadband Yagi antenna. The well known condition
for optimum directivity of a Yagi surface-wave antenna (Hansen-Woodyard) is cited by
Ehrenspeck and Poehler [33. In the notation of Fige 7, the required relation between wave-
lengths and the length L of the Yagi director array is

0.468 = \r- = D D -D
L X9 -w (

In Fig. 10 this relation is shown as the curve labeled "optimm" superimposed on a (schem-
atic) wavenumber diagram for a generalized Yagi structure. As frequency (DA) is increased,
a conventional director structure (0= 900) of fixed dipoles proportioned to satisfy relation
(61) (point A) rapidly departs from this condition to point B. However, if each dipole is
rotated appropriately to an inclination 0 < 90f, the optimum relation is restored at the
higher frequency (point C). Thus a direcr array of dipoles, mechanically ganged so that
frequency and inclination track, produces optimum performance of the director at each
frequency. However, the concomitant rotation of the element pattern for each dipole does
involve some loss of directivity.
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APPENDIX

The Functional Forms of Q(Q) and q(r)

Symmetry and Lorentz reciprocity result in relation (4) among the impedance
coefficients:

Zu = sa-V (Al)

As a result the active impedance as given by (14) becomes

Q(Q) = Zo + ZP cos v#. (A2)
P=1

Consequently, if the equation

iXa + Q( ) = 0 (AS)
(1') (-p)

has a root ts , then it has another root t( such that
s S

iaip = *rte (A4)
This is a general feature of periodic reciprocal structures [4,22] .
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If the complex variable i - qej- is introduced, the complex active impedance function

q(n t Z, - {RAa)

can be put into the form

q(t) = + L + ¢-vt (A~b)

Consequently, if the equation

IX .+ qG-) -0 (AO)
has a root then it has another root DQP) such that

The active impedance (A2 can be summed in closed form for an arry of dipoles
inclined at the special angle sin 1 - 213, at which angle 4 reduces to (37), which by use
of (35a) is

zV _ Pk ] , A~a)

In the case P = 0

Z' _ I. (A8b)

The remainder of this appendix deals only with this special angle. Substituting (Aa) and
(A*h) in (A2), one has

Ie-JVeaD -t) *eJ(st
Q(w) = z eJp ) -+ 1 + (AS)

If k is assumed to have a small, negative imaginary part, so that

h kr + jhi, ki < °, (A10)

then the series

Y1 e-k . T) (4)r' (All)
V=O v=O
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is absolutely convergent. Integrating term by term (limits 0 and at) yields the first summa-;
tion in (A9). On the other hand (All) is a geometric progression with the sum

1 . (A12)

Consequently the first sum in (A9) is also given by the integral of (A12):

1 i = -In (1- ua), (A13)*~~~~~~~~ X
in which in ¢' denotes the natural logarithm of t'. The expression (A13) for the sum is a
multivalued function of oa, since In ¢' is multivalued. But the sum (All) is single valued; it.
converges to the principal value of the logarithmic function Ln ¢' defined by

-7r < Im (Ln ¢') < +7r. (A15)

The second summation in (A9) may be performed similarly. The complete result is

q(¢) = -jjLnfl -or) + 1 - 2D Ln( 1 -{). (A16)

In the limit ki e 

q(¢) := q(eA) = Q(t). (A17)

In the main text the finite Fourier transform was employed to obtain a formal solution
of the difference equation (5) for the (Green's function) currents In. The result is

1 E e-n (A18)

1n.~~~~~~~~~~~~~ D7 . .X L .Q

where the value of Q in (15) has been set equal to zero and this superscript suppressed. This
solution was obtained without explicit reference to boundary conditions (in this case condi-
tions at I n 1- - .) Without such boundary conditions or their equivalent, any solution of
the homogeneous difference equation may be added to a given solution for the currents,
producing another solution. This lack of uniqueness manifests itself through the presence
of singularities on the path of integration. One might intuitively associate a zero of the
denominator with finite In even for E -* O. that is, with solutions of the homogeneous
equation.

A unique solution is obtained when nonzero solutions of the homogeneous equations
are excluded by introducing dissipation. Some dissipation, no matter how little, is physically
unavoidable; therefore this process selects the physically correct unique solution in the
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lmit as the dissipation approaches zero. In terms of the singularities of (A18), dissipation
removes these singularities from the real path of integration -T < t < x to complex values.
The movement of the singularities will now be studied in the complex ¢ plane.

The singuiarities in the integrand of j40a) are the branch points of q(Q): roots of
Ia + q(f) = 0 and singularities of r-n+ ). The branch points of the function q(r) arise
from branch points of Ln (v') in (A16). These are listed in Table Al. As is well known, dis-
sipation produces a negative imaginary component in h, so that (AlO) applies. The effect is
to move the branch points If and a off the unit circle:

11/al = leikD I= ek i > I

I I = Ie- 0DI = ekiD < 1.

Table Al - Branch Points of the Active
Impedance Function qQ)

Branch Points of Ln ' Branch Points of q(t)

branch cut

¢,=1 _ 0 a 
branch cut

<=1 a _ ,/{ =* ==_0,=, 

(AlSa)

(AlSb)

Properties of the roots of (AS) and (A4) have already been discussed. Displacement of
the toots is readily calculated when dissipation is introduced in the form of a (small) real
component in the antenna self-impedance. Then (A4) becomes

Ra + jX + q() = O. (A20)

Expanding q( ) in a Taylor series about an unperturbed root A (P) results in

=] + d ] V < S i) + + (A21)
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By construction, to first order in - , one has

a dq |P Up S < (A22a)

S

or

t -d a d) rip) (A22b)

S

The right-hand side of (A22b) has been evaluated in another connection; from (26a) and
(43), with n = -1, the result is

- P = ~DVP(P) cos kD - cost (A23)

S (P)~~~

In (A23), forp = +1

W < ') < Xr (A24a)
S

and for p = -1

-ir < "f ) < kD. (A24b)
s

The trigonometric factor is positive in the case of (24a) and negative in the case of (24b).
Consequently the root moves radially outward (along M1)) and the root g-1) moves
radially inward (along -t( tl}? The location of the singularities in the presence of dissipa-
tion is illustrated in Fig. Al.

Fig. Al - Singularities of the integrand in (40a) in the
complex r plane in the presence of dissipation when
sin 2 00 = 2/3
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