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SENSITIVITY ANALYSIS OF THE SAGNAC-EFFECT
OPTICAL-FIBER RING INTERFEROMETER

INTRODUCTION

Recently, R.B. Brown [11, in a study of inertial rate sensing, suggested the use of a
Sagnac-effect, fiber, ring interferometer. Through the use of a multiple-turn fiber loop, high
sensitivities appeared to be feasible if fiber optic attenuation could be reduced. Since that time
(1968), the development of single-mode, extremely low-loss optical fibers [21 has progressed
rapidly, making fiber-optic, Sagnac interferometers possible. Vali and Shorthill [3,4] were the
first to demonstrate single-fiber interferometer gyro for rotational rate sensing. Fiber inter-
ferometers using two fibers represent a second class of devices that appear to be suitable as
highly sensitive pressure [51, stress, and temperature sensors. In this report, an analysis
describing single fiber interferometer gyros is presented that provides the theoretical senstivities
of these devices in practical situations.

In their first paper, Vali and Shorthill [3] gave a preliminary estimate of fiber interferome-
ter sensitivity; however, their estimate was not intended to completely describe the perfor-
mance of these devices and consequently did not accurately describe the experimental
configurations most commonly encountered. Specifically, they did not take into account the ubi-
quitous scattered light in the long optical fiber as one of the noise sources. Furthermore, the
formula they used to estimate the photon-noise-limited sensitivity of the interferometer was not
derived for the experimental optical configurations depicted in their papers; [3,41, but rather,
was directly taken from a paper by G.E. Moss, et al. [6]. Moss, et al. considered a heterodyne
ac phase-detection technique, whereas the optical detection used by Vali and Shorthill [3,41,
was a dc (or homodyne) technique.* The results for an ac detection scheme do not necessarily
apply to dc schemes because one has to consider, in each case, different noise sources that
affect the outcome of a sensitivity analysis, and hence its conclusions.

This report presents some results of a sensitivity analysis of Sagnac-effect, optical-fiber,
ring interferometers with detailed considerations of signals and noises. For simplicity as well as
to provide a focus of discussion, the experimental optical fiber configuration proposed by Vali
and Shorthill was analyzed and compared. In the following sections, we will first derive per-
tinent formulas for signal-to-noise ratios, and then discuss noise components due to Rayleigh,
Brillouin, Mie, or core-cladding interface light scattering. These will be followed by a discus-
sion of particular problems and promising improvements. Finally, the limiting sensitivities at
both low and high input powers are given.

Manuscript submitted June 8, 1978. Resubmitted July 3, 1978.
eThe modulation frequency of this interferometer was set as high as 20 kHz so that low-frequency noise effects such as
mechanical vibration-induced noise (1/4fnoise in detection) were eliminated by narrow bandpassing. R.L. Forward has
pointed out the inadequacy of using the result of Ref. 6 in a dc detection system (private communication).
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The development of a ring interferometer gyroscope that is lightweight, low-cost, and
compact offers an alternative to the nearly maturing ring laser gyros and well-matured mechani-
cal gyros, provided that stable, phase biasing techniques can be developed. These biasing tech-
niques described in this report are required so that the gyro can be operated in the region of
maximum sensitivity.

SIGNAL-TO-NOISE ANALYSIS

Operational Description

The optical configuration on which the present analysis is based is shown in Fig. 1. The
optical source is a single-mode, stabilized, coherent (gas or semiconductor) laser with output
power P0 , and wavelengths in the visible or near-infrared region. The laser output beam is
assumed to be well collimated, with uniform phase. As the beam first passes through a lossless
beam splitter BS,, which has a power reflection coefficient a,, its power is attenuated. The
transmitted part, Po(1-al), proceeds through a lossless, nondispersive medium and reaches the
second beam splitter BS2, which is designed to give a 50/50 split of the power at an incident
angle of 450: (l/2)P o(l -a,) is the power of the reflected as well as that of the transmitted
beam. Each beam is then launched into one end of the single-mode optical-fiber coil of radius
R by a focusing lens system, such as a microscope objective, with the optimal f /number to
ensure maximum power-coupling efficiency C. In continuous-wave operation, there will be two
waves propagating in the whole length L of the fiber simultaneously but in the opposite direc-
tions. If the total loss in power through the optical fiber follows the exponential law with an
attenuation coefficient aT(dB/km), and if the loss is reciprocal, i.e., if the loss is the same
irrespective of the wave propagation direction, then the power of each emerging beam will be
(1/2)P 0 C(1 -al) e TL, which we will assume to be 100% intercepted and recollimated by the
other focusing lens system. The beam in the clockwise direction (CW) is to undergo one more
reflection and the beam in the counterclockwise direction (CCW), one more transmission,
before they combine to form a fringe pattern Fl. The power for each beam is then
(1/4) CP0(1 -a,) e

N CW BEAM

MULTI PLE - \\
TURN

SI NGLE-MODE
OPTICAL FIBER FOCUSING

LOOP LENS

Fig. I - Optical setup of the ring interferometer

C.C. F1 for the analysis
BEAM BS2

F2
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As they continue toward the BS,, the remaining halves of the beams are reflected from it
to form the second fringe pattern F2 . Their powers will be (1/4)CPOal(1-al)) T. This
fringe pattern, formed by waves that have undergone different numbers and orders of
reflections and transmissions from those of F., has a phase, in general, different from that of
F.. If the difference is 1800, the two fringe patterns are said to be complementary. In what
follows, we will assume that this is the case.

A well-adjusted optical system such as this, if in inertial motion, will give rise to two
infinite-width fringe patterns that have uniform but different brightnesses. However, as soon as
the system is set into rotation, concentric interference rings are formed due to the phase
difference between the CW and the CCW waves because of the Sagnac effect [7]. When the
rotational axis is parallel to the axis of the optical fiber coil of N turns and of constant loop area
A, the phase difference

,¢,= 8rrNA
Xc

where X is the free-space* optical wavelength, c is the free-space speed of light, and fi is the
rate of rotation. For a circular coil, A = 7TR2 and L = 27rRN; therefore,
AO = [4 vr LR/(Xc)] [1 .t The quantity in the square brackets is the sensitivity of the phase
difference to the rotational rate. It is clear in principle that, to increase the sensitivity, we
should increase the total length and radius of the coil, and use as short an optical wavelength as
possible. However, in practice, packaging criteria limit the size of R; optical fiber loss sets an
upper bound on the length L; nonlinear damage effects forbid the use of very high power laser
sources; and the signal strength, the scattered light, and the quantum efficiency of the detector
ultimately limit the system sensitivity. In other words, system tradeoffs must be studied. The
sensitivity analysis done below is thus central to the trade-off study.

The Signal

The ring interferometer described above is not sufficient for rotational rate sensing
because one has to extract the phase information from the fringe patterns. Although fringe
counting techniques [8,91 have been used to extract the phase by spatial sampling of the fringe
pattern, they involve either a modification of the interferometer setup or a multisensor fringe
locator with rather elaborate electronic logic circuitry. A simpler technique, as shown in Fig. 2,
is to use a single photodetector focused on the center of the fringe pattern such that the area in
the fringe pattern in the field-of-view of the detector is small compared with the width of a
fringe to ensure uniform optical intensity across the detector surface.

The fringe intensity depends on the interference (i.e., coherence) among the optical fields
emerging from one end of the fiber and those from the other end. Let Et~w be the sum of all
possible optical fields from one end in the CW direction; then, in general, E,,w = ECoh +
Eincoh, where ECoh represents the sum of coherent optical fields, and Eincoh represents that of

*By "free space" here, we mean either a vacuum or a homogeneous nondispersive medium in which the optical system
is submerged.
t The fringe shift in a fringe pattern caused by the phase difference A.5 is just A¢f2ar.
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L.PF
G FILTER 

AML IER

PHOTODETECTOR

Fig. 2 - Optical mixing technique for the phase
difference measurement

the incoherent fields. Similarly, EtcCW = Ewoh + EinwCh, in the CCW direction. Then the instan-
taneous intensity in the fringe is given by

I = Etc, Etccw = (ECoh + Eincoh) (EcOh + Ei'nCOh) *

EcohEch + EincohEcoh + EcohEincoh + EincohE-ncoh (1)

If this instantaneous intensity is allowed to fall onto a detector, it will generate photoelectrons,
which in the end produce a current,

i = Dl, (2)

where D is the detector conversion factor. In Eq. (1) or (2), after we take the time average
over an interval large compared with the period T = 27r/aw, we will get terms of autocorrela-
tions (i.e. intensities) of both coherent and incoherent components, as well as terms involving
crosscorrelations between coherent components. The crosscorrelations among the incoherent
components, or between coherent and incoherent components, will vanish by definition. Only
the crosscorrelations between coherent components carry definite phase information. Therefore,
the photocurrent i, after time averaging, will consist of a dc term involving all the intensity
terms and an ac term involving sinusoidal functions of phases between interfering coherent
beams. (The specialization of this to a detector with finite response time in a ring interferome-
ter will be discussed below.) The photocurrent is then amplified, bandpassed, and integrated.
This is the optical mixing technique [10] and is well studied in areas of laser communication
systems [111. We note that this optical configuration does not contain any external modulation.
Therefore, the detection is direct current in nature. It differs from the conventional homodyne
detection scheme, in that there is no adjustable "reference beam." The beats are formed by sig-
nal beams themselves. Because of these special features in the proposed optical configuration,
we cannot read out the phase difference directly.

The optical mixing output signal is formed by the two directly transmitted beams. The
amplitude of the signal depends strongly on the coherence (spatial and temporal) and polariza-
tion states of the two beams. These states, in turn, are influenced by scattered light, optical
misalignment due to mechanical vibrations, nonuniform temperature and stress fields in the
optical fiber, etc. To simplify the analysis, we assume that the optical components are rigidly
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tied down, the temperature and stress fields are homogeneous and stationary, the spatial and

temporal coherence of the beams are not degraded when transmitting through the single-mode
optical fiber,* and that polarization vectors of the two beams remain aligned.t We may, as

alternative, consider that the two beams are unpolarized. We also assume that the scattered-
light components are completely uncorrelated with the directly transmitted beams so that the

only effect to be considered here is their contribution to the background noise.

Noise Sources

To understand the noise sources that are possibly present, we should consider the follow-
ing:

1. Scattered light in the optical fiber
2. Shot noise, background noise, thermal noise, generation-recombination noise, flicker or

1/f noise, dark current noise, and amplifier noise
3. Fluctuations in the laser light
4. Environmental noise sources such as thermal variations, acoustic agitations, and

mechanical vibrations or any other large-scale perturbations such as earth's magnetic field varia-

tions, etc.

Sources (1) and (2) are intrinsic because they are not related to any environmental fac-

tors. The fluctuations in laser light will cause amplitude modulation in the signal; but, we will

see below that using a differential scheme involving the two signals coming from two detectors

set in the two fringe patterns can eliminate the common mode of the fluctuations. The scheme
is also effective in eliminating all the common-mode environmental noises. This is the salient

feature of the optical configuration under consideration. Hence, in what follows, we will con-

centrate only on the intrinsic noise sources.

The scattered light in the optical fiber consists of various components caused by different

scattering mechanisms. Parts of the scattered light are trapped in the core and guided to both

ends of the fiber and contribute to the noises; other parts are scattered out of the optical fiber
and lost forever. The major linear mechanisms are Rayleigh scattering, Mie scattering, core-

cladding interface scattering, and Brillouin scattering.* Of all these components, only the Bril-

louin component has a small frequency shift at the backscattering direction; the rest are oscillat-
ing at the same frequency as the input laser beam. Whereas the intensities of the components
due to Rayleigh and Brillouin scattering are symmetrically distributed with respect to the for-

ward and backward directions, those due to Mie and core-cladding interface scattering are

"This is certainly not true for a multimode fiber, for it has been observed that speckled patterns are formed at the out-

put of such a fiber.
tFor linearly polarized input waves, the output waves from a long, single-mode fiber may acquire some degree of ellip-

ticity in their polarization states due to stress birefringence or deviation of the core cross section from a perfectly circu-

lar shape. However, these effects are most likely reciprocal. Therefore, in keeping with the assumption of reciprocity

in fiber losses, we feel that it is reasonable at this time to put aside the question on polarization.

tThere is Raman scattering, which has a much larger frequency shift. Because its scattering coefficient is 10 to 20 times

smaller than Brillouin scattering, we will not consider it here.
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mainly one-sided, i.e., only in the forward direction. Therefore, in the CW direction, we will
have, aside from the direct CW beam (its field denoted by ECW), a Rayleigh forward component
ERI,, a Brillouin forward component EBO, and a strong forward-peaked component (EFP), which
are associated with CW beam, and furthermore, a Rayleigh backward component ERB and a
Brillouin backward component EB,, which are induced by the CCW beam traveling in the oppo-
site direction. Thus, we have a total of six fields propagating in the same one direction. Simi-
larly, we have another total of six in the other direction. These are illustrated in Fig. 3.

* CCW o FIBER

OPTICAL COMPONENT FREQUENCY PHASE FIELDSYMBOL

(I) DIRECT BEAMS (CW) 0 cw ,ccW ECW
(2) FORWARD PEAK , RANDOM EFP

BRILLOUIN SCATTERING
(3) FORWARD RANDOM E 80

(4) BACKWARD w RANDOM E Br

RAYLEIGH SCATTERING
(5) FORWARD W+Af1B RANDOM ERF

(6) BACKWARD w RANDOM ERB

THEOTHER SIX FOR THE CCW CASE

Fig. 3 -. Direct optical beams in clockwise (CW) and counterclockwise (CCW)
directions in a fiber inducing other scattered components: forward peak, Bril-
louin, and Rayleigh. Except for the direct beams, the phases of the others are
random.

As these scattered-light components are inevitable in the optical wave transmission
through any scatter-dominated fibers, and as they are always encountered in complete systems
noise analysis, we shall devote, in a separate section, a more detailed discussion to their origin,
characteristics, and distribution laws, as well as the magnitudes of their scattering coefficients.

Signal-to-Noise 1Ratio

The six optical fields in the CW direction will mix with the other six in the CCW direction
on the surface of a photodetector placed at the center of the fringe pattern (say, F1 ). Since a
photodetector is a square-law detector, therefore, there are 36 terms including all the squared
and cross-product terms. But, in steady-state, continuous-wave operations, all the scattered
component fields will be incoherent (or of random phases) because each is composed of contri-
butions from randomly distributed scattering centers throughout the optical fiber. Since the
Brillouin backscattered beams have a frequency shift of the order of 25 GHz, beating between
them and the direct beams may occur. But, a beat of 25 GHz is higher than any realistic detec-
tor response 112], and it will not be detected. Therefore, the final detector current output, after
time-averaging over its time constant r (where T >> T = 27r/w), as given by

6
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i= I f i (Wdt (3)
T °

(where the overbar indicates time average and the subscript 1 means photocurrent obtained in
fringe pattern F1), will contain only one cross-term involving the two coherent signal beams.
However, the squared terms of all six fields survive the averaging operation and show up in the
dc term of the detector current. If the laser fields at the output ends of the fiber are
represented by sinusoidal functions Ecw= Acw cos(wt-Ocw) and Eccw = Accw cos((t-OCCW)1
then

Ecw Eccw = A cw A ccw Cos (r + AO)
2

A--A A cW os (AO), (4)
2 CW

where
A cw and A CCW are the amplitudes
w is the laser circular frequency
t is time

Ocw and CCW are, respectively, the phases associated with the direct CW and
CCW traveling waves, and AX = cw -ccw

iTr is a phase shift due to reflection from the beam-splitter BS2 , provided that it
has a dielectric surface, and the numerical factor 1/2 is due to the power
reduction upon reflection from or transmision through the BS2.

The squared terms of the signal and scattered light are of the same form, i.e.,

EW = ACW cos = 2 A ̀  (5)

Recalling that the scattering processes are assumed reciprocal so that each scattered component
in the CW direction is equal to that in the CCW direction, then, by defining an optical intensity
I = IA 12, we get, for the averaged photodetector output current, the expression

=DI (Icw + IFP + IRF + IRB + I0 + 1B 2 lcw COS(AO) (6)

where

D _ nq is the detector conversion factor with
hv

= quantum efficiency of the detector
v= laser frequency
q = electronic charge
h = Planck's constant

and

O sb 8TTrNA

cX

7
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Clearly, if ft = constant, the term that contains cos(Ak) is a time-independent signal
term. Hence, the detection process is necessarily a dc mode, which can be susceptible to low-
frequency noises.

Using a similar argument, if the similar detector system is set at fringe pattern F2 , we
arrive at an expression for the time-averaged photocurrent from detector 2:

/2 = D 'a 1I2(Icw + 'FP + IRF + IRB + 'BO + IBE) + I cw cos (AO) (7)

where

a, = power reflection coefficient of the BS,

and

D'= it is the detector conversion factor for detector 2.
hp

Note that the quantum efficienty r' may be different from aq of detector 1. The sign
change in the last term of Eq. (7) is due to complementarity.

The total photocurrent from each detector is obtained by integrating the intensities of all
the light components in the fringe pattern over the small area a that is seen by the detector.
Assuming that the optical waves are perfectly aligned and that the quantum efficiency iq is uni-
form across the detector surface, we get total photocurrents for the detectors 1 and 2 as

1 T1 - la i1da = Da 1[ 2 (ICW + IFP + IRF + IRB + IBO + Br) - 1 Icw cos (AO)|

=D| 2 (Pcw + PFP + PRF + PRB + PB0 + PB) - Pcw cos (A)| (8)
2 2

and

iT2 Ja2 i2 da

D'al 1 (Pcw + 6P + PRF + PRB + PI, + P 0) + 2 Pcw cos (AO)J, (9)

where P and P' denote optical powers (P= Ia). Here, PIP' _ a/a 2 because I = I If
al = a 2 , then P = P'. In (8) and (9), the first term is the total-dc power and the second is the
ac signal term. The dc power will produce shot noise. Taking into account the other possible
noise sources, the signal-to-noise ratio, based on the peak electrical power measured at the load
resistor R L after the total photocurrent being amplified with gain G and filtered at baseband B0

is of the form (according to standard homodyne technique [11]),

[2-1 = D2 G 2 P[W (10)
LNpeak 2qG2 D~ (Pcw + PFP + PRF + PRB + PBO + PB) + DPb + IDJ + 4kTBa

8
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where

Pb = external light induced background noise
ID= detector dark current or other kinds of current noises depending on the kind of

detector used
4kTB, = the thermal noise term, where with T is the absolute temperature and k is

Boltzmann's constant.

If the optical powers are high and the other noises can either be low or eliminated, then
we are in a shot-noise- or quantum-noise-limited situation whereby Eq. (10) is simplified to

for detector 1, ar

Is l = 1 D C~W

LNjpeak, I (PCW + PFP + PRF + PRB + PB0 + PB3)

id similarly,S I -1a1D' _CW
NJ peak,2 4 qB0 (PCW + PFp + PRF + PRB + P80 + PB7T)

for detector 2. Furthermore, if the components of the scattered light in the optical fiber are all
neglected, as was done in Vali and Shorthill [3,41, the peak S/N for a single detector reduces to

S1 l 1 DPcw 1 Pcw(
INIpeak 4 qB0 4 hvB,'

which is one-fourth of the S/N for a standard heterodyne technique with a synchronous detec-
tor, and one-half of that of the baseband direct-detection technique.*

Next, we discuss a differential scheme for AO or, more precisely, cos (a4) measurement.
The scheme is illustrated in Fig. 4. As we alluded to earlier, the advantage of this scheme is to
eliminate or reject, by subtraction, the common-mode or completely correlated extraneous
effects from the two detectors. In doing so, the signal level will double because of the
difference in the signs of the two ac terms in Eqs. (8) and (9) above, while the uncorrelated
noises will add in the mean-square sense. However, to match or balance the two detectors such
that the dc components of the two total photocurrents will completely cancel in subtraction, we
must make the coefficients of the two terms in Eqs. (8) and (9) equal. We can accomplish this
by selecting q, q', a1, a2 , and a 1 such that Dal = D'a 2 a 1, yet still keep both al and a2 small as
compared with the central fringe widths. After we do that, the total photocurrent to be
amplified is

iS -T2 - = Da I 1,w cos (AO)

= DPCW cos (Ak). (14)

Let the gain of the differential amplifier be G. The peak signal power is, for a load resistor RL,

RL ij2 = D2 G2P2WR L (15)
and the noise power, in the quantum-noise limit, is

RL N2 = (jN2I + iN22 )RLG 2

= 2qBG 2RLD(PCW + FP + PRF + PRB + PBO + PB7), (16)

*See Ref. 11, Eqs. (10-45) and (10-13) of Chapter 10.

9
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F1
PHOTODETECTOR

APERTURE- \ j OUTPUT
MATCHING 6 > I VOLTAGE
DIAPHRAGMS es5 rCos (Af)

F2 ~z
9) [liTDIFF. AMP. , 

PHOTODETECTOR

Fig. 4- Differential detection scheme with balanced inputs
to eliminate common-mode noises adaptable to the optical
setup of Fig. I

whence

N peak,diff h2 qB0 2(Pcw + PFP + PRF + PRB + PBO + PB) (17)

Again, if scattering in fiber is neglected, we arrive at

_D Pcw = 1 .7)Pcw (18)

I( SIpeak,diff gBo 2 2 ha.1

Compared with Eq. (13) for a single detector, the differential technique enables us to gain a
factor of two in peak electrical power S/N ratio. Equations (11) and (12) give peak S/N for a
single detector, and Eq. (17), for the differential scheme, all in the quantum-noise-limited
sense. They are correct formulas for the optical configuration shown in Fig. 1 as used by Vali
and Shorthill [4], indicating that their formulas would overestimate the sensitivity by a factor
of 4.

LIGHT SCATTERING IN OPTICAL FIBERS

As seen from Eqs. (11) or (12), and (17), quantum-noise-limited S/N ratios depend on
those scattered-light components that are implicit functions of the fiber length L. In order to
see how they depend on L and what their magnitudes are, we need to know, in addition to local
scattering coefficients, their distribution laws which would enable us to calculate the cumulative
powers at the two ends of an optical fiber of length L. In the following, we shall show how the
S/N is degraded by the added scattered light, based on the best available fiber scattering loss
data. But, first, let us derive the distribution laws.

Distribution Laws

Direct Beams

By the direct beams we mean those parts of the two optical beams that have not suffered
scattering and absorption when propagating through the fiber. Because of the scattering and
absorption, which are the main causes for the deletion of optical energy, the direct beam

10
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experiences attenuation. If constancy of the scattering and absorption coefficients and their spa-
tial homogeneity along the fiber are assumed, the law of attenuation of the direct beam will be

exponential, i.e.,

P(x) = Pie ; (19)

where Pi is the power of the beam at the input end of the fiber, P(x) is the power in the
transmitted beam at a distance x from the input end, and a T is the total attenuation coefficient
which is normally expressed as the sum of the scattering coefficient and the absorption
coefficient. Let as be the scattering coefficient, and aabs, the absorption coefficient, then we
have a T = as + aabs.

In applying Eq. (19) to a realistic fiber, we must recognize that (a) the total attenuation
coefficient a T consists of contributions from intrinsic scattering [13-15] and absorption as well
as from extrinsic scattering induced by external effects such as bending and vibration of the
fiber [161, and that (b) the effect of multiple scattering [17-19] has been neglected.

Scattered Light

Each scattered-light component can be characterized by two parameters; one is the scatter-
ing coefficient a,, where the subscript i indicates the ith kind of scattering process; the other is
the factor that quantifies the percentage of trapping of the scattered light in the fiber. We
assume that the ai's are constant, pursuant to our above discussion, and that the percentage of
trapping remains unchanged as the scattered light propagates down the length of the fiber.

The percentage of trapping the forward-scattered power is denoted by F and that of the

backward-scattered power, B. We will derive the distribution laws for the forward and the back-
ward components in the single-scattering approximation. This approximation is justifiable, in
that the multiple scattering at most will result in only a few percent of the already small scatter-
ing losses.

Forward-Scattered Components - The symbols and coordinates of forward scattering are

defined in Fig. Sa. The unscattered part of the power reaching a station x from the input end is
given by

P(x) = Pie Tx

The power scattered from the small element dx is

dP(x) =-P(x)asdx

Pie -a TXa dX (20)

where a, = scattering coefficient (= a-- aabs), and the minus sign means a loss. Then the
part trapped in the forward direction is

dP(x) =-FPie -T a~dX. (21)

When this part reaches a downstream station xl, its magnitude is reduced by a factor e T(x I x)

So,

dP,(x) =-FPe -a Txe-a T(x I x) a~dx

=-FPae eaTx'dx.

11
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If we integrate dP, from 0 to xi, we obtain all the scattered light produced by the fiber from the
input end up to the station xl. The integrated result is

P5 (xl) = - FPiase aTxlXi. (22)

When xl = L, i.e., the output end of the fiber, we then have the total forward-scattered light

P5 (L) = - FPia5 e T L. (23)

This is the distribution law for the forward-scattered light.

Backward-Scattered Components - According to Fig. Sb, the scattered power from the
small element dx back to a station xl with B fraction trapped is

dP(x) =-Bpe-ParXa e-aT(X-xl)dX

BPia Se a fX)e - 2aTxdX (24)

Then the total backscattered light reaching xl from the length of fiber xl - L is

P5(xl) =-BPiasea xIf e2arxdx

= BP a, [e-aT( 2 L-Xl) - eaTXIl (25)
2 a T

Hence, the total backscattered light arriving at the input end is given by letting xi = L in
Eq. (25):

P (0) = BP, a, (e- 2 aTL 1). (26)
2 a T

This is the distribution law for the backscattered light.

(a) x1>x
dPs(x)

-IN
xO Idx

x=L

X dx

P1 ,.T* ,eP5 L)

(b) xl<x

Fig. 5- Definition of coordinates and scattering fiber ele-
ments of the forward scattering (a) and backward scattering
(b) processes for the derivation of scattered light distribu-
tion laws.
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Trapping Factors

For the fundamental mode (HE1 1 ) in a single-mode fiber, the power is distributed into the
cladding [20,211. Therefore, when we discuss about the scattered light, in general, we should
divide the contribution into two parts: one from the inhomogeneities located randomly inside
the core, and the other from those in the cladding. Rays scattered from inside the core that
strike the core-cladding interface at an angle larger than the critical angle defined by Ocr =
sin-l(nclad/ncore) will be trapped inside the core. Rays striking at an incidence angle O < Ocr
will escape into the cladding and will be either trapped or further escape into the medium sur-
rounding the cladding, depending on whether the index of refraction of the surrounding
medium is smaller or larger than that of the cladding, respectively. Some rays initiating from
scattering centers in the cladding may be trapped in the cladding if its index of refraction is
larger than that of the surrounding, whereas others may refract into the core and be trapped
into la helical course. Complications arise if we take into account real effects of the intensity
distribution of the HE,, mode, mode distortion due to bends in the fiber, and the core-
cladding interface irregularities. We will limit our discussion to a simple case where we con-
sider only the more significant scattering components arising from the inhomogeneities distri-
buted in the core and the core-cladding interface. The computation of trapping factors for
these components will follow a simple approach by J. Stone [22],* who neglected the scattered
light contributed by the cladding. This could be justified by the fact that the intensity of the
direct beam in the cladding is much lower than that in the core [20]. To demonstrate the possi-
ble influence of all the trapped scattered light in the fiber, we will consider the case where no
mode-stripping or index-matching compound is applied on the cladding, together with the more
favorable case where mode strippers are used to reduce the cladding trapping.

Since the percentage of the trapped light determines the magnitude of the influence of the
scattered light on the ultimate sensitivity of the detection system, we will assess the magnitudes
of the trapping factors, F and B. We must note that if there is no trapping, or a very small
amount of trapping, then the contribution of scattered light comes only from both ends of the
fiber instead of from an integration of all the trapped scattered light along the whole length of
the fiber.

Rayleigh and Brillouin Scattering

According to J. Stone [22], the formula for computing the one-way fraction of trapped
power, fltrap, for a bare cladding in air is

2trap = r do foo (1 + COS2 0) sin 0 dO

= 47r 4 1 I I (27a)
2 3 |ncore 3n 

core corell

*A more refined version of the refraction and reflection at the core-cladding interface was given more recently by J.P.
Dakin and WA. Gambling, Opt. Commun. 10, 195-198 (1974). Because we are interested in the first-order effects, we
have chosen Stone's formula for symmetric scattering. Dakin and Gambling's formula, which takes into account the
effects of depolarization, transverse intensity distribution in the core, and the finite angular width of the propagating in-
terface will, of course, be used when more refined calculations are needed.

13



LIN ANt) (IALLORlN/I

where 0H = cos '(l/ncorc) is the limiting scattering angle below which a ray will be trapped in
the cladding, nOrC is the index of refraction of the core material, and the factor (1 + cos2 0) is
the angular factor for Rayleigh scattering for unpolarized light. The first term in Eq. (27a) is
the fraction of the total Rayleigh scattered power, 5 to)l, = 167r/3.

For a cladding with mode stripper which has an index of refraction higher than that of the
cladding, then, light rays with scattering angle close to 0,, will escape. The amount that will be
trapped is determined by the internal refraction at the core-cladding interface, i.e.
H. = cos '(n l,,/ncrc), and Equation (27) becomes

52 ,rft) = J f"" (I + cos2 0) sin 0 dO

47r [4 _ | ,,.,, n - *3II| (27b)
2 3 n core 3 ncorc

Therefore, the trapping factor Fis

F rp I 1 1 3 |1 I f (28a)
S1total 2 L 4 ncorc 3 n,,,rc J3

for bare cladding, and

F I [l _ 3 |_nCol + n+ . , (28b)
2 4 (n core 3nc~,rc 

for a mode-stripped or index-matched cladding. Because of symmetry of the Rayleigh scatter-
ing, the backward trapping factor B is equal to F. According to J. Schroeder, et. al. [231, Bril-
louin scattering has the same spatial angular distribution as the Rayleigh scattering. The trap-
ping factors for Brillouin scattering are, therefore, identical to the Rayleigh. For given materi-
als of core and cladding, the trapping factors can be evaluated. For example, let us consider an
optical fiber with fused silica core (ncorC= 1.4585) and a borosilicate glass cladding
(6SiO2 :1B203 ) with an index of refraction about 0.3% less than that of pure fused silica (at
X = 1.06 gm, ncl(1 = 1.4541). The limiting scattering angle 0( = 46.70 and 4.440 for the bare
cladding and index matched cladding, respectively. Based on Eq. (28a), F = B = 0.2 and 2.3 x
0 -3, corresponding to the respective 0H. We can immediately draw the conclusion that the

fiber to be used in a ring interferometer should be equipped with mode strippers, or index-
matching components, to reduce the trapping factors by about 100 times for the Rayleigh as
well as the Brillouin-scattered components.

Mie and Forward Peak Scattering

In the study of light scattering in the optical fibers, a strong forward scattering component
has been observed both for a single mode fiber [241 and a multimode fiber [25]. These peaks
were observed just outside the cladding when the fibers were immersed in index-matching fluid.
This peak cannot be explained by Rayleigh scattering theory and is generally thought to be
caused by two factors: namely, the Mie scattering and the scattering due to core-cladding
interface corrugation. Mie scattering was first studied by Rawson [26] for a bulk glass with
imbedded spherical particles. These micron-size particles are the homogeneities frozen in dur-
ing solidification [27]. However, inasmuch as these spherical particles are liable to be drawn
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into filaments aligned with the fiber during the fiber-drawing process, Rawson devised a theory
for light scattering due to randomly distributed, but aligned, filaments in a fiber [28]. On the
other hand, the interface scattering process was first studied theoretically by Marcuse [291.
Since then, there have been more studies [30-331, but none is experimental, presumably
because of the difficulties involved in measurements. Experimentally, it is very difficult to
separate these two contributions [24,251. Nevertheless, experimental results do establish the
ratios of the total forward-scattering component an the Rayleigh component after other leaky
modes are stripped. We will use these ratios to calculate the forward-peak scattering com-
ponent from the knowledge of the Rayleigh scattering.

It is also conceivable that these losses are dependent on the fiber drawing processes,
hence are variable from case to case. But, in order to render some degree of generality for
analysis sake, we will assume that the ratios mentioned above will stay constant from fiber to
fiber, provided that the fibers are drawn by a similar process from similar preforms.

Our current knowledge of a fiber's ability to trap the forward-peak scattering is too limited
to enable us to quantitatively assess the trapping factor for a general case. For example, the
question of how much of the forward peak will be guided by the fiber when heavily mode
stripped does not have an answer; so it is with the question about the effects of fiber bending
on the propagation of the peak, for all the measurements so far have been for a short, straight
section. However, because a strong forward peak is observed outside of the fiber when
immersed in an index-matching fluid, we see clearly that proper mode stripping would eliminate
at least a large portion of the forward-peak scattering component. To demonstrate how high
the forward peak would be if fully trapped, we will discuss this case in detail. This will be fol-
lowed with a discussion of a case wherein all the forward peak is assumed to have been
removed from the fiber.

The trapping factors for the former case are F = I and B = 0, whereas the trapping fac-
tors for the latter case are F = 0 and B = 0. Of course, in the latter case, we no longer speak
of a distribution law. Instead, we should consider the part that is scattered from the exit face of
the fiber, which depends on the end-surface conditions.

Scattering Coefficients

As a basis for our discussion, we choose a fiber that has a total loss rate of 4 dB/km at
X = 0.633 ttm. We further assume that the total loss rate is due purely to scattering, in that
the absorbing centers in the glass fiber [341 can be completely removed with advanced tech-
niques. In other words, we are considering here a fiber that has a loss mechanism in the fre-
quency range of interest due to scattering alone. We will use a weakly guiding fiber as defined
by Gloge [21] that has a fused silica core for quantitative assessment of scattering coefficients.

Brillouin Scattering Coefficient

Rayleigh and Brillouin scattering in glass have been studied extensively in the past
[23,35-38]. But, it seems that no detailed study of Brillouin scattering from an optical fiber has
been reported in the literature, except the work by Rich and Pinnow [39], which reported the
measurements of Brillouin scattering from both the core and the cladding of multimode
borosilicate-pure fused silica waveguide, and that of E.M. Dianov, et al. [401. Brillouin scatter-
ing from a single-mode fiber is still alcking. In view of this, we will use formulas for bulk
material to calculate Brillouin scattering for the single-mode fiber.
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According to Rich and Pinnow, the Brillouin scattering coefficient is given by the formula,

aSB= 131 | kT | V21 (29)

where X is the optical wavelength in free space, k is Boltzmann's constant, T is the absolute
temperature, n is the index of refraction of the glass, P12 is the applicable photoelastic tensor
component, p is the density, and V is the longitudinal mode acoustic velocity. For fused silica,
they give 0.40 dB/km* for aSB at room temperature and X = 0.5145 jm. According to J.
Schroeder, et al. [23], the Brillouin scattering coefficient can be obtained through the Rayleigh
ratio evaluated at 90°, i.e., aSB = (87r/3)R9 0 o for linearly polarized light, where the Rayleigh
ratio Rgo-is

R 90 °= - (n8 p?2 ) kT (pV 2 )-. (30)

Equation (30) gives an aSB identical to Eq. (29). If we use the thermophysical and optical data
of Si0 2 provided by J. Schroeder, et al. [231 in Tables 1-3 namely, V = 5.92 x 105 cm/s,
p = 2.211 g/cm 3 , P12 = 0.286, T = 293K, n = 1.458, and X = 0.633 jAm, we get R90 0 =

0.538 x 10-7 cm-'; hence asB = 0.195 dB/km* for the V- V polarization component. For the
unpolarized light under consideration, aSB is twice as large: aS = 0.39 dB/km, which compares
well with the value 0.4 dB/km given by Rich and Pinnow for A = 0.5145 jam. In what follows,
we will use the value 0.40 dB/km as the intrinsic Brillouin scattering loss for the fiber at
A = 0.633 jim.

Effective Forward-Peak Scattering Coe fcient

From experimental results, Rawson [241 established that, for the particular single-mode
fiber, out of the total scattering loss rate of about 10 dB/km at A = 0.633 jim, the forward peak
took a share of 2.5 dB/km, while the Rayleigh scattering, the balance, about 7.5 dB/km. The
ratio of the forward peak over the Rayleigh scattered light is about 1:3. In the same paper,
Rawson also established that the spectral dependence of the Rayleigh component follows the
I/A 4 law within 7%. The results measured at AX= 1.06 ,m show a total loss of about 1.05
dB/km, with forward peak about 0.17 dB/km and Rayleigh component about 0.88 dB/km. The
ratio is about 1:5, instead of 1:3. It is interesting to note that the forward peak may not obey
the I/A 4 law, indicating that the forward peak could be caused by effects other than the Ray-
leigh scattering.

The same kind of measurement was again carefully done by Reeve, et al. [251 with a mul-
timode fiber. They reported a residual forward peak constituting about one-fifth of the Ray-
leigh scattered power at 0.633 jam, and attributed the cause to large-scale (w.r.t. the
wavelength) imperfections. They also found the I/A 4 characteristics associated with the scat-
tered loss after the forward peak had been subtracted out. Therefore, in our calculations, we
will adopt a value of 1:5 for the ratio of the forward peak power over that of the total Rayleigh

*Rich and Pinnow di(d not give tie poliarization state of' the light when giving the value 0.4 dB3/kmll. Our CalculatiOnS
based on their formnula (Eq. I) and Schroeder's result in values only one-hall' of it if linear polarization is aIssumdcd. We
conclude that 0.4 dB/km would be correct for unp)olarizedc light, which is what we presume now.

tl crno = 4.33 x 105 clB/kni is tilC convcrsion a',ctor.
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component. Using this ratio, we are able to ascribe an effective scattering coefficient for the

forward peak from the Rayleigh scattering coefficient.

Partition of Scattering Losses

Since Brillouin scattering is intrinsic, we will let it be constant. The total loss is assumed

to be 4 dB/km; the Rayleigh scattering and the forward peak scattering are, then, partitioned
according to the formulas

UFP = (1/5) -SR

and

CXSR =( - vs11 - (Xt' (31)

where al p is the equivalent scattering coefficient for the forward peak, which is one-fifth of the

total Rayleigh scattering components as we established above. Since a. = 4 dB/km = 9.24 x

10 -7 cm-' and aus = 0.4 dB/km = 92.4 x 10 7 cm -l for A = 0.633 jim, therefore, by Eq.

(31), we get, a} p = 13.86 x 10-7 cm -t and aSR = 69.3 x 10 -7 cm -1. Also, aSR/ar = 0.1 and

a 1:1)/a / =0.15.

For comparison, we also calculate these scattering coefficients for A 1.1 jm. The rea-

sons for choosing this wavelength will become clear later on. We use the fact that the Rayleigh

scattering coefficient scales as 1/A4 , and the fact that the forward peak scales as 1/A3 , as esta-

blished by Rawsom [24,281. Also, according to Rawson's measurements [241 for = 1.06 jim,

the forward peak is about 0.17 dB/km, whereas the Rayleigh is 0.88 dB/km. The ratio of' Ray-

leigh scattering over the forward peak is 5.18. So, for = 1.1 jim, this ratio is about 5.0.

Therefore, the forward peak is still one-fifth of Rayleigh component. The Brillouin scattering

coefficient also scales as i/A 4, as can be seen from Eq. (29). Its value for A = 1.1 jim is now

0.043 dB/km. To calculate all the other scattering components, we assume that the ratio

between the Brillouin and the Rayleigh components remains unchanged when the wavelength is

changed from 0.633 gim to 1.1 jim; i.e., asB/asR = 1/7.5. Hence, in conjunction with the con-

dition at//= (1/5)asst, we get af 0.431 dB/km and a1:p = 0.065 dB/km for aSR= 7.5 X

asB = 0.323 dB/km. The percent ratios are: asB/a I = 0.1, aSR/a- = 0.751, and aFp/a, =

0.149. The value of a r represents a realistic assessment of the intrinsic scattering loss. It is
approached by the current, rapidly advancing fiber manufacturing technology.2 We also note

that the total loss rate does not scale as A 4 if the cladding mode is not stripped2 and if the

forward peak contributes significantly.

Because the index of refraction of the fused silica changes very little in the wavelength

range 0.5 - 1.3 jim [41,421, the fiber trapping factors, as a weak function of the index of

refraction of the core, n ,,,, do not change appreciably. Therefore, we will use the same trap-

ping factors for both wavelengths.

For readers' convenience, we conclude this chapter by summarizing the useful informa-

tion in Table 1.
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Table 1 -Summary of Light Scattering Information in a Typical Fused Silica Fiber

_~~~~~~~~~~~~~ Attenuation
Direction Trapping Factors Cross SectionsComponent ____ ___1on . . Distribution LawsCopoen cw l (L = fiber lengthl)

Bare Cladding Mode Stripping j = 0.633 ,um X= 1.1 ,m

Direct Forward 100% of 100% P p e-Q TL
beam only what is _ _w P

coupled in

Rayleigh Forward F 0.2 2.3 X 10-3 "SR = PRF = FPiRLe ' TL

Backward B 0.2 2.3 X 10-3 6.93 X 10-6 7.46 X 10-7 p BP' [I - e 2 T]C_--- cl-l RB '2 UT

Brillouin Forward F 0.2 2.3 X 103 =BO SBLe TL

OeSB 0TBackward B 0.2 2.3 X 103 9.24 X 107 0.993 X 1017 Ps3r BP, [1 - e
Inf cn 1 Br 2aT

Forward Forward F I < I 1 U I ce PSR Le- TL
peak only F= 1S<1 5cSR PFP 1 i 5s eT

Total
ar = 9.24

X 10- 6 cmn1 9.95 X 10-7
4 dB/km cn111-

= 0.431 dB/km

z-

z
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RELATIVE POWER DISTRIBUTION
AND SIGNAL-TO-NOISE DEGRADATION

With th4 scattering losses and trapping factors determined above, we can now evaluate
numerically the relative power distribution laws of all the light components in a fused silica
fiber of length L. Also evaluated will be the degradation factor of the S/N ratio associated with
fiber scattering losses.

Relative Power Distributions

The relative power distribution laws, for fiber with bare cladding, take the following forms
(one way only):

Pcw/H = Pccw/H = e

PP-/fl = I 5 aSRJ Le""'

PRF/H = (0.2aSR)Le '`T

PRB/H = (0. IaSR/.T) [1 - en2T1

PBO/H = (0.2asB)Le _TL

PBrlH = (0.laSB/aTr)[1 - e 2"T'1, (32)

where L is the total length of the fiber coil, H is a normalization factor, HI (1/4)(1- aI) PoC.
As described in Chapter 1, the decimal numerical coefficients are trapping factors. The reader
is reminded of the fact that, in Eq. (32), the backscattered components PRB and PB, are due to
the wave traveling in the opposite direction to that of the other components. The values of
these scattering coefficients are given in column 4, Table 1, for both A = 0.633 im and A = 1.1
jAm. We have evaluated Eq. (32) as a function of L. The results are plotted in Fig. 6. We see
that the forward-scattering components first increase with L and then reach maxima at L =
Lm,,,. After that they decay continuously, whereas the backscattered components increase con-
tinuously with L and tend to saturate for large L. The direct signal beams are, of course,
straight lines in the semilog plot. At L >> Lmax, the background noise will be contributed
mainly by backscattered light. The Brillouin components are a factor of 7.5 below the Rayleigh
and forward peak components (the forward peaks coincide incidentally with the Rayleigh for-
ward components). Since the total scattering loss rate for A = 1.1 jim is about 10 times less
than that for A = 0.633 gm, the direct beam is obviously decaying much more slowly. The
scattered components, in this case, change with L at a much slower rate, although interestingly,
they saturate to the same levels at large L as they would for A = 0.633 jim. We see also that
by going to a longer wavelength, we gain a wider range of fiber length within which we can
achieve certain specific sensitivity requirements by using 10- or 20-km lengths of fiber without
large degradation in S/N ratios. We conclude that, from the standpoint of scattering losses, we
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n1-2 =F F\\Pa'

10-3 \p a0 - =43dB/kmX=I. Igm
--- ST= 4. dB/kmX= O633im

10-4 I ' 1 - I ,
0 1 2 3 4 5 6 7 8 9 1017 18 19 20 21 22 23 24 25 26

L, km

Fig. 6 - Distribution laws for all the scattering components considered for a

fiber with attenuation coefficients "T = 0.43 dB/km at X = 1.1 uAm (solid lines)

and "T = 4 dB/km at \ = 0.633 gem (broken lines). Due to attenuation, the
forward scattered light components rise first as fiber length is increased, reach

maxima, and then decay, whereas the backscattered components rise continu-

ously to saturation. The direct beam attenuates much more slowly in the case

A = 1.1 nm than that for A = 0.633 urn, while backscattered noises saturate to

about the same level.

should prefer 1.1 jim to 0.633 gim as the light source wavelength. With mode stripping, all the

scattered-light components will have magnitudes lower by about a hundredfold except the for-

ward peak, whose reduction due to mode stripping is not absolutely known.

Signal-to-Noise Degradation

To evaluate the degradation of S/N, we take, as an example, the single-detector case.

The expression for S/N (from Eq. (11)) is

ASP _ 1 ____ pc2w

lN 4 k 4 hvBO Pcw + PFP + PRF + PRB + PBO + PBT

= K/'(L) (33)

where K (1/4)r 1/hvBo is a constant independent of the fiber length, L, and f(L) =

Pc,/(1 + PN/PCW) is a complicated function of L, with PN the sum of the five scattered com-
ponents.

Physically, f(L) represents the S/N ratio degradation factor due to light scattering in the

optical fiber with length L, and KPw is the S/N ratio if scattered light components are
neglected as did in Vali and Shorthill [3]. With the distribution laws as given by Eq. (32)

above, we have evaluated f'(L) = (S/N)peak/K. The results are plotted in Fig. 7. Curve 1 is

for A = 1.1 jAm and Curve 2 is for A = 0.633 jm. The degradation of S/N in the case A =

0.633 jam can by no means be neglected. The degradation in the case A = 1.1 jam is, by con-

trast, very mild. This is another reason for adopting a longer wavelength. With mode strip-
ping, of course, the degradation is much less serious.
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Fig. 7 - Signal-to-noise degradation due to scat-
tered light components in a fiber as a function ol'
optical fiber length L. For a1 perfect fiber with zero
loss, the S/N is purely signal quantumn-noise limited
and is equal to I here. Curve ( I ) is for
A = 1.1 jam (0.43 dB/km): Curve (2), for
A = 0.633 urm (4 dB/km). So, at longer
wavelength, tile degradation is ml uch less
significant.

L, km

PROBLEM AREAS AND THEIR PROMISING SOLUTIONS

From the preceding analyses and discussions, three problem areas have emerged, mainly
due to the stationary nature of the proposed optical arrangement and the homodyne detection
schemes.

Need for Stable DC Phase Bias

The first problem area is associated with the fact that the ac term of the photodetector
current (i.e. the signal) is proportional to cos (A+); e.g., see Eq. (8). This function has least
sensitivity at small values of AO, since the sensitivity is proportional to dlacd(Ao). As seen in
Fig. 8, the central fringe intensity has a maximum sensitivity in phase shift at AO = 7r/2 or

Fig. 8 - The variation of the photodetector current
ats a function of the phase difference between the
two signal beamis. Maxinmumn sensitivity points
correspond to the points on the photodetector
current curve where its slope has maximum values.
Therel'ore, for small ± A(h, we need at dc phase
bias of 7w/2, in order to ensure maximum sensitivi-
ty.

-J

DETECTOR
PHOTO-

CURRENT
I

SENSITIVITY
di

dAO

j- max

0 7r 7 3r
2 2
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37T/2. In order to ensure the location of AO at these points, we must, therefore, provide a con-
stant dc phase bias. Since there are two oppositely travelling waves, we must use nonreciprocal
elements based on the well-known Faraday effect [431 to introduce phase biases. The Faraday
effect has been well demonstrated in magneto-optical components such as optical isolators.
Very compact ones have been reported either for the visible [441 or infrared [45] region of the
optical spectrum. While many magneto-optical materials [461 are available, the most promising
one is represented by yttrium iron garnet (YIG,Y3 Fe5sO2 ) which has good transparency in the
1-4-jim region and high Faraday rotation (z- 250 deg/cm @ 1.1 jam). Isolators without polar-
izers (45° Faraday rotator) constitute the basic elements that provide the 900 dc phase bias for
the ring interferometers. We can obtain a 450 Faraday rotation by using an approximately 2.3-
mm-long YIG crystal at 1.25 jAm wavelength. Even smaller absorption loss and anomalously
larger Faraday rotation than the YIG have been measured by Takeuchi et al. [47] in a single
crystal of bismuth-substituted gadolinium iron garnet (Gd 2 _BieFesOt 2 (e = 0-1.4)). For
example, they report Faraday rotation of more than 3 x 10 deg/cm at A = 1.1 jim in
Gd2 Gi1Fe5Ol2 . with even less absorption loss than YIG. Such large specific rotation makes it
very promising to develop miniaturized components for compact interferometers. The availa-
bility of such good characteristics in these garnets, coupled with fiber loss as low as 0.5 dB/km
at 1.1 jam, the newly developed GaInAsP/InP double heterostructure diode lasers emitting at
1.1 jim at room temperature, reliable cw operation [48], and Ge avalanche photodiodes with
50% quantum efficiency for A = 0.6-1.65 jim [12], indicate clearly the desirability of using long
wavelengths in ring interferometric gyros. Similar considerations have prompted Kimura and
Daikoku [49] to propose a low-loss 1.0- to 1.4-jim region for future optical fiber communica-
tions systems.

Vulnerability to Low-Frequency Noises

The second problem is due to the dc nature of typical optical detection scheme discussed
above. As such, it is vulnerable to those very low-frequency noises associated with the detec-
tors and electronics, because we cannot subtract them out through the differential schemes due
to their lack of correlations. These low-frequency noises include 1/,f'type noise, generation and
recombination noise, partition noise, etc., with 1/,f'type noise the most detrimental [50,51].
Therefore, we will only discuss the 1/f noise effect.

The l/,f noise is common to all solid-state devices. It is a type of noise that has a 1/f"
power spectrum, where 0.8 < a < 2.0, with a 1 the most probable value. The 1/f noise
spectrum has extremely low frequencies; the high-end cutoff, however, can vary from less than
1 Hz to tens of kHz, depending on the detectors. To illustrate this, we show in Fig. 9, two typ-
ical spectra of 1/f noises: the upper one shows 1/f noise associated with the InAs photodiode,
as measured by J. Hanlon and S.F. Jacobs [52], and the lower one that of the RCA 1P28 pho-
tomultiplier, as obtained by C. Smit et al. [531. We see that (a) the photomultiplier and the
InAs photodiode both have wideband 1/f'noises, (b) at low-frequency ends, they are orders of
magnitude higher than the shot noise, and (c) the photomultiplier shows a very low cut-off fre-
quency at the high end (< 0.1 Hz) of the spectrum. It may be noted that at f' 0.3 Hz, the
magnitude of the 1/f noise power is of the same order as that of the shot noise.

We may conclude that the l/f noise is not too serious if the photomultiplier is used in
lieu of other solid state detectors in dc or homodyne detection schemes, provided that the size
of the photomultiplier can be accommodated in a system and that the measurements do not
involve an average time longer than 20 s.
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Fig. 9 - Typical solid-state detector noise spectrum (upper
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However, if we demand that the size of a ring interferometer rate gyro be as compact as a
practical ring-laser gyro, then we must select an avalanche photodiode to replace a photomulti-
plier because an avalanche photodiode can be much smaller in physical size and has the same
internal high gain as the photomultiplier. In general, the nonstationarity of the statistics of the
I/f noise [54] does not permit the long averaging time often required in slowly varying
phenomena. Under these circumstances, the discussed optical scheme will fail to give a high
degree of sensitivity. This leads to the third problem.

Need for High Sensitivity

The third problem is the need to achieve a high degree of sensitivity. To this end, we
must modify the optical scheme either to incorporate some kind of modulation technique into
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the homodyne setup or to adopt a heterodyne setup. The purpose of both modifications is to
defeat the /f' noise by operating the system at a higher frequency (carrier frequency is now
shifted away from the dc limit) to ensure shot-noise-limited performance.

In the case of heterodyning, Hanlon and Jacobs [521 have demonstrated the feasibility of
using a bandwidth as narrow as 0.5 Hz at A = 1.15 jim with a 50-kHz phase modulation to
achieve the shot-noise-limited S/N ratio. A true heterodyne scheme also has the capability of
providing a strong local oscillator beam to further improve the S/N ratio. Figure 10 shows one
of the heterodyne schemes that we consider applicable. It has a local oscillator beam (fre-
quency) which, after passing through the first acoustic modulator (A.M.), where it is modulated
at frequency W2, is split into a zeroth order beam and a first-order beam at W1 - 2, (L being
the laser frequency. The unshifted zeroth order beam proceeds to the second acoustic modula-
tor, modulated at wol, to further generate a Bragg-diffracted beam at Wo_ - W . Optical mixing
occurs at the surfaces of detectors DI and D2 . The demodulated signals are then sent to a
phase meter to produce a direct phase difference reading of 2AO.

A P l

M L

R '

Fig. 10 - An example of ac detection scheme I-or improve-
ment (lif the ring interleromieter sensitivity: A heterodync
technique evolving 'roni tlc hbasic (IC configurCeat1 00 shown
in Fig. 1.

To illustrate the modulation with homodyne scheme as shown in Fig. 11, we propose to
use magneto-optical modulators to provide (a) the dc 90° bias as discussed earlier, and (b) an
additional modulation around AO = 7T/2 by imposing a sinusoidal signal AB with a proper
amplitude such that the modulation is linear in qf. An alternative to (a) and (b) is to use a sin-
gle large ac modulation, producing a phase shift up to 7r, and then to count and record the
maxima in the output signal. Each maximum corresponds to the phase shift being scanned
across ir/2, the maximum sensitivity point. Pursuant to the desirable use of near-infrared
wavelengths, we point out that many promising magneto-optical modulators based on Faraday
effect have been devised and are ready for adoption here [551. We emphasize that only
through modulation, i.e., ac operation, can the formula given by Moss, et al. [61 relating the
sensitivity to the photon noise be used. In the dc bias case, the challenge is to maintain the
dc bias to the highest possible stability.
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phtase dc bias will modulation or a large ac m 1odulation

alone.

In addition to the above-mentioned techniques, there is yet another one which is based on
pulse operation (Fig. 12). The key element is the reciprocal, gated phase shifter which is an
electro-optical gate. The advantage of this scheme lies in the fact that existing integrated optics
techniques can be used, although these techniques can also be developed for the first two
schemes.

Detailed analyses and implementation of these proposed modifications are subjects of
future studies.

GAT ING
SIG NAL V7-- F2

Fig. 12 - Another possihle exalmple of ac dletection
schleme: A reciprocal, gated-phlase shif'ter, am lplitudec-
detection technique.
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SENSITIVITY LIMITS

Close investigation of Fig. 6 suggests the following question: Given a total loss rate and

optical wavelengths, does there exist an optimum optical fiber length to produce a minimum
detectable rotational rate? We also see from Eq. (33) that S/N is proportional to PCw and, in

turn, to PO, the laser output to the ring interferometer. Increasing PO will improve the S/N for

a given L. However, there exists a limit beyond which the nonlinear optics effects, such as

stimulated Brillouin scattering, will become dominant. If no upper limit is observed, fiber dam-
age will result. Therefore, the practical sensitivity of a fiber ring interferometer is limited by

spontaneous noises at low power and by stimulated noises at higher power. Because knowledge

of these limits is extremely relevant in the preliminary design stage of a ring interferometer,
inasmuch as the fiber length and power level are the important factors that determine the final
package size and unit cost, we will assess these limits here.

Optimum Length and Minimum Detectable Rotational Rate at Low Power

We consider an improved version of the optical arrangement, in that a stable 900 dc phase
bias has been introduced. With such an introduction, Eq. (8) for a single detector becomes

T = 01 2 (PCW + Po) 2 Pcw Cos 2+ ||

= D1 2 (Pcw + PN) + Pcw sin (AO)I| (34)

where

AX = OCW -CCW = 4iTRL
Ac

If the dc term is filtered out, the power of the signal is

S = I D2 G2P2w sin2 (AO)RL (35)
4 C

and the quantum-noise-limited S/N will be

s DD2G2Pc2w sin 2 (AO)RL

N qG2 [D(Pcw + PN)]RLBo

4 [, h 1 | +pCW sin 2 (AO)

4 hvB0~ Pcw + PN

= F(L) sin2 47TRL Qj (36)

or, we can write

sin (8flL) = [(S/N) (1/F(L))]1/2,
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whence

Q = 1L sin-' [(1/F(L))(S/N)] 12.

The optimum fiber length Lo is obtained by setting (dfl/dL) 1 .L. = 0 with S/N = 1.

Let U _ [F(L)L-'I 2 ; Eq. (37) then becomes (for S/N = 1)

Q= I sin-' [U(L)]
f3L

and

dQ 1!-_= 2 I-sin
dL 6 L2

LdU

d + L~,-LU
1I -_ U 2

By setting (dfl/dL) ,= = 0, we obtain

U0 = U(Lo)

and

Lo dU1
sin-lUo = 1L1 -dL Lo

Use of the distribution laws in Eq. (32) gives

No= l B't2 ei T [1 + (A + B + C)Lo

+ (B' + C') (e ̀T'L - e-y T L,)] 1/2

and

dU ~ L = U I (+ H(LO)l
dL L=a 0 2 1 +

IAIB+CJ + (B'+C') (e " + e+
l orT

where

1 + (A+B+C)LL, + (B'+ C') (e T -e ' d)

A = I aSR
5

B' = 0.1 S
aT

B = O.2 aSR,

C, = 0.1 aSB
aT

if the bare cladding fiber is used as an example. Appropriate corresponding values must be
used for a mode-stripped fiber, but the procedure will remain the same. Substituting Eq. (40)
and (41) into (39) gives a condition for the determination of Lo for a given value of the param-
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eter /3. Equation (39) can only be solved numerically. We have carried out numerical solu-
tions for the fused silica fiber discussed above for both A = 0.633 jim and A = 1.1 jm.
Numerical values of the other variables needed in the evaluation are given in Table 2. For a
fiber coil of radius R = 10 cm, numerical solutions are that (a) for A = 0.633 gim, the
optimum length Lo = 1.56 km, and (b) for A = 1.1 jm, Lo = 14.3 km. The corresponding
minimum rotational rates Qmin are 3.79 x 10-8 rad/s for A = 0.633 jim and 1.2 x 10-8 rad/s
for A = 1.1 jm. These are listed in Table 3.

As we expected, with due consideration of light scattering in fiber and 900 phase bias
improvement, our results indicate less reason for optimism than found by in Vali and Shorthill
[3]. However, we think that, with the implementation of any of the ac detection schemes and
heavy mode stripping mentioned above, we may achieve an order of magnitude improvement
in sensitivity.

Table 2 - Numerical Values of the Parameters used
to Evaluate the Optimum Fiber Length (An Example)

Case ~~~~~ B0 ~~~~0 ~~~ 1~4hvB0 1
1 2

i Case 71 Bo Po al C II t n 

(Hz) (mW) (W)

X = 0.633 jm 0.5 1 2 0.5 0.5 1.25x 10-4 1.42 x 10-7

X = 1.1 im 0.1 1 2 0.5 0.5 1.25 x 10-4 2.4 x I0-

Table 3 -Quantum-Noise-Limited Performance*

A aTitLo Minimum Detectable fl
(jim (dRkin (kin) (deg/h)

(gu m) (dB/km) Low-Power Low-Power High-Power

(PO= 2 mW) (PO = 81.2 mW)
0.633 4 1.56 0.0078 0.0009

1.1 0.43 14.3 (Po = 2 mW) (PO = 14.4 mW)
1.1 0.43 14.3 0.0025 0.0007

*900 phase bias and fiber scattering; R = 10 cm.

Effect of Stimulated Brillouin Scattering at High Power

Previous works [1,3,4] dealing with optical fiber ring interferometers and our discussions
so far are limited to linear optics. However, the S/N will improve as we increase the laser
power, hence the power coupled into the fiber, as evidenced by Eq. (36). The sensitivity in
terms of the detectable rotational rate will also improve because flmin= (,3iLo)-
sin-l U0 cc U0 for small U0. But U0 a Hlt1/2 cc p& 1/2, hence Q min K P 1/2. The upper limit for

PO will be at a level where noises induced by stimulated processes become dominating and start
to degrade the S/N and fl min. These nonlinear optics effects will become more important as we
reduce the total losses of optical fiber, for then more power input to these fibers would be avail-
able for stimulation.

28



NRL REPORT 8250

The stimulated Raman and Brillouin scattering in an optical fiber have been investigated
theoretically by R.G. Smith [56]. Based on the assumption of nondepleting pump beam and
the criterion that the critical power is reached when the scattered power in the stimulated pro-
cess is equal to the local pump power, Smith establishes that the backscattering stimulated Bril-
louin process requires the least pump power. Therefore, we shall concentrate on this process.

In order to present a discussion appropriate to the operation of fiber ring interferometers,
we adopt a new criterion for the critical power. It states that, for a chosen fiber length, the critical
power is the input laser pump power for which the backscattered Stokes wave acquires a power level
as high as the transmitted power of the beam coming from the other end of the fiber. Let P,,(0) be
the pump power at the end x=O, P,,(L) be that at x=L, P,(0), the backscattered Stokes wave
emerging from x=O. Then, mathematically, the criterion translates into

P.(0) = P., (iL)e (TL (42)

Since we have assumed symmetry in the CW and CCW directions, we can set P(L) = P,,(0)
such that

P,(0) = P,, () e T'* (43)

According to Smith [56], the backscattered stimulated Brillouin scattering has the lowest thres-
hold and can be shown to follow the formula

P(0) = 2 |-| (kT) (AVB)

XfL dVepo2 + p (0) 0 e- T)1 (44)
0 1 1 T AaT(1 XX df texp[-2aTf + Aat JJ

where v, and v, are the frequencies of the Stokes wave and the acoustic phonon, respectively,
AvB is the line width of the spontaneous Brillouin scattering, Tis the absolute temperature of
the fiber, yo is the peak gain coefficient for the stimulated Brillouin process, A is the core
cross-sectional area. This expression is applicable for all a TL, since we have used Smith's
expression for full gain given by his Eq. (BS). Substitution of (44) into Eq. (43) gives a final
equation for evaluating the critical input pump power when all the other parameters are known.

Two cases have been evaluated: namely, A = 0.633Aim and A = 1.1 jim. In doing so, we
have ignored the frequency shift of the scattered light and set v, = Vtaserr We also arbitrarily
take L = Lo, which are determined from low-power calculations. Other values used in the
evaluation are listed in Table 4.

Results show that, for the case A = 0.633 jim, the criticaf input pump power P,,(0) = 10
mW, and for A = 1.1 jim, Pp(O) = 1.8 mW. In terms of the laser output power
(Po = P,,(0)/[1/2(1-at)C]), we have PO = 1.8 mW x 8 = 14.4 mW for A =1.1 jim and
Po = 81.2 mW for A = 0.633 jim.

Based on our criterion, the quantum-limited S/N ratio, according to Eq. (36), with
PN PcW, is given by

I S I 1 qhpcw sin2 (pL ft) (45)
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where we have set P,(O) = PN = Pcw. Setting S/N = 1, the minimum detectable rotational
rate is given by

1/2 .. (6
8hvB0 e2

Smill = I 8h- | R (46)
1mi = 1 jP1,(0) j /3 it

where the approximation sin t x~x for small x, and PJ(O) = Pcw = Pp,(0)e "' is assumed. As
an example, let us consider the same ring interferometers used for low power rates as above.
Our numerical calculations show that, for the case A = 0.633 jim, fln,,1 = 4.44 x 10-9 rad/s,
or 9.16 x 10-4 deg/h, whereas for A = 1.1 jim, Qmin = 3.35 x 10-9 rad/s, or, 6.9 x 10-4
deg/h. These values are listed in the last column of Table 3. It is of interest to compare these
with the counterparts for the low-power cases: For A = 0.633 jim, the high-power performance
in rotational rate sensing has about 88% improvement over the low-power value. For
A = 1.1 jam, we gain about 72% improvement. The optimum fiber length L,,, which gives fQmin
for S/N = 1, can be determined from Eq. (46). The result is that Lo = 2/aT. This condition
still applies if we neglect all the scattered light components (PN = 0), and it is different from
the condition L( = O.8 7 /aT as given by Ref. 3.

What is the sensitivity for the ideal case? This question may be become relevant when the
state of fiber development reaches a high level of perfection whereby the scattered light is
insignificant and when ultrastable dc bias and ac modulation techniques can be implemented.

In the absence of scattered light, the ideal S/N for the dc detection scheme is

S - I qPC,, sin2 (ALPf) (7
N 4 hvB0 sn pt)(7

whence (for S/N = 1)

4hB 1/2 1"*TL

fmin - P" (0) J iL (48)

Comparing with (46), we see that the minimum detectable rotational rate in the ideal case is a
factor 1/1.. lower than the high-power case. If the differential scheme is used, the ideal
minimum detectable rotational rate is a factor of one-half lower. For the heterodyne case, we
would expect a factor of 1/(2-\K )lower.

CONCLUDING REMARKS

Optical-fiber, ring interferometers and their variants can also be used for the detection of
other physical parameters besides being highly sensitive rotational rate transducers. Physical
effects such as the acoustic pressure field, stress distributions in composite materials, the tem-
perature field, and magnetic fields can be detected through the optomechanical, magneto-optical
properties of the fiber materials. Acoustic pressure field measurements have been demon-
strated [51, and other effects are currently under evaluation in our laboratory. The present sen-
sitivity analysis will certainly facilitate the evaluation.

Up to now, our discussions have not included the depolarization effects in a single-mode
fiber. In certain applications, such as stress measurements or temperature measurements, the
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Table 4 - Values of the Parameters Used for the Evaluation of
the Critical Pump Power in Equations (43) and (444-

A L aT k T V vo AVyO A
(Am) (cm) (cm-') (J/K) (K) (Hz) (Hz) (Hz) (cm/W) (cm2)

0.633 1.56xlO 9.24x10- 6 1.38x1O-2 3 293 4.47xl01 4 2.73xlO° 8x107 5.36xlO- 9 2.827x10-7

1.1 1.43x10 6 9.95x10- 7 1.38x10-2 3 293 2.73x 1 014 1.64xlOt° 5x107 3xlo- 9 2.827x10-7

Table 5 - Comparisons of Single-Axis Gyroscope Performance

Gyroscope (deg/h) ~~Cost Z ag()IPrsWr-pSensitive SensitiveSensitivity Cs Cost Weight Power Moving Warm-up Sestv Sniie
Gyroscope (deg/h) W (Projected) (lb) (W) Parts Time Acertion Teprtur

($M Acceleration Temperature

Litton P500 0.003 10,000 8 So Yes 2-3 Yes Yes
(in use, 1977) min

Honeywell GG1300 0.01 15,000 3,000 5 6 No 2s No No
(NWC TM2855, July 1976) (dither)

Fiber Gyro 0.003- 20,000 1,500 3 3 No Fast Possibly No
(anticipated) 0.0005

Z
t-4

0

0

0 fl .4 I SVI)Nf)
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polarization state of the optical beam in the fiber can be used to our advantage; but, in ring
interferometers for rotational rate measurements, if a linearly polarized beam is used, depolari-
zation will cause signal level reduction, (a factor of 2 for complete depolarization). Therefore,
the effect of depolarization due to uncontrolled nonrecriprocal changes in the fiber should be
investigated. Nonlinear effects with pump depletion should also be investigated.*

Our analysis of the sensitivity has shown that when laser input power is low, spontaneous
noises are important, and they degrade the S/N ratio. The higher the fiber loss, the stronger
the scattered light, hence the noise power. However, the level of degradation may be reduced
considerably if a proper mode stripper can successfully remove these cladding-guided,scattered
components. We can expect two orders of magnitude in improvement. But, when the input
power is increased to above certain levels, the nonlinear, stimulated scattering will dominate.
The power level beyond which nonlinear optics effects are important is lower when optical fiber
of lower loss is used. On the other hand, sensitivity will increase as the square root of power.
Our analysis shows that, when the stimulated Brillouin scattering is taken as the sole source of
noise, the gyro sensitivity is better than that of the low-power case. We conclude that, in pur-
suant to the low-loss, single-mode fiber development, the fiber-ring interferometer should
operate with the highest possible input power.

Because the optical fiber technology, light sources such as laser diodes and detectors are
currently under intense research and development for optical fiber communications systems,'
the promising use of optical fiber as the transducer can, in fact, be tied to the advancement in
that field. Researchers in optical fiber communications systems have pointed out the clear
advantage of operating the systems in the infrared [49,561. From the point of view of scatter-
ing noise, ring interferometers should also follow this trend. What seems to be the limitation
today may soon be removed tomorrow. Our optimistic viewpoint is supported by the favorable
comparison of the ring interferometer with a specific, well-developed mechanical gyro and an
advanced ring laser gyro. This is shown in Table 5.t We conclude that ring interferometers as
fiber gyros can soon be the alternative to ring-laser gyros in certain applications. The ultimate
sensitivity as a gyro is anticipated to be even higher than the ring laser gyro.
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