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ROTATIONAL DEFORMATION OF THE EARTH

AND MAJOR PLANETS

INTRODUCTION

The purpose of this paper is to ascertain the deformations sustained by a rotating
self-gravitating massive body when hydrostatic and elastic forces are present within its
interior. There are many advantages to be gained by studies of this type of deformation;
for example: (1) better determination of the shape of the geoid in conjunction with
accurate gravity measurements, (2) better knowledge of the Earth's bodily tides and of
the Love numbers, (3) effects of crustal loading on the global ocean tides, and (4) deter-
mination of the gravity field of a planet.

The Earth and/or any other planet are considered to be initially in hydrostatic equil-
ibrium under the influence of self-gravitatation and of their rotational motion. This initial
state of deformation will be taken as the reference state.

The following relationships will be valid between the stress field Tij and the hydrostatic
pressure p0:

aTo
Tij = -Poaij; 7;i- = Pogo,i

Here the 6's are the Kronecker deltas, and p0 is the mass density of the reference state.
goi are the components of gravity for the same state and are obtainable from the gravity
potential as

a vo

0i= axi (2)

This potential is the sum of two terms: the gravitational potential VO* and the rotational
potential

VI = W 2 2 r2 sin 2o, (3)

where X is the rotational velocity, r is the radius vector measured from the center of gravity,
and 0 is the colatitude. V0 satisfies the Poisson equation

V2 Vo =-47rGpo + 2W2 (4)

where G is the gravitational constant.

Manuscript submitted June 9, 1978.
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LANZANO AND DALEY

In previous publications - Lanzano [11 and Kopal and Lanzano [2] - we used
equation (1) to ascertain how within a massive rotating configuration the equipotential sur-
faces which were originally of spherical shape are deformed into spheroids having an equation
of the sort

00

,~= 1 + X1,
a

j=0
f2i ( P2i (COS 0)- (5)

Here the parameter a denotes the mean radius of the spheroid, a, corresponds to the outer-
most equipotential surface, and the P's are, as usual, the Legendre polynomials. The defor-
mation coefficients were in turn expressed as power series of the dimensionless parameter

w2ad

i -3Gm 1
(6)

where ml is the mass of the total configuration. This parameter essentially represents the
ratio between centrifugal and gravitational accelerations. The accepted value of q for the
Earth is 0.00115, for Jupiter 0.028004, and for Saturn 0.047207. In the aforementioned
publications, we developed an equilibrium theory valid up to the third power of q; we
limited ourselves to the following expansions:

fo =

f2 = qf21

f4 =

[6 =

q2 fO2 + q3 f0 3

+ q2 f22 + q3 f23
q2f42 + q3 f43

q3f6 3 . (7)

The unknown functions fO2 and fo3 were eliminated via mass conservation considerations
and found to be related to f21 and f22 as follows:

fo2 = - 1 [2 2; (8)[03 = - *f2l (22 + A1f2) .

The other six unknown deformation coefficients (i.e., [21, f22, f2 3 ; [42, f43; f6 3 ) were
found to satisfy a boundary value differential system consisting of the Clairaut equations

a2r' + 6aDf' + (6D - C) f = R (9)

with the following conditions at both ends of the interval (0, a1 ):

[(0) = f'(O) = 0

Af(al) + BJ'(al) = S(a1 ). (10)
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Here the primes denote derivatives with respect to the mean radius a, and A, B, C are
constants depending on the order of approximation. The function

D(a) = po(a)/IO(a) (11)

is the ratio between the density po(a) and the mean density

a

3= -f p0 a2 da. (12)
PW a3 f

0

R(a) and S(a) are known functions of a that depend on lower order approximations.

The specific values of the constants and the form of the functions appearing in
equations (9) and (10) were given in the above mentioned papers and will not be repro-
duced here.

EARTH DENSITY MODELS

One must integrate the Clairaut equation to obtain the ellipticity of the equipotential
surfaces as well as the rotational deformation of the outermost equilibrium surface. For
this purpose, a density profile po(r) should be provided. In this paper we plan to take into
consideration recent Earth density models, to integrate the Clairaut equation, and to com-
pare results pertaining to the exterior potential with data obtainable from satellite geodesy.

In a recent paper, Lanzano and Daley [3], the Haddon and Bullen 1969 HB1 Earth
density model was discussed and the results of the numerical integration were compared
with earlier work by James and Kopal [4]. For numerical integration purposes we
have used here the 1975 1066A Earth density model by Gilbert and Dziewonski and the
1977 QM2 model by Anderson and Hart.

A brief discussion of these models appears appropriate and will be provided here to
enable the reader to understand their relative merits and limitations and thereby compre-
hend the validity of the numerical results.

Bullen has provided the first approximate Earth models by pioneering work in which
he used the fact that the travel times of the bodily waves do not depend upon the source
mechanism of the earthquake but are functionals of structure alone. These models were
achieved by relating the travel time with the travelled angular distance and by making use
of the following equations:

2 = k + 4 d2; p2 = 0l d = (13)
p 0 3 P dz pg

3



LANZANO AND DALEY

where k, g, af, 3 denote, respectively, the incompressibility, the rigidity, and the P and
S seismic velocities at depth z from the surface or at distance r from the center; here 7t
is a coefficient depending on the homogeneity of the material (see, e.g., Bullen [5],
pp. 227-240).

These early Bullen models were used by Kopal [4] to determine the second and
fourth harmonics of the geopotential from hydrostatic theory alone by integrating a
second-order approximation of the Clairaut equation.

Improvements to these early models, which were based on travel time data alone,
can be obtained by making use of the observed frequencies of the Earth vibrations caused
by earthquakes. These vibrations can be construed as being the superposition of the
elastic-gravitational normal modes of the Earth that are excited by an earthquake. One
can construct average Earth models through the inversion of the observed eigenperiods
of the Earth. Mathematically the problem consists of finding perturbations to a given
Earth model so that the differences between calculated and observed eigenfrequencies
can be minimized.

The normal modes of oscillation for a nonrotating, spherically symmetric Earth are
of two kinds: spheroidal and toroidal. The amplitudes of their oscillations are represen-
table, respectively, as

ns~j = n UQ(r)YQ2 (0,) r + nVg(r)rVYQ" (D O),

nTm = - WQ (r) r X VYt? (0O). (14)

These oscillations depend on three parameters: the angular orderL, the azimuthal order
m (with - < m < .) - which are related to the degree 2 and order m of the spherical
harmonic Ygn (0,q) - and the radial number n, which defines the overtone.

The azimuthal order m does not appear in the differential equations or boundary con-
ditions, so that for each k and n there are 2k + 1 normal mode eigenfunctions, all of which
belong to the same eigenfrequency; together they form a multiplet. This phenomenon is
called degeneracy and constitutes the main difficulty in identifying spectral peaks of the
eigenfrequerfcies and in comparing them with theoretical calculations. Perturbations, such
as rotation, ellipticity, and geographical features remove the degeneracy of a multiplet and
lead to a split multiplet. Ascertaining the splitting parameters of a multiplet would be a
step leading to the possibility of solving for singlets; however, the theory behind such
splitting is not well understood and consequently has not been formulated. Accordingly,
all the Earth models available up to the present time are based on a nonrotating Earth.
On the other hand, new developments in instrumentation allow geophysicists to lower
the detection threshold for magnitudes in the low frequency modes and thus increase
the number of usable seismic events.
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In the 1969 HB1 Earth model by Haddon and Bullen [6], 110 observations of periods
of spheroidal and toroidal oscillations were taken into account based on the earthquakes
of May 1960 in Chile and March 1964 in Alaska. Also, for the first time, use was made
of: (1) the revised value of the Earth's polar moment of inertia: I = 0.3309 mla,2
where ml = 5.976.10 2 7 g is the Earth's total mass and a, = 6371 km is the Earth's mean
radius (i.e., the radius of a sphere of equal volume) and (2) the evidence that the central
density P, is < 13 g/cm3 .

In the preceding as well as in many other free oscillation studies of the Earth's inter-
ior, the effect of absorption upon the eigenperiods of the Earth has been ignored: this
is equivalent to assuming that the Earth is perfectly elastic. The actual Earth is significantly
anelestic over seismic frequencies, and recent research by Hart et al. [7] has revealed
that a frequency-dependent correction of the order of 1% should be applied to the normal
mode periods to eliminate baseline discrepancies between body wave results and normal
mode results. These authors adjusted the eigenperiods of their older C2 Earth model for
attenuation and then by inversion obtained the QM2 model (1977). Inclusion of the
attenuation term tends to increase the values of seismic velocities, especially the shear
velocity.

All the methods mentioned are based on dispersion characteristics of traveling waves,
the eigenfrequencies of normal modes, and the attenuations of both, which are essentially
functionals of the Earth structure alone. A complementary procedure for improving upon
the mechanical model of the Earth is to study the source mechanism of an earthquake from
the knowledge of the normal mode amplitudes. Using both methods one can then initiate
an iterative process of successive refinements of structure and mechanism.

This is essentially the procedure followed by Gilbert and Dziewonski [8] in obtaining
their 1066A model in 1975. The gross Earth data were compiled from 1461 modes,
whereas the source mechanism (or moment tensor) was retrieved from the seismic spectra
of the July 1970 Colombia and the August 1963 Peru-Bolivia earthquakes. Tables 1, 2,
and 3 represent the density variations with depth for the HB1, 1066A and QM2 models,
respectively.

NUMERICAL INTEGRATION OF THE CLAIRAUT EQUATIONS
AND RESULTING EARTH DEFORMATIONS

We have used central difference formulas to express the first and second derivatives
of the unknown functions at the various pivotal points chosen within the integration range.
Neglecting third and higher order central difference terms and assuming equal intervals
between the pivotal points, we find that the Clairaut equation (9) takes the form of a
three-term set of difference equations:

A(i>1)fi-l + A(i,2)fi + A(i,3)fi+l = A(i,4); (i = 1,2, . . ., N), (15)

where the subscript i refers to the pivotal point at which the functions are evaluated, and
the A's depend on the coefficients of the original equation and the interval size.
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LANZANO AND DALEY

Table 1 - Values of Density p, in the Earth Model HB1

Depth (g/cm 3) Depth p Depth p

10.948
11.176
11.383
11.570
11.737
11.887
12.017
12.121
12.130
12.197
12.229
12.301
12.360
12.405
12.437
12.455
12.460

0
15
15
60

100
200
300
350
350
400
413
500
600
650
650
800

2.840
2.840
3.313
3.332
3.348
3.387
3.424
3.441
3.700
3.775
3.795
3.925
4.075
4.150
4.200
4.380

984
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
2878
2878
3000
3200
3400

4.529
4.538
4.655
4.768
4.877
4.983
5.087
5.188
5.288
5.387
5.487
5.527
9.927

10.121
10.421
10.697

3600
3800
4000
4200
4400
4600
4800
4982
5000
5121
5200
5400
5600
5800
6000
6200
6371

6
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Table 2 - Values of Density p, in the Earth Model 1066A

(k) | (g/cm 3 ) Depth p Depth p Depth p;km .,/c , , 

0
6

11
11
37
62
88

114
139
165
190
216
242
267
293
319
344
370
395
421
421
452
484
515
546
577
609
640
671
671
706
740
775
810
844
879
913
948
983

1,017
1,052
1,087

2.183
2.183
2.183
3.343
3.351
3.358
3.365
3.372
3.379
3.387
3.393
3.402
3.419
3.443
3.473
3.509
3.551
3.600
3.657
3.712
3.712
3.764
3.805
3.850
3.903
3.961
4.025
4.106
4.208
4.208
4.319
4.403
4.468
4.511
4.535
4.537
4.537
4.542
4.552
4.567
4.587
4.610

1,121
1,156
1,191
1,225
1,260
1,294
1,329
1,364
1,398
1,433
1,468
1,502
1,537
1,571
1,606
1,641
1,675
1,710
1,745
1,779
1,814
1,849
1,883
1,918
1,952
1,987
2,022
2,056
2,091
2,126
2,160
2,195
2,229
2,264
2,299
2,333
2,368
2,403
2,437
2,472
2,507
2,541

4.635
4.660
4.683
4.705
4.724
4.741
4.756
4.770
4.783
4.797
4.811
4.825
4.841
4.857
4.874
4.892
4.911
4.930
4.949
4.969
4.988
5.008
5.027
5.046
5.066
5.086
5.106
5.127
5.147
5.169
5.190
5.212
5.233
5.255
5.277
5.298
5.318
5.338
5.357
5.374
5.391
5.406

2,576
2,610
2,645
2,680
2,714
2,749
2,784
2,818
2,853
2,887
2,887
2,958
3,028
3,099
3,169
3,240
3,310
3,381
3,451
3,522
3,592
3,663
3,733
3,803
3,874
3,944
4,015
4,085
4,156
4,226
4,297
4,367
4,438
4,508
4,578
4,649
4,719
4,790
4,860
4,931
5,001
5,072

5.421
5.434
5.447
5.460
5.471
5.483
5.495
5.506
5.518
5.528
9.914

10.028
10.134
10.235
10.333
10.427
10.516
10.603
10.687
10.772
10.858
10.946
11.033
11.116
11.192
11.265
11.335
11.406
11.475
11.541
11.602
11.660
11.716
11.769
11.818
11.863
11.904
11.944
11.985
12.026
12.068
12.110

5,142
5,142
5,181
5,219
5,257
5,296
5,334
5,373
5,411
5,449
5.488
5,526
5,565
5,603
5,641
5,680
5,718
5,757
5,795
5,833
5,872
5,910
5,949
5,987
6,025
6,064
6,102
6,141
6,179
6,217
6,256
6,294
6,333
6,371

12.153
13.021
13.031
13.045
13.060
13.074
13.088
13.102
13.116
13.131
13.145
13.160
13.175
13.190
13.205
13.220
13.235
13.251
13.267
13.284
13.300
13.316
13.331
13.345
13.357
13.368
13.377
13.385
13.393
13.399
13.406
13.411
13.418
13.421

7

A,

_

rn-

_
o.H



LANZANO AND DALEY

Table 3 - Values of Density p, in the Earth Model QM2

Depth | p I 1 i
(km) (g/cM 3 ) Depth _p Depth p Depth 

0 1.02 496 3.72 1546 4.85 3471 10.78
3 1.02 521 3.73 1621 4.89 3571 10.91
3 2.80 546 3.89 1696 4.94 3671 11.02

21 2.80 571 3.95 1771 4.97 3771 11.12
21 3.49 596 3.97 1846 5.01 3871 11.21
41 3.50 621 3.99 1921 5.05 3971 11.29
61 3.52 646 4.00 1996 5.09 4071 11.37
81 3.45 671 4.04 2071 5.14 4171 11.45

101 3.39 671 4.38 2146 5.19 4271 11.53
121 3.31 696 4.40 2221 5.24 4471 11.69
146 3.29 711 4.42 2296 5.29 4571 11.78
171 3.31 728 4.43 2371 5.34 4671 11.85
196 3.33 746 4.44 2446 5.38 4771 11.93
221 3.35 769 4.47 2521 5.42 4871 11.99
246 3.36 798 4.51 2596 5.45 4971 12.05
271 3.36 821 4.52 2671 5.48 5071 12.09
296 3.38 871 4.55 2746 5.49 5156 12.12
321 3.43 946 4.58 2821 5.51 5156 12.30
346 3.51 1021 4.61 2861 5.52 5371 12.48
371 3.59 1096 4.64 2886 5.52 5571 12.52
388 3.63 1171 4.68 2886 9.97 5771 12.52
404 3.71 1246 4.71 2971 10.10 5971 12.52
421 3.82 1321 4.74 3071 10.24 6071 12.53
446 3.81 1396 4.77 3171 10.38 6271 12.57
471 3.76 1471 4.81 3371 10.65 6371 12.57

For this scheme, the values of the f's at two points exterior to the interval of inte-
gration must be known; however, this inconvenience can be circumvented by using the
two boundary conditions expressed by equation (10).

Due to the discontinuity exhibited by the density profile at the interface of two
consecutive layers, one must follow piecewise integration to obtain the mean density
Po and the related function D. To obtain a unique solution to our integration problem
notwithstanding the discontinuous nature of the input data, we have imposed the con-
ditions of continuity for the solutions f and their derivatives f' and have generated the
appropriate difference equations according to a procedure developed by Fox [9].

The computations were programmed in Fortran and executed on the Texas Instru-
ment ASC-7 Computer at the Naval Research Laboratory in double precision floating
point arithmetic to a precision of 16 decimal digits. An iteration method was employed
producing results convrgent to at least the 5 decimal digits given in the tables. More
details about the integration procedure can be obtained in. Lanzano and Daley [3].
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Tables 4, 5, and 6 refer to the HB1, 1066A, and QM2 Earth density models, respectively;
they furnish the deformation coefficients fo, f2, f4 and f6 for the equipotential surfaces
corresponding to intermediate values of the mean radius a. The number N of pivotal
points required to reach the mentioned accuracy was 851, 580, and 607, respectively.
The results tabulated at the chosen values of the depth are linear interpolations between
the pivotal points.

Table 4 - Deformation Coefficients for the
Equipotential Surfaces, Earth Model HB1

Depth 1_106 J|102 [2 J_+105 [ f4 _108 * f6

0 0.99421 0.22298 0.44766 0.96569
15 0.99147 0.22268 0.44630 0.96106

300 0.94109 0.21695 0.42139 0.87871
350 0.93259 0.21596 0.41724 0.86551
650 0.88288 0.21013 0.39312 0.79141
900 0.84214 0.20522 0.37324 0.73257

1200 0.79332 0.19918 0.34890 0.66167
1500 0.74495 0.19302 0.32400 0.58968
1800 0.69804 0.18684 0.29891 0.51695
2100 0.65431 0.18089 0.27448 0.44533
2400 0.61654 0.17559 0.25242 0.37940
2878 0.58072 0.17041 0.23085 0.31418
3000 0.57747 0.16994 0.22905 0.30954
3300 0.57030 0.16888 0.22508 0.29935
3600 0.56416 0.16797 0.22167 0.29071
3900 0.55893 0.16719 0.21876 0.28338
4200 0.55451 0.16652 0.21628 0.27720
4500 0.55084 0.16597 0.21422 0.27205
4800 0.54786 0.16552 0.21253 0.26785
5121 0.54544 0.16516 0.21114 0.26440
5400 0.54385 0.16492 0.21023 0.26215
5700 0.54260 0.16473 0.20952 0.26038
6000 0.54182 0.16461 0.20907 0.25927
6300 0.54149 0.16456 0.20888 0.25880
6371 0.54147 0.16455 0.20887 0.25878

9
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Table 5 - Deformation Coefficients for the
Equipotential Surfaces, Earth Model 1066A

Depth 106 * 102 - +105 * 4 108 6
(km I -1 6 fo I 2 I10 f4 I1~

0
11

300
421
671
900

1200
1500
1800
2100
2400
2887
3000
3300
3600
3900
4200
4500
4800
5142
5400
5700
6000
6300
6371

0.99376
0.99175
0.94067
0.92023
0.87929
0.84230
0.79357
0.74509
0.69795
0.65390
0.61557
0.57738
0.57402
0.56562
0.55776
0.55019
0.54243
0.53381
0.52371
0.51382
0.51187
0.50964
0.50787
0.50686
0.50674

0.22293
0.22271
0.21690
0.21453
0.20970
0.20524
0.19922
0.19303
0.18683
0.18084
0.17545
0.16992
0.16943
0.16818
0.16701
0.16587
0.16470
0.16339
0.16183
0.16030
0.15999
0.15964
0.15937
0.15921
0.15919

0.44762
0.44662
0.42135
0.41137
0.39158
0.37364
0.34946
0.32462
0.29953
0.27511
0.25295
0.23032
0.22856
0.22422
0.22026
0.21661
0.21302
0.20913
0.20435
0.19902
0.19801
0.19688
0.19600
0.19552
0.19547

0.96520
0.96181
0.87799
0.84631
0.78609
0.73341
0.66318
0.59144
0.51888
0.44758
0.38177
0.31392
0.30950
0.29879
0.28929
0.28088
0.27310
0.26512
0.25515
0.24213
0.23985
0.23738
0.23542
0.23442
0.23430

Table 6 - Deformation Coefficients for the
Equipotential Surfaces, Earth Model QM2

Depth | 106 - fo | -10 2 . f2 | +105 .f4 -1o8 -f6
.. m .1 .

0
3

21
300
671
900

1200
1500
1800
2100
2400
2886
3000
3300
3600
3900
4200
4500
4800
5156
5400
5700
6000
6300
6371

0.99239
0.99184
0.98857
0.93931
0.87834
0.84170
0.79336
0.74531
0.69871
0.65530
0.61776
0.58122
0.57827
0.57118
0.56497
0.55927
0.55385
0.54875
0.54396
0.53932
0.53853
0.53832
0.53770
0.53681
0.53681

0.22278
0.22272
0.22235
0.21674
0.20959
0.20517
0.19919
0.19306
0.18693
0.18103
0.17577
0.17049
0.17005
0.16901
0.16809
0.16724
0.16643
0.16566
0.16493
0.16423
0.16411
0.16407
0.16398
0.16384
0.16384

0.44648
0.44620
0.44457
0.42010
0.39047
0.37269
0.34864
0.32392
0.29903
0.27485
0.25301
0.23104
0.22942
0.22555
0.22222
0.21921
0.21640
0.21377
0.21129
0.20866
0.20807
0.20783
0.20751
0.20707
0.20707

10

0.96148
0.96055
0.95501
0.87363
0.78217
0.73006
0.66024
0.58877
0.51666
0.44588
0.38077
0.31431
0.31013
0.30029
0.29198
0.28471
0.27801
0.27189
0.26620
0.25960
0.25791
0.25716
0.25642
0.25546
0.25545
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Table 7 shows the surface values (i.e., those values for a = a1 ) of the f's and of the
coefficients K appearing in the spherical harmonic expansion of the potential according
to the formula

r K 2 j(aj) rt (16)

j=1

Also shown is the value of the ellipticity,

r(al, 0) - r(al, 1)
r(al, 0)

(17)

and of the ratio (C -A)/C, where A is the moment of inertia with respect to any barycentric
axis in the equatorial plane and C the moment of inertia with respect to the polar axis.
This table is a comparison of four Earth density models and includes the results for the
Bullen model, which required only 387 pivotal points for reaching the same accuracy.

Table 7 - Comparison of Earth Density Models*

Parameter QM2 1066A I HB1 Bullen (1940)

fo (a1) -0.99239 * 10-6 -0.99376 - 10-6 -0.99421 - 10-6 -0.10098 - 10- 5

f2 (a1) -0.22278 * 10-2 -0.22293 - 10-2 -0.22298 * 10-2 -0.22473 * 10-2

f4 (a1) +0.44648 10-5 +0.44762 10-5 +0.44766 10-5 +0.45202 10-5

f6 (a1 ) -0.96148 * 10-8 -0.96520 * 10-8 -0.96569 * 10-8 -0.97129 * 10-8
K2 (a1 ) -0.10735 - 10-2 -0.10751 * 10-2 -0.10756 * 10-2 -0.10929 * 10-2

K4 (a1 ) +0.29625 10-5 +0.29763 10-5 +0.29776 10-5 +0.30495 10-5

K6 (a1 ) -0.11199 10-7 -0.11284 10-7 -0.11293 10-7 -0.11598 -10-7

E-1 299.8 299.6 299.6 297.2

A = Ie 0.80087 * 1035 0.80168 * 1035 0.80212 * 1035 0.80893 - 1035

C = Ip 0.80347 1035 0.80429 1035 0.80473 1035 0.81159 1035

(C-A)/C 0.3239 * 10-2 0.3242 * 10-2 0.3243 * 10-2 0.3274 *C-2

*q = 0.00115

11
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We remark here that the geodetic values obtained from satellite measurements lie
between the data for the Bullen and the HB1 models. Such deviations can be assumed to
represent a measure of the role the elastic energy plays in the rotational deformation of
the Earth.

Notice also the apparent tendency of the three new models to converge toward limi-
ting values of the parameters, a trend that augurs well for the future knowledge of a real
Earth model.

DEFORMATIONS OF JUPITER AND SATURN

Jupiter and Saturn comprise about 90% of the total mass of the planetary system;
therefore, the great interest which in recent years has arisen toward developing a density
model for their interior and ascertaining the oblateness of their exterior shape is quite
understandable.

Pioneering work on Jupiter's internal composition goes back to Wildt [10] and
Ramsey [11]. Their theory was further elaborated by DeMarcus [12], Opik [13],
and Peebles [14]. More recently, Podolak and Cameron [15], Zharkov et al. [16],
and Slattery [17] have contributed to the topic.

In the above mentioned works, the Jupiter interior is conceived as a hydrogen and
helium envelope approximately in the solar mixture surrounding a core of heavy elements.
By solar mixture we mean that the hydrogen mass fraction is 0.78 and the helium mass
fraction is 0.22. Within this gaseous envelope, one can distinguish primarily three layers
beginning with a very low density region that can be treated adequately with perfect gas
laws, a transition region of gas mixture in a molecular state where the Van der Waals
equation can be applied, and a metallic hydrogen region for which the equation of state
is also known. The various models which have been considered differ primarily because
of the equation of state adopted for the transition region.

Saturn's models have evolved concomitantly with Jupiter's. However, since Saturn
is smaller than Jupiter, more of the planet's interior is expected to be in the molecular
state, and thus more uncertain in its composition.

DeMarcus [12] made use of the second-order theory of hydrostatic equilibrium
as developed by DeSitter [18] and recast it into a form which is very suitable for
ascertaining the density profile of a planet when only the equation of state is known.

Notwithstanding claims made later by Slattery [17], Zharkov [16] used only
a second-order theory in developing Jupiter's density profile. To be more specific, in
,1968 Zharkov [19] did develop a third-order equilibrium theory which appeared in English
translation in Soviet Astronomy (1970); however, he limited himself to obtaining integral
relationships basically equivalent to those already achieved by Lanzano in 1962 [20]. The
complicated form assumed by Zharkov's equations makes it unlikely that he could have
used such theory to obtain Jupiter's density profile.

12
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Slattery [17] developed two Jupiter models in accordance with which core density
reached values of 13 and 22 g/cm3 . In developing these models, he used a fourth-order
theory elaborated by Hubbard et al. [21]. This theory is objectionable not only from
a theoretical point of view because no use is made of the equipotential surfaces, but also
from a computational viewpoint because of the doubtful convergence of the expressions
therein considered.

Because of these drawbacks, in the present work we use the well-tested DeMarcus
density profile (Table 8) in conjunction with the third-order theory of Kopal and Lanzano
to obtain more accurate values for the deformation coefficients of the equipotential sur-
faces and for the coefficients of the harmonics in the exterior potential. This third-order
theory is the analytic elaboration of our already mentioned 1962 results, whereby we were
successful in transforming, by means of differentiation and elimination operations, a rather
intricate system of integral equations into a simple system of second-order ordinary dif-
ferential equations with boundary conditions.

The initial data we used for Jupiter and Saturn have been taken from Brouwer and
Clemence [22] and are summarized in Table 9.

Table 8 - DeMarcus Density Profiles for Major Planets

Jupiter _ Saturn

De() c Dth I p l lDe

(km) (g/cm3) Dept Depth p Depth p

0 0.00016 17,465 1.31 0 0.00016 23,052 0.611
140 0.032 20,958 1.56 288 0.023 25,934 0.678
279 0.103 24,451 1.83 576 0.092 27,507 0.719
419 0.138 27,944 2.12 864 0.125 27,507 0.999
559 0.162 31,437 2.40 1,153 0.151 28,815 1.048
699 0.181 34,931 2.66 1,441 0.170 31,697 1.163
741 0.185 38,424 2.90 1,729 0.185 34,578 1.289
741 0.197 41,917 3.14 1,729 0.197 37,460 2.166

1,397 0.246 45,410 3.37 2,882 0.236 40,341 4.16
4,192 0.367 48,903 3.58 4,322 0.268 43,223 6.73
6,986 0.479 52,396 3.81 5,763 0.293 46,104 9.45
9,781 0.593 55,889 4.08 8,645 0.347 48,986 11.93

12,575 0.714 59,382 4.40 11,526 0.397 51,867 13.94
13,832 0.777 62,875 19.09 14,408 0.446 54,749 15.18
13,832 1.08 66,368 27.90 17,289 0.498 57,630 15.62
13,972 1.09 69,861 30.84 20,171 0.552 l

13



LANZANO AND DALEY

Table 9 - Data of Brouwer and Clemence for Major Planets*

Parameter Jupiter | Saturn

Ml 1.902 * 103 0 g 0.5694- 1030 g

a, 6.9861 - 109cm 5.763 109 cm

po (a1 ) 1.33 g/cm3 0.71 g/cm3

P0 (0) 30.84 g/cm3 15.62 g/cm3

T 9.87 hr 10.41 hr

W 1.768317 * 10- 4 sec-1 1.676589 * 10- 4sec 1

q 0.28004 * 10-1 0.47207 * 10-1

*Fundamental parameters used in the integration.

Results of the Pioneer 10 and 11 missions gave rise to revised data for Jupiter (see
Anderson et al., [23] ), primarily for its radius al = 7.14 * 109 cm, and its rotational per-
iod T = 9.925 hours, whereby q = 0.0296. We have, however, used the older set of data
not only for the sake of comparison with Kopal's results, but also because we do not be-
lieve that the newer data would have changed the results appreciably.

Our results are summarized in Table 10. To achieve accurate solutions, we had to take
284 pivotal points in the integration of Jupiter's deformations, and 401 points in the case
of Saturn's. The ellipticity, e, is 0.064433 for Jupiter and 0.097847 for Saturn.

We compare our results with the following:

* Observational results of Brouwer and Clemence and of Anderson et al. (Table 11);

* 1963 results by James and Kopal (Table 12), where the DeMarcus profile and a
second-order theory were used; and

* results in 1977 by Slattery (Table 13); he used a fourth-order approximation, the
new data, and a different density profile.

THE LINEARIZED NAVIER-STOKES EQUATION FOR AN ELASTIC EARTH

To go one step further and consider a realistic model of the Earth, we must take into
account the effect of the elastic forces. For this purpose, we assume that the additional
stress field Tij and the corresponding displacement field ui, measured from the reference
state, are related according to the relationship

Ti1 = ±ak + u + (18)

14
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Table 10 - Surface Values for Major Planets

Jupiter Saturn

Parameter (q = 0.028004) (q = 0.047207)

f0 (a1 ) -0.39517 - 10-3 -0.94731 - 10-3

f2 (a1 ) -0.44701 * 10-1 -0.69585 10-1

f4 (a1 ) +0.20037 10-2 +0.57156 * 10-2

f6 (a1 ) -0.91101 10-4 -0.42411 - 10-3

K2 (a1 ) -0.15013 - 10-1 -0.18465 * 10-1

K4 (a1 ) +0.68165 - 10-3 +0.15885 10-2

K6 (a1 ) -0.39233 * 10-4 -0.15591 *10-3

E-1 15.52 10.22

A = Ie 0.23691 - 1040 0.39762 - 1039

C = Ip 0.25068 * 1040 0.43157 - 103 9

(C-A)/C 0.5494 * lo-1 0.7867 - 10-1

Table 11 - Results of Brouwer and Clemence and of Anderson

Parameter | Jupiter Saturn

* ** *

K2 -0.147066 * -1 -0.1472 - 10-1 -0.166733 * -1

K4 0.674666 10-3 0.65 - 10-3 0.102933 * 10-2

= 0.0651890 1021 = 0.0979432

*Brouwer and Clemence (1961)
**Anderson et al. (1974)

15
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Table 12-Data of James and Kopal (1963)

The De Marcus profile and second-order theory were used.

Table 13-Data of Slattery (1977)

Fourth-order approximation, new data, and a different
density profile were used.

This formula, in which use has been made of the summation convention, is valid for a
perfectly elastic and isotropic medium. Here X and ji are the Lame elastic parameters;
p is also known as the rigidity. These two parameters are related to the incompressibility
or bulk modulus by the relationship

k = X + 2 A . (19)

16

Parameter Jupiter Saturn

f2 -0.4409 * 10-1 -0.6930 - 10-

f4 0.202 10-2 0.594 - 10-2

K2 -0.1440 10-1 -0.1797 10*-1

K4 0.5667 10-3 0.1302 - 10-2

e 0.0634518 = 1 0.0968054 = 10.33
15.76 102.7

C-A 0.0525 0.0768
C

Parameter Jupiter I Saturn

K2 -0.1478- 10-1 -0.1667 . 10-1

K4 0.605 - 10-3 0.0953 - 10-2

K6 -0.37 . 10-4 -0.081 - 10-3

e 0.06527 0.1006
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Within the validity of the infinitesimal deformation theory we can safely assume that
equation (18) applies to the coordinates that the points of the medium had before the
occurrence of deformation. This assumption cannot, however, be made for the initial
stress field; as a consequence, the total stress field at the undeformed points must be
written as

aT.kai i 8xB Uk +Trjj* (20)

With respect to an inertial frame, the equations representing the deviation from the ref-
erence state are

d 2 U. 3 aa.

dt2 axi axj (1

p is the mass density and is the sum of two terms:

P = PO + PI

where P1 , the change due to the displacement field ui is given by the continuity equation

PI axi (P°u i (22)

V = V0 + V1 is the total potential, where V1 satisfies the Poisson equation

V2 V1 = -47rGp1 . (23)

The components of gravity will then appear to be

9i = go0 i + g1 ,i (24)

where gl, ai v

Neglecting the product p1g1 j, since it is of the second order in the displacements,
and considering that

aTi_ apo
a- - - bj~i = -P090,k'~i]aXk axk bd Pg~bj

we arrive at the following:

d2u= a a* (2
= t -' p0g1j ± p1g01 + ax! Po0okuk) ± a . (25)

17
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Note that equations (1), (20) and (21) have been used in obtaining it. The last term in
equation (25), when expanded, yields

arU1 (ax auk a2 u\ /a 2ui a2 uj\ ap.au, au>

axj = axj +X axaax) + pxjaj +a ) + axj + a (26)

The reduction of the previous expressions to vectorial notation can be accomplished by
taking into account the following facts:

allk
1) -= V * u is the dilatation A;

ask

a2 Uk a2 u.
2) - is the ith component of the gradient of the dilatation,

axiaXk axiax.

V(V- U);

a2 isth
3) a is the ith component of the vector Laplacian V2 u, which is known to be

axjax;

representable according to the vector identity V2u = V( V. u) - V X V X u;

4) Finally one can prove (see the Appendix for details) that the expression

ap. (aui auj
axj V ax, + axi/

is the ith component of the vector

(Vp)(V - U) + V(u * Vp.) + V X (u X Vp.) -uV2 p. (27)

Replacing the above vector quantities within equations (25) and (26), one gets

d2u
p = Pog1 + p1go + V(pou * go) + (X + 2M) V(V * u) (28)

-pV X V X u + (VX + Vp)(V - u) + V(u . Vp) + V X (u X V.p) - uV 2 p..

This is essentially the Navier-Stokes equation when allowance is made for the variation
of the material's elastic parameters and when quadratic terms in the displacements are
dropped. X, p., and po are supposed to be known functions of the radial distance. As a
matter of fact, it easily follows from equations (13) and (19) that the Lame parameters
are related to the P and S seismic velocities according to

18
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po 2 = X± + 2p; pog2 = A.

Consequently, their expressions as functions of the radial distance or depth can be obtained
from the density and the velocity of seismic waves. Their values are provided by the Earth
model tables.

g9 and g1 are obtainable from V0 and VI, respectively, via the Poisson equations (4)
and (23); on the other hand, p1 is obtainable from the continuity equation (22).

The acceleration of u with respect to an inertial frame is given by

d 2 U_ a 2 U au d&j
=-+ 2c Xat +-- - X u + (u ( & u) -w2 u, (29)dt2 at2 at dt

where the symbol of partial derivative refers to the variation of a vector with respect to
the rotating frame. If we want to ascertain a permanent deformation, the vector u,
measured with respect to a rotating Earth, should be independent of time; this means
that

a2 u = au

at2 at

Also, in the case of a constant angular rate and of no variation in the position of the ro-
tational axis, one should have

dw = o-
dt

Therefore, we are left with the expression

d2 u = (o . U) - w2u. (30)
dt2

Using equation (30), we find that the left-hand side of equation (28) becomes

po [( * .u) co - C2u] , (31)

where the term plu has been neglected because it is of the second order in the displace-
ments.

When the left-hand side is replaced by equation (31), equation (28) represents the
fundamental relation which yields the perturbation displacement u. One should seek
solutions to this equation in the form of spheroidal and toroidal deformations as expres-
sed by equation (14).

19
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DISCUSSION OF THE RESULTS

We have developed a general equilibrium theory which has two functions:

(1) It yields the fundamental state of deformation for a rotating body in the presence
of hydrostatic forces; this can.-be accomplished by solving the Clairaut equation with boun-
dary conditions; and

(2) It accounts for the additional deformations attributable to elastic forces as per-
turbations to the previously obtained fundamental mode; the perturbation equation in
question is a linearized version of the Navier-Stokes equation.

For the Earth we have numerically solved the Clairaut equation using various density
profiles and have compared our results with well established satellite-obtained data per-
taining to the second, fourth, and sixth harmonics of the geopotential. The observed
discrepancies are primarily due to the presence of shear stresses and convection currents
in the Earth's mantle. To remedy this situation, one must solve the Navier-Stokes per-
turbation equation; this we plan to do in the near future as our next task.

In the case of the two giant planets, our results represent an improvement on Kopal's
previous work, which was based on the second-order Clairaut equation and the same
DeMarcus density model. Our results compare favorably with recent work by Hubbard
and Slattery, who use a different density distribution, primarily because of our more
advanced mathematical formulation: preliminary analytical work has allowed us to
simplify the original equilibrium conditions which as used by those authors were expressed
by a complicated integro-differential relationship; we obtained a well-posed boundary value
problem consisting of the Clairaut equation. This feature of simplicity is responsible for
obtaining more accurate solutions more rapidly.

A preliminary version of these results was presented orally at the Spring Meeting of
the American Geophysical Union in Miami Beach, April 1978.
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Appendix

MATHEMATICAL PROOF OF A VECTOR IDENTITY

From the definitions

(U X Vp.)n = eCjk u 1a and
axk

aun
(V x U)i = Cimn ax 9

where e is the completely antisymmetric third-rank tensor (also known as the permutation
symbol or Levi-Civita density), one gets the following:

[v x (u x VOL -=imneni (ax anjkp. aU
/au ax,,) 8 

=kax aXk +' axkaxm/

aui ay auj ap + i a2 a2 (1A)

aXk aXk ax. axi axkaxk j axiaxj -

Here use has been made of the property that e is antisymmetric for an interchange of any
pair of indices, whereby

en lk = ejk n

also the tensor identity,

eim n ejk n = 6 ijm k - 5ik 5m j

was used - see, e.g., Harris [24] pp. 10-13.

Using equation (1A), one can express the ith component of the vector represented by
equation (27) as
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ap ak a / ap.U\ a2 + aui am.
ax Uka - Ui aXk aXk

au -, a X4 a2p. _ a ( ±-B
)xaxi Uiaxi - i axiax- axk axk axis q-e-d.
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