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EQUATIONS OF POWERED ROCKET ASCENT
AND ORBIT TRAJECTORY

1. INTRODUCTION

In the analysis of systems in space, one often encounters the problem of specification and
design of a launch vehicle and its trajectory, so that certain performance requirements may be
met. Also of interest are the flight path of the space vehicle in orbit, particularly with respect
to interactive ground systems, and the relation of the orbit to the launch profile. As will be
explained below, however, it is usually difficult to extract the requisite information from vari-
ous standard references. This report should help to remedy this situation. One of the primary
goals of this report is to present a logical exposition of approximations and sufficient informa-
tion and guidance to facilitate an investigator's choice of the simplest analysis technique suited
to his needs. He may thus possibly be able to avoid an unnecessarily complex, time-consuming
analysis technique, such as the "full" numerical solution approach to the problem.

In many standard reference sources on powered rocket ascent from the earth, equations
are introduced in an ad hoc and incomplete manner. There are also inaccuracies and incon-
sistencies to contend with. For example, Ball and Osborne's Eqs. (1-20) and (1-22) [1] leave
out certain kinematic terms which are related to a radial gravitational field and could become
important for high rocket velocities. Ehricke [2] correctly introduces the effect of these terms in
his Eq. (5-27) in an ad hoc fashion, but then he seemingly incorrectly introduces their effect
later in his Eqs. (6-39) and (6-40), also in an ad hoc fashion. Ruppe [31 gives a basically
correct treatment of these terms in his Eqs. (3.1)-(3.4), but from the outset his treatment
ignores the orientation or angle of attack of the vehicle through his use of a gravity tilt condi-
tion. Furthermore, Ball and Osborne [11 give a sketchy treatment of earth's rotation effects, in
which an initial rocket velocity imparted by earth's rotation is included in a flat earth approxi-
mation. Ruppe [31 does a more complete job on this, but his results are also restricted to a flat
earth. In most instances a powered rocket ascent will not cover a large enough ground range to
necessitate taking curvature of the earth into account, but in some cases it will. To cover these
cases, where ground range might be in excess of 500 n.mi., a correct treatment of earth's cur-
vature effects is necessary, but it is absent from the references that have been discussed [1-3].

This report is intended is to remedy the above deficiencies and present in one place, in a
consistent notation set, and in reasonably coherent fashion the basic equations of powered rock-
et ascent and orbit trajectory needed for analysis techniques at various levels of approximation.
To start with, in the first part of Section 2, we obtain the rocket equations of motion in an iner-
tial frame. As in nearly all elementary treatments, the complications from the fact that the at-
mosphere is not stationary in an inertial reference frame are initially ignored. In the latter part
of this section these equations of motion are integrated to give velocity and coordinate expres-
sions as a function of time in an inertial frame. In Section 3, we consider the complications of
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earth's rotation, including the effect of a corotating atmosphere. A "full" solution of the rocket
trajectory would thus involve a complicated three-dimensional numerical solution of the equa-
tions of motion. In Section 3 it is shown that the great complications which arise from this
course of action can be avoided by solving simplified equations of motion in the earth-fixed,
rotating reference frame for the period of powered rocket ascent when aerodynamic effects are
important; the data are then transformed back to the inertial frame, which amounts to addition
of a rotation velocity vector; and finally the inertial velocities computed as in Section 2 for por-
tions of the rocket flight when aerodynamic effects are not important-are added. The results of
Section 3 demonstrate that approximate velocity and coordinate expressions for rocket flight can
be obtained by a rather simple extension of results from Section 2. The expressions in Section
3 will be found to include, to a good approximation, not only earth and atmosphere rotation
effects, but also earth's curvature effects for the total powered trajectory. In Section 4 the
nature of the elliptical satellite orbit and its point of entry, as determined from the injection
conditions which exist at cutoff of the rocket engines, are considered. In Section 5 the pro-
cedures are described for determining the vehicle flight coordinates versus time in both
powered and orbital phases, and as seen by both inertial and earth observers. In Section 6 there
is a discussion of the equations obtained and their underlying validity.

2. POWERED ROCKET ASCENT NEGLECTING EARTH'S ROTATION EFFECTS

The Equations of Motion

The coordinate system used to describe rocket motion is shown in Fig. 1. The forces on
the rocket are the thrust force of the engine, gravity, and aerodynamic forces. As in most ele-
mentary treatments [1-31, we assume initially that the atmosphere is stationary, so that aero-
dynamic forces on the rocket arise purely because of the rocket motion. Actually, the atmo-
sphere corotates with the earth to a first approximation, but for large launch vehicles this turns
out to have consequences of only secondary importance for rocket motion [3]. We do, how-
ever, include this as one of the rotating earth effects in Section 3. With the assumptiom of a
stationary atmosphere and an axially symmetric rocket in our inertial frame, the simplest case
of rocket motion will be planar and conveniently describable in circular coordinates (see. Fig.
1), because of the radial nature of the gravitational field and the spherical earth. The effects of
earth's rotation will be disregarded for now, but will be included in Section 3. Shown in Fig. 1
are the radius vector r from the center of the earth to the satellite, its associated altitude y, the
angular displacement from launch 0, which gives the ground range x when the radius of the
earth R is factored in, the flight path angle of the center of mass of the rocket tA with respect to
the local horizontal (or "heading"), and the angle of attack a of the rocket axis with respect to
the flight direction.

For a = 0 in Fig. 1 the only aerodynamic force on the symmetric rocket will be a drag
force opposite to the flight direction. If one defines drag D and lift L aerodynamic forces for
a • 0 as being antiparallel and perpendicular to the flight direction, it is found for small a that
L is linearly proportional to a and that the correction to D is approximately quadratic in a [2].
Unlike Ehricke [21 and Ruppe [3], Ball and Osborne [11 unconventionally refer drag and lift
direction to the rocket axis of symmetry (or "roll" axis). In Fig. 2 we indicate a force diagram
for the rocket and include a brief description of the symbols. We use the standard assumptions
found in many references [1-3]:

2
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VEHICLE CENTERLINE

FLIGHT DIRECTION (CENTER OF MASS)

LOCAL HORIZONTAL

Fig. I - Coordinate system for two-dimensional rocket motion

L

a

* - CENTER OF GRAVITY
O - CENTER OF PRESSURE
4 - FLIGHT PATH HEADING
a - ANGLE OF ATTACK
T - THRUST FORCE
11 - ANGLE OF THRUST
D - DRAG

L - LIFT
W - WEIGHT

, - VECTOR FROM CENTER OF GRAVITY
TO CENTER OF COMBUSTION

22 - VECTOR FROM CENTER OF GRAVITY
TO CENTER OF PRESSURE

Fig. 2 - Force diagram for the rocket with symbol legend

* the aerodynamic forces act through the center of pressure,

* the force of gravity acts through the center of gravity, and

* the thrust force is applied through the "center of combustion".

One may utilize the Lagrangian method in this problem, suitably generalized to include
the presence of nonconservative forces [4]. A brief review of this approach is included in
Appendix A. In Appendix B this method is applied to the present problem in finding the
Lagrangian L and generalized nonconservative forces.

3
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Lagrange's equations are found as

d OL _1 _Ldi ~~~- qj'dt a 4j a qj q

where qj = r, X, and a in turn. Their evaluation yields

- - rk 2+ K/r2= (L/M) cos t-(D/M) sin q + (T/M) sin (t + a+i), (2)

r+ 2 =-(LIM) sin 4-(D/M) cos 4 + (T/M) cos (6 + a + ,), and (3)
Ia = 12[L cos a + D sin a] -l T sin P3. (4)

In effect, Ball and Osborne [11 leave out the term r k2 in Eq. (2) and a term i in Eq.
(3) in their Eqs. (1-20) and (1-22). (Note that i, rO correspond to their I, x). Equations (2)
and (3) are the equations of motion for the radial and angular coordinates of the center of
mass, and Eq. (4) applies to the coordinate a for the internal motion (cf. Fig. 1). The center of
mass Eqs., (2) and (3), in which we are particularly interested, can be manipulated as follows.

We have for the velocity of the center of mass:

rk = v cos ip; i = v sin 0, (5)

so that

v2 - i2 + r2 ,2.

Differentiating this relationship and using equations (2), (3), and (5), we obtain

v= ? + r2 4 + r 42i

= r {r+2 - K/r2 + (LIM) cos 4-(DIM) sin 4, + (TIM) sin (4 + a + (3))

+ rk {- (2 - (LIM) sin 4,- (DIM) cos 4 + (TIM) cos (4 + a + 63)) + r42*

= v sin 0i- K/r2 + (LIM) cos 4, - (DIM) sin tp + (TIM) sin (tP + a + 13)1
+ v cos 4, (- (LIM) sin 4,- (DIM) cos 4, + (TIM) cos (4, + a + 13)1.

Combining terms, we have

v = - (Klr2 ) sin 4, - (DIM) + (TIM) cos (a + /3). (6)

This can also be written as

v = (TIM) cos P3 cos a - (DIM) - (Klr2) sin 4-(TIM) sin P3 sin a, (6')

and this is the form of Ehricke's Eq. (5-23) [2]. To obtain the equation for 4,, we differentiate
Eq. (5):

v cos 4, - v (sin tp)+ = h1 + ru.

Hence,

v )(sin ip)4 K sin 4,- -D + M cos (a + /3)] cos 4,-

4
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+ 2i4 + - sin 4, + M cos 4,- M cos (4 + a +,B).
M M 

Combining terms and using Eq. (5), we have

v4 [ K _ V 4, cos + + sin (a + s) + M7
= r2

-rj o M aAM, 7

This can be written as

vw = M cos (3 sin a + L + T sin (3 cos a-I 2 rJ _ Cos I, (7')

which corresponds to the form of Ehricke's Eq. (5-27) [2]. The derivation of Eqs. (6) and (7)
is very similar to Ruppe's procedure for obtaining his Eqs. (3.3) and (3.4) [3].

The first level of simplification, which is analyzed elsewhere [2,31, results from the fact
that for the large launch vehicles of interest here, 3 << a, so that the equations of motion
simplify to

v ~-(Klr2 ) sin 4, - (DIM) + (TIM) cos a and (8)

V4i [(Klr2) - (V2 r) I cos 4 + (LIM) + (TIM) sin a. (9)

Another great simplification results when one finds [2,3] that the increase of thrust at higher
altitudes is approximately cancelled by the drag effect in the calculation of cutoff conditions.
Small a is normally a requirement when aerodynamic forces are a factor (e.g., for first-stage
motion or altitudes less than 60 km). Under these conditions the lift can be written as in Ref.
2:

L = CL S pv2
/2 (OCLIWa) a S pv2/2, (10)

where S is a reference cross-sectional area of the vehicle, p is the atmospheric density, and
aCLIaa is a constant determined from wind-tunnel testing. Hence, at this level of
simplification,

v ~- -(Klr
2 ) sin 4, + (TIM) cos a (11)

and

IK v 21T &CL SPf1
Vow [ 2 |Cos q1 + ml a1 + 6 2T |sin a, (12)

one can do relatively simple calculations. Small a ascent is desirable from the standpoint of
launch efficiency, i.e., minimum fuel expenditure for accomplishing the mission [2,3]. Thrust
is considered to be a constant in Eqs. (11) and (12), with

T = M ve. (13)

5
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Here ve is the effective speed with which exhaust gases are ejected relative to the nozzle exit
aperture [3], and M is the rate at which exhaust mass is ejected. One simplified, approximate
procedure for equations (11) and (12) is to: (a) assume a programmed deflection function +p(t)
for the various launch vehicle stages, which results in correct orbit entry conditions at burnout,
(b) solve Eq. (11) by integration, and (c) compute angle of attack from (12). The last step in
this procedure is simply to check the assumption of reasonably small a used in obtaining Eqs.
(11) and (12). In this context a is given as the solution of

sin a = Mv, + M (Klr2 ) [1 - vr2 IK] cos 4 (14)
T {1 + (0CLI6a) Spv2/2T)

This equation turns out to be identical to the result derived by Ehricke (cf. his Eqs. (6-40), (6-
42), and (6-50)), except for the square-bracketed term in Eq. (14), which Ehricke refers to as a
centrifugal load factor [2]. He introduces this factor in an ad hoc fashion, and he apparently
incorrectly replaces v in this factor by v cos 0. Ehricke shows that for a large winged rocket
vehicle the term enclosed in braces in the denominator substantially reduces angle of attack a
beneath its vacuum value, particularly for the first stage of the launch vehicle [2].

Normally, a is small in first-stage motion when aerodynamic effects are important, but
can be fairly large in higher stage motion when aerodynamic forces are insignificant, depending
on required orbit injection conditions. The presence of the cos a term in Eq. (11) can thus be
important for higher stages.

Integration of the Equations of Motion

We follow Ehricke's notation [2] in integrating Eq. (11) for a particular stage of a multi-
stage rocket vehicle. We introduce t, as the burn duration of the stage and the normalized
time variable ( for that stage:

e = t/t . (15)

Here e varies between 0 and 1. During this time, mass varies as

M/MO = (MO-Mt)/Mo 1 - Mt = 1 -{A, (16)MO

where

A _MtIMO WpIWO (17)

is a parameter which is given as the weight of propellant for that stage divided by the initial
weight of the launch vehicle at that stage. If we assume small angles of attack, such that cos
a = 1, and normalize the vehicle speed to the exit speed of the exhaust gases, i.e., define

X = vlve, (18)

we find easily (cf. Eq. (6-24) in Ref. [2]) that

Av/ve = AX -X- = -In (1- A) - (A/no) (uo)e, (19)
where no is the thrust-to-weight ratio

no = TIMOg(R)= TIWO, (20)

where g(r) = K/r 2 is the acceleration of gravity, and

6
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-rg(r)
uq), -=Jo g(R) sin Add (21)

Here qj varies from its value at the beginning of the particular stage, which is the same as its
cutoff value at the end of the preceding stage (intermediate coasting can be included as a
separate stage), to its value at the particular time according to a well-defined prescription for

Q((). Ehricke uses a deflection program such that ip vanishes at ( = 0 and 1 and i = 0 at
( = 1 [2]. This is not necessarily optimum. The integration in Eq. (21) is performed by a sim-
ple numerical method, and so x(() in Eq. (19) is determined at the particular ( mesh points
selected for the numerical integration. Ruppe [3] gives a procedure for obtaining analytic
results. Then from Fig. 1 and Eq. (5), altitude and ground range are determined from

Y -o = vet1t x sin Aidd

R
X-X0= Veti f X Cos R +y df = R (O- o). (22)

From Eq. (14), the angle of attack is found from

R- v1- K -| A Cos pi + X (1 - (hi) dep
sin a = [ (23)

11+ PCL SPJ2
8a 2 T

The initial parameters XO, xo, and y, for the particular stage in question are the same as the
cutoff values for the preceding stage. For the very first stage xo = yo = 0, and we would use
XO = 0 in our calculations. We should reiterate, however, that earth's rotation effects have not
been included. Fortunately, the additional complications caused by their inclusion do not
present unsurmountable problems, as we will attempt to demonstrate in the next section.

3. INCLUSION OF EARTH'S ROTATION

The preceding equations would be valid in an inertial frame of reference if all effects of a
rotating earth could be excluded. One effect of a rotating earth is to impart an initial velocity to
the rocket at launch. If this were the only effect, this velocity could be simply vectorially added
to the velocities found in the preceding section and integrated to give a correction to altitude
and ground coordinates. There is another effect, however; the earth's atmosphere corotates
with the earth to a first approximation (disregarding the ordinary winds experienced by an earth
observer). If the atmosphere were stationary in an inertial reference frame, an earth observer
would be subjected to constant wind speed of 903 cos L knots, where L is the terrestrial latitude
of the observer. This suggests that an exact solution of the rocket problem might profitably be
carried out in a frame of reference which rotates with the earth, at least while aerodynamic
effects are important. This is the basis of an approximation suggested by Ruppe [3]. For the
sake of this discussion, we suppose that the first stage of our multistage rocket vehicle
corresponds to the period of rocket flight when aerodynamic effects are important. Ruppe sug-
gests [3] that the equations of motion should be solved in the rotating reference frame (in
which the atmosphere is stationary) for the first stage, that the results should be transformed
back to the inertial frame of reference, and subsequent stages treated in the inertial frame,
since aerodynamic effects are unimportant for the higher stages. The transformation from the
rotating reference frame back to the inertial reference frame after cutoff of the first stage gives

7
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AvI - AVRI + v0, (24)

where Av1 is the rocket velocity in the inertial frame after cutoff of stage 1, and AVRI is the
same velocity determined in the rotating reference frame. From the general theory of such
transformations (see, e.g., Ref. 5)

VO 5 WE X r I ERt1 + I cos LoE= v E, (25)

where r1 is the radius vector to the satellite, and yi its altitude after cutoff of the first stage.
The approximation indicated in Eq. (25) is associated with a "flat earth" approximation for the
first-stage motion in which the curvature of the earth is disregarded, so that Lo is the latitude of
the launch point, and E is a unit vector in the easterly direction at the time and place of launch.
This approximation, which is discussed later, is very often valid for first-stage motion, and for
the modest altitudes attained, one sees that vo is approximately the velocity imparted to the
rocket at its launch point by earth's rotation in an inertial frame. The magnitude of w ER is [51
465 m/s (1524 ft/s) - 903 knots. The true inertial velocity during the kth stage is given by

V(t I+ t2 + *-- + ftk) = VO +AVRl+ AV2 + + (AVk) VO + V'. (26)

Here AvjQ > 1) is the velocity increment of the j th stage (computed as in the previous sec-
tion), and (Av k) 6 is the velocity increment in the kth stage. The entity tj is the burn duration
time for the j th stage, and f is the reduced time variable which varies between 0 and 1 (cf. Eq.
(15)). We shall find AVRI later and justify that it and v' in Eq. (34) are approximately coplanar,
just as in the previous section. But for now, we simply assume this fact and proceed to carry
out the vector addition of vo and v' in Eq. (26). We do this with the help of Fig. 3, which
shows the planar motion represented by v' and the vector vo drawn from the launch point in an
easterly direction. The orientation of the plane of v' is specified by the azimuth angle a, meas-
ured from north (N) to east (E) at the launch point. The vector v is specified by its magnitude
v' and by its direction, which can be deternwined from a0, the heading t,', and the ground range
angle q', all of which are indicated in Fig. 3. To facilitate the vector addition, we break vo into
a component vol perpendicular to the plane of v' and a component vol I in this plane. Evi-
dently,

v= vo cos a, and vo0 I I v, sin ao. (27)

Hence, v can be specified as the sum of three perpendicular component vectors (shown in Fig.
4),

V = V, + Vh + Vol, (28)

where v, is parallel to the radius vector from the center of the earth to the rocket, and Vh is
perpendicular to it, but in the plane of v'. From the geometry in Fig. 4 it follows that

Vh = V' COS V + Vol ICOS ',

VV = v' sin tk' + vol I sin +', (29)

and

V = [V2 + V2 + Vo21 1 /2.

The true heading qi with respect to the local horizontal is given by

sin P = vv/v. (30)

8
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EQUATOR

Fig. 3 - Vector orientations for inclusion of earth's rotation effects
in a flat earth approximation for first stage (see test)

VO I

HORIZONTAL PLANE

Fig. 4 - Vector diagram for inclusion of earth's rotation in a
flat earth approximation for first stage

In order to find the azimuth angle a for the vehicle flight path projection, we need to make use
of spherical trigonometry formulae. If we disregard the effect of initial velocity from earth's
rotation, we can relate the entities in Fig. 5 by the use of the laws of cosines and sines:

sin L' = sin Lo cos k' + cos Lo cos a, sin 4'

sin a' = sin a, cos L0/cos L'

sin(I' - l) = sin a. sin 0'/cos L'. (31)

These account for the variations of latitude, azimuth angle, and longitude, respectively, in the
plane of v' [3]. Now from Fig. 6,

vh sin a' + v0 _ cos a' vh tan a + vOItan a = hc a-vIia V__tn'
vh cos a' -v 01 sin a' vh - v 0 tan a' (32)

9
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Fig. 5 - Flight path projection of two-
dimensional rocket motion on a nonrotating earth

N

vv,/

l RI---

Fig. 6 - Vector diagram for azimuth angle determination
taking into account earth's rotation

We thus have completed the vector addition of Eq. (26). With the knowledge of v, tP, and a,
we can determine the actual position of the space vehicle in an inertial coordinate system. We
can describe these position coordinates as the altitude of the space vehicle plus the latitude and
longitude of its flight projection on the surface of the earth in an inertial geocentric-equatorial
coordinate system [5]. (In this system the latitude-longitude grid is fixed in space.) With

(33)X v/ve,

we have

y -O = vetl J. x sin P d{'

L - L= vt f XCos cos a d'

10
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I-10 = vet, f cos sin a d{' (34)

for the changes in altitude, latitude, and longitude during a particular burn stage of the rocket
vehicle. The parameters in the above integrals are evaluated for values of 6' between 0 and (,
where ( = 0 is associated with cutoff of the preceding stage, and I = 1 is associated with
cutoff of the present stage.

The preceding expressions, particularly those which invoke the approximation in Eq. (25),
can be considered valid in a flat earth approximation for the first stage-the period of rocket
ascent when aerodynamic effects are significant. This approximation for any part of rocket
motion can be considered valid, for example, when O' can be disregarded, as in Eqs. (29) and
(31). We note, for example, that a ground range of 500 n.mi. corresponds to 4' - 8.30. For
this value sin f' is only about 1/7 the value of cos O' = 0.99, so that sin /' = 0 and cos O' =
1 is an adequate approximation, particularly for the significant portion of rocket trajectory when
v >> v. Hence, as long as the first-stage motion covers a ground range of 500 n.mi. or less,
or k' < 10°, we have a sufficient condition for the validity of the flat earth approximation for
the first stage. This condition is very often satisfied by first-stage motion, although in our equa-
tions it does not have to be satisfied by higher stages of a multistage rocket.

It is possible to go beyond the flat earth approximation for the first stage, and we already
have done so in the statement of Eq. (25). The initial problem of using v 0 = WE X r, is that
we don't know r1 ahead of time, since it is determined as a subsequent step based on the velo-
city determination. We have exploited a flat earth approximation to substitute for r, a vector
from the center of the earth through the launch point. This allowed us to determine
v = v, + v', where v' was computed without the effects of a rotating earth. This itself is only
an approximation for the contribution AVRt to v', although we shall see later that it is quite a
good one. With v(t) determined, r(t) followed from Eqs. (27) through (34). Next, one may
choose to investigate the earth's curvature effect for the first stage by substituting r, from this
determination into v, = cE x r, as the start of another iteration. The vector rt will be
specified by the inertial coordinates yl, LI, and 11. From then on, the computations of Eqs.
(26) through (34) are repeated, with some modifications, in this new iteration. The
modifications are necessitated by the new orientation of the vector v. The true flight path, at
least the one determined from the calculation which preceded the new iteration, is shown in
Fig. 7 along with other data which will be used to determine the aforementioned modifications.
Also shown is the flight path for v'. The easterly direction at (LU, 11) is the same as that at
(L, 11). We will use the given information about the spherical triangle ABC in Fig. 7
(namely, the two angles it - 4, and a, and included side ir/2 - L) to determine azimuth angle
al and 4 , which is the angular distance in the plane of v' associated with the first stage. These
calculations will specify the orientation of v0 . From standard spherical trigonometry formulae
[1], we have

cot| 2 - LI sin[ 2 -LOJ = cosI| - LO] cos(/t - ',) + sin(1, - 4,) cot a,

or

tan Li = (cos L,)-l [sin Lo cos(l - 1) + cot a, sin(l-lo)t (35)

which determines LI; then
sin 01 = sin(/, -l) cos Li /sin a, (36)
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Fig. 7 - Flight path projection on nonrotation latitude-longitude grid. The
diagram makes possible the inclusion of earth's rotation and earth's curvature
for the first stage.

determines Oj. Azimuth angle a, is found from Eq. (31):

sin at = sin a, cos L0/cos Li. (37)

Now the modifications of Eqs. (27) through (34) consist of the following:

v = v, cos a 1 and void = v, sin at- (38)

which replaces Eq. (27) -

Vh = V COS .'A + V,11 COS(O' - Oi),

v, = v sin q' + vo11 sin(1' -0),

and

v = Iv^ + vI + v ]11/2 , (39)

which is used instead of Eq. (29); the other equations are unchanged. The new iteration will
result in new velocities and positions, which may be made the basis of another iteration, if it is
necessary to satisfy convergence criteria.

12
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It remains now to specify AVRI in Eq. (26). It is well known (e.g., see Ref. 5) that
transformation from an inertial to the rotating frame of reference is accompanied by the addi-
tion of effective Coriolis and centrifugal forces in the equations of motion; i.e. [5],

dvR/dt = dvF/dt - 2 W E X VR !) E X (W E x r),

where the subscripts R and F refer to rotating and inertial frames, respectively. When
expressed in rotating frame coordinates, the aerodynamic forces associated with the first term
on the right properly depend only on rocket motion. The latter two terms are Coriolis and cen-
trifugal terms. We estimate in Appendix C how large the velocity contributions from the vari-
ous forces might typically be for a large rocket vehicle at cutoff of the first stage [1-3]. In order
of decreasing values, we find AVT: AvG: v0 : AVD: AvCor: AVce.. = 1000: 300: 150: 50: 10: 1.5,
where we list, in order, effects of thrust, gravity, initial velocity from earth's rotation, drag
(which is approximately cancelled by thrust increase due to ambient pressure decrease [2,3]),
Coriolis force, and centrifugal force. These estimates indicate the conclusion that the principal
effect of a rotating earth is to add in the velocity v, as prescribed in Eqs. (25) and (26) and dis-
cussed subsequent to these equations. The Coriolis and centrifugal contributions appear to be
very small, so that AVRI could be approximated quite well by the approach of Section 2, which
disregards the effects of a rotating earth and atmosphere.

The preceding results notwithstanding, one may wish to improve the specification of
AVRI, particularly if computational simplicity can be preserved. The accuracy can be improved
if we include only the component of velocity effect from Coriolis and centrifugal forces in the
particular plane of motion which is associated with the disregard of rotational effects. To illus-
trate the mathematical point that this is a good approximation for the small correction from
Coriolis and centrifugal terms, let us consider what happens in Eqs. (29) and (30) when 0' 0
and v, << v'. In Eq. (29) we have

V = [v'2 + 2v'v011 COS I' + VL2]1/2 _v'ti + cos ' + o[ 12J,

and in Eq. (29) sin ip v'sin tf'/v. In these equations only the component vo0 i enters in first
order for v and ip. The only first order correction involving voI t!a' can be found is in the
determination of a in Eq. (32), and this is not important. Hence, allong with Ruppe [3], we
transform to the rotating frame coordinates in Eqs. (2) and (3) by settiri,,

= OR + f
where

to = WE cos LO sin a,

When Eq. (40) is substituted into Eqs. (2) and (3), and the steps which led to Eqs. (6) and (7)
are redone, it is found that

VR = -[ -2 r+oo sin qi - M + M cos(a + p) (41)

12 V 21CO +
VR K-[R2 -r~o2-- cos p + - sin(a + (3) + M + 2vR 00, (42)

where

VR (AVRI) f

13
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The symbol (AVRI)f has been defined in connection with Eq. (26). One now sees additional
Coriolis and centrifugal terms in the equation of motion. In the same way that Eqs. (11) and
(12) were obtained, one finds

VR ~-I2 rO2| sin 'p + M cos a (43)
1R

2
- 1 

VR { _ 2 - COS + M I + p SPV| sin a + 2 VRcO. (44)
r2 0 r I M I Oa 2TI

In terms of a programmed deflection function +p(t), one obtains the angle of attack a
from

; MVR(P - 240) + M(K/r2) [1 - V2r/K - r34 2/K] cos t(5sin aSV2
T (1 + (OCL/aa) SPVR/2T)

The solution for VR is found as in Eq. (19). It is

X -VyR/Ve = X1 - In (1 - (A) - (A/no) (4), (46)

where e and A are given by Eqs. (15) and (17), respectively, and

n, = T/MOg' (R) = T W0 * (47)

Here,

g'(r) = K/r 2 - r 12= g(r) - r 02 (48)

is an "apparent" acceleration of gravity and

=J g'(R) sin 'p d{'. (49)

As indicated previously, the centrifugal correction to gravity is only a few tenths of a percent.
For the first stage Xo = 0 and, from Eq. (39), we should include the initial condition

+ (0) = 2io (first stage) (50)

in our programmed deflection function. This is similar to the conclusion reached by Ruppe [3].
Since WE = 7.292 x 10-5 rad/s, it is seen that '(0) in Eq. (50) is of the order of 5 x 10-3
deg/s, which corresponds to 1° in 200 s. Similarly, R 42 is on the order of 10-2 m/s2 . These
are evidently very small corrections, in accordance with our previous estimates, so that AvRI in
Eq. (24) and v' in Eq. (26) could be computed to a good first approximation as if there were no
earth's rotation effects.

The computational procedure for relatively simple analyses of powered rocket ascent is
now clear; it may be summarized as follows. The most significant part of the rocket trajectory
is assumed to be above the atmosphere and associated with second and higher stages, with
v0 << v', so that for any qualitative analysis one may ignore earth's rotation effects. For this
purpose, one uses: (a) a programmed deflection function 'p(t) [2,31; (b) a thrust given by Eq.
(13) with correctly chosen exhaust velocity Ve [3,6], (c) Eqs. (15) through (22) for the velo-
city, altitude, and ground range of the rocket in all stages, where r = R is an expedient approxi-
mation for low altitude rocket flights and analytic results [3]; (d) Eq. (23) for checks on the
smallness of the angle of attack; and (e) Eq. (31) for the determination of earth's curvature

14
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effects in the computation of latitude, azimuth angle, and longitude of the rocket flight path

projection on the surface of a nonrotating earth (hence, an inertial latitude-longitude grid). If

the conditions warrant a flat earth approximation, as determined by the ground range calcula-

tion (e.g., if O' < 10 1, then step (e) can be dispensed with. Also, if the approximation r = R

has been made in step (c), one may improve these results by starting with them in another

iteration of step (c) without the approximation.

If one wishes to improve quantitative accuracy by taking earth's rotation effects into

account, he should find the following summary useful. One could start with the results in the

preceding paragraph and simply add in v0 to the previous velocities v as in Eq's. (25) and (26),

where r, was determined in the previous results. Actually, to be consistent, one should

redetermine the first-stage results of the preceding paragraph with the use of Eqs. (45) through

(50). There probably will be no appreciable differences from the previous first-stage results

obtained without regard for earth's rotation effects, but the results should at least be checked.

If a flat earth approximation is valid for the first stage, one computes component and total

speeds from Eqs. (27) and (29) with the approximation in Eq. (25), heading ' from Eq. (30),

and azimuth angle a from Eq. (32). The primed entities in these equations are known at this

point, having already been computed. The altitude and flight path projection are computed,

presumably through numerical integration, in Eq. (34). If a flat earth aproximation is not valid

for the first stage, one computes component and total speeds from Eqs. (38) and (39), where

a is substituted for at (primed entities are known). Heading, azimuth angle, altitude, and

flight path projection are again determined from Eqs. (30), (32), and (34). These results can

then be used as the start of another iteration for obtaining greater accuracy in the inclusion of

earth's rotation effects when the flat earth approximation for the first stage is not sufficiently

accurate. The description of this iteration procedure is included in the paragraph which

includes Eqs. (35) through (39). It is expected that no more than one iteration would be

required. Even one iteration might not be worthwhile in view of the basic approximations we

have made regarding thrust and aerodynamic effects. The computations are greatly simplified if

a flat earth approximation can be made for the total powered rocket trajectory. All that would

be required for a complete specification of orbit injection conditions (described in the next sec-

tion) is the altitude calculation from the preceding paragraph, with possible alterations which

might arise from Eqs. (46) through (50) for the first stage and simple vector addition of veloci-
ties, as in Eqs. (25) and (26). One could start the other way around, however, with desired

orbit injection conditions (v, tp, and a) and obtain the launch profile conditions (v', 'p', as)

needed to obtain them; here V and 'p are rocket burnout parameters. This method is explained

in Appendix D.

Finally, if one wants complete quantitative accuracy regarding all the effects we have

mentioned-or if one has sufficient information about aerodynamic effects and other factors of

the system, such as drag and lift coefficients, a model atmosphere, thrust variability, etc., and

wants to include these effects in his analysis-he may achieve this in a full numerical solution
to the problem. The discussion of Kooy [6] is particularly helpful in this regard. Rocket velo-
city and coordinates can be straightforwardly obtained by Kooy's procedure [6] in a geocentric
equatorial coordinate system by a Runge-Kutta integration method. The conversion of these

results to latitude, longitude, azimuth, altitude, and heading variations is simple, and is dis-

cussed in the next section. Kooy's method appears to be quite feasible, as well as accurate,

with the use of modern computers.
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4. ORBIT TRAJECTORY FROM INJECTION
CONDITIONS AT ROCKET BURNOUT

At the end of powered rocket ascent (i.e., "burnout") the payload is assumed to enter an
elliptical orbit above the earth's atmosphere in the spherical gravitational field of the earth.
This satellite motion thus satisfies (in an inertial frame)

r + (K/r3) r = 0, (51)

where K = 1.407645 x 1016 21 - 6.275 x 104 (n mi.) 3 is the same parameter as used pre-
sec 2 sec2

viously (see, e.g., Eq. (2)). The small corrections in the equation of motion due to the oblate
earth, aerodynamic drag, etc., can be handled by the techniques of perturbation theory [11, but
will not be included in the present report. Dotting Eq. (51) with i and integrating with respect
to time, one obtains an energy constant of the motion

E = v2/2 - K/r. (52)

Similarly, vector multiplying Eq. (51) by r and integrating with respect to time, one obtains an
angular momentum constant of the motion:

h = r xi. (53)

Hence, the motion is planar. Now if one vector multiplies Eq. (51) by h and integrates it with
respect to time, one finds [1,5]

r x h = K r + eJ. (54)

where e is a vector integration constant. If we define 0 as the angle between e and r, the dot
product of this equation with r yields the orbit equation [1,3]

- = -(1 + e cos 0), where e= (55)

is the eccentricity of the orbit. Fig. 8a shows the elliptical orbit circumscribed about the earth
centered at one of the foci, and Fig. 8b shows an associated vector diagram. Also shown are
several parameters used in discussing the ellipse and the motion of the satellite. The parame-
ters rp, r0, 1, and a are the perigee, apogee, latus rectum, and semimajor axis lengths, respec-
tively; their values can be derived from Eq. (55). The angle 0 is measured from the perigee
vector (in the direction of e), as shown in Fig. 8b, and the velocity and heading of the satellite
are shown in a manner consistent with their previous use in this report. From the relation

dr_ =-h (1/r) = v sin tP (56)
dt dO

and Eq. (55), one obtains [1]

e sin 0 = (rv 2 /K) sin 'p cos qp

e cos 0 = (rv 2 /K) cos2 'p - 1. (57)

These are useful relations for many purposes, but we use them here for an unambiguous deter-
mination of the injection angle 0, and eccentricity e in terms of the injection conditions r,, v;,
and 'p, at burnout. The motion of the satellite in orbit is thus determined from injection condi-
tions, Eq. (55), in which
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2a

Fig. 8- (a) The elliptical satellite orbit

4 V

I 
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Fig. 8 - (b) Associated vector diagram

E - v7/2 - Kr, and h = r, v, Cos B'p, (58)

and the expression for the time tp(0) it takes a satellite to travel within one revolution from
perigee to the angle 0. This is [11

t, () la3 jt1 2 tan-' II -e 2 tan 0 I e(1-e 2 )1/2 sin 0 (59)
K~O I -- I~ an( + e I 2 i + e cos o 59

Hence, for example, the time it takes to travel from O, to 0 is

t(o, - 0) = t (o) - tp (0). (60)

The only other thing we need to know is the orientation of the ellipse with respect to the
earth in an inertial coordinate system. This can be specified from the vector directions of h and
e, which are determined from injection conditions. Hence

h = ri x vi, (61)

and from Eq. (52)

e= K Vi x h-- = K vi K - (rI ,v) vi (62)
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The inertial coordinate system, which we have previously mentioned, is the geocentric-
equatorial system [1,5] in which a latitude-longitude grid is superimposed upon the surface of
the earth, but, unlike the conventional latitude-longitude grid which rotates with the earth, this
grid is fixed in space and coincides with the conventional grid at the time of launch of the
rocket from the earth. The latitude and longitude changes in Eqs. (31) and (34) are under-
stood to be relative to this space-fixed latitude-longitude grid. A picture of satellite motion in
the geocentric-equatorial system is shown in Fig. 9. The Cartesian coordinate directions I, J. K
(unit vectors) form a right-handed set, with K pointing north (perpendicular to the equatorial
plane) and I pointing in the vernal equinox direction of the sun. A vector V has Cartesian
components (Vi, Vy, VJ) in this system or components ( Vr, Ve, V,') in the associated spheri-
cal coordinate system. This vector can also be represented in circular perifocal [5] coordinates
associated with the orbital plane (see Fig. 8) as ( V, V0 , VJ), where 2 is in the direction of h.
The transformation between the latter two coordinate systems is

r= r (63)
0 = - cos a 0 + sin a .

2 = P x = - sin a 6 - cos a 4,

where a symbol with a caret denotes a unit vector in the direction indicated. Here angle a in
Fig. 9 is the azimuth angle of satellite motion, as described previously. The angle 0: is the co-
latitude of satellite motion; i.e., in terms of latitude L

0 = r/2 - L, (64)

where L > 0 in the northern hemisphere and L < 0 in the southern hemisphere. To com-
plete the transformation to Cartesian coordinate axes I, J, K, we use the expression for the
azimuthal angle 4)

4' = z'g (0) + 1, (65)

where 4 ) g (0) is the azimuth of the Greenwich meridian at the time of rocket launch. The long-
itude of the satellite I is positive if it is east of the Greenwich meridian, negative if west. Now
from simple trigonometry,

A
K (NORTH)

a n X SATELLITE

, \ /%1 o K ~~PERIGEE

LINE OF NODES
A
n

Fig. 9 - Satellite motion in the geocentric-equatorial
coordinate system
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; = cos L cos 41 + cos L sin 4) J + sin L k

= sin L cos 4I + sin L sin 4) J - cos L K

) = -sin 4) + cos 4) . (66)

This completes the orthogonal transformations between the above coordinate systems. Hence,
for example, from Eq. (63)

z = [- sin a sin L cos 4) + cos a sin )] I

+ [-sin a sin L 4)-cos a cos)] .1 (67)

+ sin a cos L k,

which can be calculated from the orbit injection conditions for a, L, and 1.

Also shown in Fig. 9 are other angles used to describe the orientation of the ellipse in the
geocentric equatorial system. These are the inclination i, the longitude of the ascending node
fQ, and the argument of perigee 3. The inclination angle is the angle between K and h, found
from Eqs. (63) and (64) to be

cos i = 2K =-sin a (5 0K = sin a cos L. (68)

In general, 0 ( i < ir radians, but this equation restricts inclination angles to the range
ILI < i < 7r -ILI, depending on a. For inclinations 0 < i < ^r/2, we have generally east-
erly motion, or so called "direct" orbits [5]. For 7r/2 < i < 7r, we have "retrograde" orbits [5].
If we define the line of nodes as a line from the center of the earth through the point of cross-
ing of the satellite through the equatorial plane, and if the unit vector h has this direction, then

h (k x 2)! sin i

= -- -[ cos L cos a P + sin L cos a -sin L sin a $]. (69)
sin

This can be evaluated from orbit injection conditions.

Before we can finish the specification of fl and (3, we shall need to calculate e from Eq.
(62):

e =K v x h -P =|K Cos tA-1 I^ I P-K sin tp 0

vK cos to - I P + K sin 'P [cos a )-sin a '], (70)

which can be evaluated from orbit injection conditions. For fl one obtains

cos l = hI = (sin i)-' i (K x 2) = - (sin i)' 2 J

[sin a sin L sin 4) + cos a cos 4)], (71a)
smn i

where 0 < Q < 21r rad in general, but

Q < 7r ifn J > 0,
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or its equivalent, if

2 .I > 0.

Hence, from Eq. (67)

fI < ir if-sin a sin L cos 4) + cos a sin 4 > 0. (71b)

One also obtains from Eqs. (69) and (70)

cos (3 - e- 1 e

= cos L cos a | Cos i + sin L K sinA (72a)

where 0 < /3 < 27r in general, but if e K > 0, (3 < ir, i.e.,

(3 < or if | K cos I-1] sin L - K sin ' cos a cos L > 0. (72b)

All the entities in Eqs. (68) through (72) are calculable from known orbit injection conditions,
and the specification of the elliptical orbit is complete. For simplicity, one might choose to set
4Dg (0) = 0 and 4) = I in the preceding expressions, which amounts to a redefinition of the I
and J directions.

5. VEHICLE FLIGHT SEEN BY INERTIAL
AND EARTH OBSERVERS

In Sections 2 and 3 the functions for the inertial frame, L (t), I(t),
y(t), a(t), v(t), and + (t), were specified for rocket flight. In Section 4 additional informa-
tion was derived to specify these entities for the orbital flight. We shall specify the first three
of these along with the counterpart functions LR(t), 'R(t), and YR(t) which describe what the
earth observer sees.

It is very simple to deal with the period of powered rocket ascent, i.e., the time frame
0 < t < ti, where t, is the time after launch to burnout or orbit injection. In Section 3 we
have discussed the computation of altitude, latitude, and longitude in an inertial frame, i.e.,
y(t), L (t), and 1(t), respectively, during this time period; the solution for yR (t) and LR (t) is
thus also found, since

YR (t) = y(t), LR (t) = L (t). (73)

The function IR (t) is simply found from

IR (t) =1(t) - WEt, (74)
where

WE = 7.292 x 10-5 rad/s = 15.04 deg/h; (75)

see Eq. (35) and [1.5].

For the time frame t > t,, the satellite is in the elliptical orbit trajectory discussed in the
preceding section. The angle 0 in Fig. 9 is increasing in the direction of motion of the satellite,
by definition, so a computational procedure is to pick a set of increasing 0 values, starting with

20



NRL REPORT 8237

O0 determined from Eq. (57) and orbit injection conditions, and to determine an associated set

of times from Eqs. (59) and (60), starting with t = t,. From spherical trigonometry formulae

on the right spherical triangle ABC in Fig. 9, the law of sines determines latitude L (t) = LR (t)

at these times from

sin L (t) = sin i sin [A + 0(t)], (76)

where 0(t) is given, and (3 and i have previously been computed from orbit injecton conditions

by Eqs. (68) and (72). A cotangent formula [1] determines 1(t) at these times from

tan [I(t) + 4)g(0) - fl] = tan [(3 + 0(t)] cos i, (77)

where il is determined from injection conditions by Eq. (71), and R (t) is given by Eq. (72).

Finally, altitude y(t) is determined from the known orbit in Eq. (53) by the formula

y (t) = YR (t) = r [0(t) - R (t), (78)

where R (t) is the radius of the earth, which can be taken as approximately constant, and

r [0(t)] for the orbit is given by Eq. (55).

6. DISCUSSION

In Sections 2 and 3 this report develops the equations required for an analysis of powered

rocket trajectory. Most of the effort has been concentrated on the approximations which permit

the simpler analysis techniques; the approach to the more complex, completely quantitative

numerical methods, however, has at least been indicated. The computational procedures for

various levels of simplicity and approximation are delineated by summary discussions near the

end of Section 3. The investigator can thus choose the procedure which fits his needs. It was

recognized that a radial gravitational field introduces centrifugal terms in an inertial frame,

terms which are omitted from some literature sources or given incorrectly. A systematic pro-

cedure for taking earth's rotation effects (including atmosphere corotation) into account was

also described, a subject often treated incompletely in the literature. Perhaps the most

significant contribution of this report is the treatment of earth's curvature effects and how the

earth's rotation effects are integrated with it in the simpler analyses of powered rocket trajec-

tory. The literature treatments of approximate analyses of powered rocket trajectory, at least

those seen by the author, stay within the confines of the flat-earth approximation; this approxi-

mation is discussed in Section 3. The full numerical solution of the rocket problem [6] does

typically include earth's curvature effects.

One of the major approximations of simpler analysis techniques of powered rocket trajec-

tory is the cancellation of drag and thrust increase effects. This approximation appears to be

quite good for many rockets [2,3], i.e., within 2% for strategic choice of the constant thrust

value for each stage [3]. For large rockets, however, the thrust increase effect is expected to

more than counterbalance the drag effect, so that one may wish to include these effects expli-

citly for greater quantitative accuracy. The simplification from constant thrust is then lost from

the analysis, but it is eliminated anyway when angles of attack become large, as they frequently

do in higher stage motion. One may then wish to solve equations (8) and (9) in Section 2, or

equations (10) and (11), by numerical integration (e.g., by the Runge-Kutta method). Infor-

mation about thrust increase and aerodynamic effects is included in Appendix E. For somewhat

greater understanding and control of the launch trajectory, one may wish to assume a profile

a(t) for the angle of attack and solve for the flight path heading 'p and for speed in the course

of the numerical interaction, a job suited for a computer. Previously, we had suggested, for

simplicity, an assumed +p(t) profile in the calculations.
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Section 4 relates the rocket burnout parameters obtained in Sections 2 and 3 to the
specification of the elliptical orbit subsequently traversed by the payload and to the point on this
orbit where it is injected. The equations are developed somewhat more clearly and completely
than usual here, and it is hoped that the orbit determination part of the trajectory analysis is
thus facilitated.

In Section 5 the trajectory coordinates of the powered rocket ascent and orbital flight are
determined as the altitude and the latitude and longitude of the flight projection on the earth's
surface as a function of time after launch. Two cases are considered: (1) the trajectory as seen
by a heavenly, inertial observer on a space-fixed latitude-longitude grid on the earth, and (2)
the more important case of the common earth-fixed observer who rotates underneath the orbit
and sees the rocket and payload from a different perspective. Actually, the first case is just
obtained as an intermediate step to the determination of the second case.

There are other perturbations which have not been considered in this report, such as the
effect of the oblate earth, variations in aerodynamic forces, solar radiation pressure, etc. [1]
Some of these effects alter the long term orbital motion of satellites, which is of no particular
consequence for many simple analyses or for this report, which concerns itself with powered
rocket ascent and short-term orbit motion. Variable winds on the rocket are assumed to be
corrected for in flight as part of the vehicle steering control.
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Appendix A
LAGRANGIAN METHOD, INCLUDING THE PRESENCE OF

NONCONSERVATIVE FORCES

A system of particles is effectively in equilibrium under the influence of all applied and

inertial forces.' The applied forces may be further classified as conservative (derivable as the
negative gradient of a scalar potential) or nonconservative. We may define the forces as fol-
lows:

Fi = a- i Conservative force on i'th particle
axi

F;: Nonconservative force on i'th particle

-mixi: Inertial force on i'th particle. (Al)

Newton's equation of motion is

Fi + F,- mixi =0, (A2)

here restated as particle equilibrium under all three kinds of forces. Since each particle is in

effective equilibrium, an arbitrary, infinitesimal, virtual displacement of all the particles will
involve no work. This is known as d'Alembert's principle of virtual displacements. Hence

J(Fi + Fj - m,) . 8xi = 0. (A3)
i

Because of constraints in the problem (e.g., boundaries, rigid body constraints of the particles,
etc.), particle motion will depend on a smaller set of coordinates (e.g., angles of rotation, the
center of mass coordinates, etc.), which are referred to [4] as independent generalized coordi-
nates q . [, qf. Hence,

xi = xi(qj, q2 qf), (A4)

8x1 = X [&xi/aqi] 8qj. (A5)
I

Therefore,

ii= ii(q ., qf; q 1, ... 4f). (A6)

One obtains

MI, ix 8 Xi IXmiki ax i q.1d xax

=I miJ7 - | 'a |-Xi dta 8 qj

= S E mjf~~8q dt [X 6|X dq.dqk

t~q

Mi d(t - x

- Xm 7- ai,.-1 k, 0q. aqk
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dt a 4j 2 * a qj aqk 

l:I- 2 mtix9 |- Emi~i9Jsk i.Sakq
sd a 1 M,~,2 - 8z2mx2 qj.

It is also true that

Fj 8i - U'8i dj j)8q
SF, ,xjS-axi i 8jj i

and

V F; *x, = 8x F' * ax' qj.

Hence, if we include the kinetic energies and conservative forces in the Lagrangian L as

( )= X,|~~~12m~2-j j | (A7)

where ii is determined by differentiating Eq. (A4), then Eq. (A3) can be written as

,I[dt aL - a - Fq , qj = 0, (A8)

where

Fq, =IS F'i * a i, (A9)

defines the generalized nonconservative force associated with the coordinate qj. Since the qj
coordinates are independent and the displacements 8qj are arbitrary, each of the square brackets
in Eq. (A8) vanishes, and we therefore obtain Lagrange's equations suitably generalized to
include nonconservative forces.
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DERIVATION OF THE LAGRANGIAN AND GENERALIZED FORCES
FOR THE ROCKET PROBLEM

The coordinate variables which can vary independently in the problem are the coordinates
(r, q) of the center of mass and the angle of attack a. Now

xi = r + pi, (Bi)
where r is the radius vector to the center of mass and __i is the vector displacement from the
center of mass to the i th particle mass element in the rocket. The kinetic energy T is given by

T = I E~mj (r+ i)2= 1 Mr2 + 1 Mi 2 + ML Em'I

but since I mi p i = 0 by definition of the center of mass, the last term vanishes. Conse-

quently, we have the familiar separation of center of mass motion from internal motion. Now
1 ~~2 1 y 1

Mi = m[,p j2 mi Ejk k (Pi)l Ejmn &m(Pi)nm2 p 2 m[&xp.1a 

- S 2 mi(8km fin - 8kn 8im) &k am (pi), (pi),
2

- 2 X, mfMi [k ak Pil Pil - 6k a Pil ik]

2- -

=-'I a" where I = milp I2 -p P ]

In this case of planar motion, where & = &i (z direction normal to plane), I = I mip7.

Hence,

T=- 2 M( 2 +r242) + I 1X2 (B2)
2 2

The only conservative force in the problem is gravity, which can be related to a potential:

m1=- nK . mK . MKFi r,2 ri ~ - -2 r = , U= _-M

Hence, the appropriate Lagrangian which includes conservative forces, is

L = 1 M(r2 + r2,2) + 1 I&2 + MK (see Eq. (A7)). (B3)
2 2 r

The nonconservative forces are distributed over the mass elements:

L= ELi, D= EDi, T= ITi.
i ~ ~ ~ ~~ ii
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From Fig. 2:

F. = £(Li + Di + Tj) ' aa (r + p) = (L + D + T) r
Or

= L cos i - D sin qi + T sin6p + a + j3). (B4)

Similarly,

Fx = +(L+Di+ Tj) (r+ ) = (L+D+T) r

=-L sin tP - D cos tP + T cos(tp + a + ) r. (BS)

Finally,

Fet = 7(Lj + Kj + Tj) * ± (r +y )
i ~~~aa

8yji= 2 sin 8a/2 [2 xpi(a)] = Wa[2 xy,(a)]

F,., = ~(Lj + Kj + Tj) * [2 xp;].

Now we use the information that lift and drag act as if concentrated at the center of pressure
and thrust acts as if localized at the center of combustion:

F = (L + D) (2 x 12) +.T . (2 x1 1) = 12[L cos a + D sin a] -11 T sin1,. (B6)
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Appendix C

VELOCITY INCREMENT ESTIMATES FOR VARIOUS EFFECTS
IN FIRST-STAGE ROCKET MOTION

The ideal velocity (i.e., from thrust only) of a large rocket at first-stage cutoff [1-3] could
be estimated (e.g., see Eq. (8) of text) as

AVT= I (T/M)dt - (T/M)tl, (Cl)
where t1 is the burn duration of the first stage, and M is an average mass. The gravity loss
from this velocity is

AVG- VI - 0.3(T/M)t,, (C2)
where we indicate a 30% gravity loss [2]. Now Av T might be -3050 m/s, so that AV G = 900
m/s. The drag loss from Av T is probably -- 5% overall, although the drag force can reach a
maximum of about 25% of the thrust force during the first-stage motion [2].

Hence,

AVD = 150 m/s = 0.05 AVT, (C3)

which is almost canceled by thrust increase due to ambient pressure decrease in the ascent
[2,3]. By comparison we have a relatively large value [5] of velocity imparted by earth's rota-
tion

V, - (OER = 450 m/s = 0.15 AVT. (C4)

We estimate the Coriolis effect as

AVCor Si0 2(o)Ev dt = 2wE(T/M) I' t dt
0

or

AVCr = COEtl AVT n 0.01 AVT (C5)

for a burn time tj somewhat more than 2 min. The centrifugal effect contribution is given as

AVcent -: (IERt, n- (OEtlVo == 0.0015 AVT. (C6)
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Appendix D

DETERMINATION OF LAUNCH PROFILE PARAMETERS
FROM DESIRED ORBIT INJECTION CONDITIONS

IN A FLAT EARTH APPROXIMATION

If we are given a set of desired orbit injection conditions, such as altitude y, rocket speed
v, heading qi, and azimuth angle a, we face the question of the launch profile conditions needed
to obtain them. We design the rocket to attain the speed v' and y' at burnout (disregarding
earth's rotation) for a final heading t/t', and need to determine the apparent launch azimuth a0.
The relationship between these parameters is obtained with the help of the vector diagram in
Fig. DI. The notation used here has been defined in Section 3 of the text (cf. also Figs. 4 and
6). The following results may readily be obtained.

N

V sin i

n/2 + ao n/2 - a

t'

Fig. Dl - Vector diagram for determination of launch profile parameters
from desired orbit injection conditions (flat earth approximation)

v = Iv -v 0 | = IVy + VV -v i = {V 2 + (VI I - V")2}1/2

= {v2 - 2vv, cos tq sin a + v0)'1 2.

With v' thus determined, we use the following from Fig. DI:

sin tA' = v sin it/v'.
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This determines qj', and now if we define

Aa = a-aa, (D3)

and use the law of sines in Fig. DI,

sin Aa = v,. cos a/(v' cos V'), (D4)

from which a,, is determined. Since v, is in the horizontal plane, we have

Y = y. (D4)

A similar set of equations has been derived by Ruppe [3].
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Appendix E

THRUST INCREASE AND AERODYNAMIC EFFECTS

For a rocket with swivel control motors the total thrust includes pressure forces and is
normally presented [2,3,61 as

T = Mv, + A [p,-p (y) 1, (El)

where M is the mass loss rate of exhaust gases, ve is the actual average axial speed of these
gases relative to the rocket, A is the exit aperture area, pe is the pressure of the exhaust gases
at the exit aperture, and p (y) is the ambient pressure of the atmosphere at altitude y. Nor-
mally, p (y) varies from p (o) to zero for first-stage motion, so that the thrust varies from its
sea level value Tj to its vacuum value TV0C,. Hence, T7l and TvaC are usually given for the first
stage, and TvaC is given for the higher stages of a rocket. In effect the ratio

X Tvac. I T (E2)

is given for the first-stage motion, and it is easily shown that (El) can be rewritten as

T= T7, |1 - x p(o) (E3)

Very frequently x is the range 1.12 to 1.15, and the increase of thrust with altitude is thus exhi-
bited.

As we have indicated in the text, drag tends to counterbalance the effect of thrust
increase. The aerodynamic forces of lift L and drag D are important in first-stage motion,
where angles of attack a are normally programmed to be small (e.g., a n:l" 3°), From [21 one
then has for the aerodynamic forces:

D = [CDO + CDL a2 ] (pv2/2) S

L = [8CL/Oa] a (pv2/2) S, (E4)

where p is the atmospheric density, v is the rocket speed, and S is an appropriate reference
cross-sectional area (e.g., that for the first stage) to which the aerodynamic coefficients are
referred. These coefficients for a two-stage rocket are shown by Ehricke [2] in his Fig. 5-8 as a
function of local mach number, which is the speed v divided by the speed of sound at the alti-
tude of the rocket. One may thus infer the aerodynamic forces from standard atmosphere data
and the aerodynamic coefficients.
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