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THE STEERING PROBLEM FOR THE MIRROR-SCAN TRACKING SY
PART 1 — THE STOP-GO-STOP PROCEDURE

1. INTRODUCTION

The Mirror Scan system employs a mirror to steer the beam of a tracking radar whose
light weight (about 11 kg (25 1b)) permits it to be slewed much more rapidly than the
antenna of a conventional system, so that the system can be used to track several ar
simultaneously. Since tracking accuracy varies inversely with update time, the nu
targets which can be simultaneously tracked depends on the efficiency of the stee
algorithm. The steering problem is to determine the radar-beam motion which: covers
given collection of targets with minimum update time, subject to two constraint' :

® A physical constraint on the magnitudes of the torques that can be appll :
mirror;

® A constraint on the velocity of the beam motion as the beam passes through
target, so as to insure a required number of radar-pulse hits on the target.

1.1 General Synopsis

Sections 2 through 4 are devoted to a careful mathematical description of the
problem, which is a difficult problem in control theory. As a first approach to this
we will in this report examine the stop-go-stop {SGS) paths, that is, beam motions:
which the beam is made to stop at each target. The problem of finding the optit{ria_l’f
path can be reduced to a standard problem in control theory with a known solution. This
reduction of the problem is described in section 5. In section 7 we will show how calcula-
tions of update times of optimal SGS paths for various configurations of target- positions
lead to the conclusion that the mirror-scan system can track at least seven targets in‘a half—
hemisphere with an update time of less than 1 second.

In section 6 we will discuss the aiming problem, which is the problem of determining
the best system orientation for a given area of coverage. One might expect that the,
of this problem would be to point the system at the centroid of the area of coverage
computer calculations suggest that this is in fact the case. However, the same calcu
also reveal that the system orientation has only a slight effect on efficiency. provide

the departure of the pointing direction from the centroid of the area of cov crage is not tno E
“extreme.’ ..

Finally, in some situations the SGS procedure is nearly optimal, and in others' ':
clearly inefficient. In subsequent reports in this series we hope to obtain lower bou
update time (as a function of number of targets and area of coverage), identify the

Manuseript submitted March 16, 1978,




WILLIAM B. GORDON
conditions under which SGS is grossly inefficient, and construct better tracking algorithms
for this case.
1.2 Technical Summary
A summary of the technical results of this report is as follows:
& The target position £ and the corresponding mirror normal posifion p are related by
E=a-2(a- plp, . (2.1}

where a is a constant vector defining the orientation of the systein. {The giming vector is
- &.)

¢ The system control is defined by specifying the applied torque vector u as a fune-
tion of time.

® The system confrol u = u{t) and mirror motion p = p{t} are related by
u=IpXp, (3.1)
where { is a certain moment of inertia.

& The steering problem is fo find the closed curve p = p{f} which joins given poinis
with minimum update time, subjeci to twe constraints:

p X i<« (4.c1)
and
Il grget <8 (4.€2)

® The constraint {4.C1) can be expressed as a bound on the second covariant derive-
tive §2p/8t2 of p, which is the tangential component of g.

® The constraint {4.C2) is closely anproximated in a more convenient form by
Ipl < B/2. {4.CA2)

® In the stop-go-stop (SGS) procedure the constraint (4.C2) is automatically
satisfied, and p moves in great-circle arcs, stopping at each *“‘image’’ of a target position.

® The determination of the optimal poini-to-point motion of p along an 8GS path

reduces to a solved problem in control theory, and the update time T of an SGS path is
then given by

T=2} /Z;a, {5.10)

where {Zj} are the arc lengths of the various links of the path.

2
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® There are (N ~1)!/2 SGS paths, where N is the number of targets. The op": )
path is the one which minimizes £+/Z (and therefore ') and can be found by stl'a
ward enumeration of all cases, prov1ded that N is not too large. ,

® For the current design value of « it can be predicted from the calculated re-:sults' o
that the Mirror Scan system can simultaneously track at least seven targets in a half-
hemisphere with an update time of less than 1 second.

® The orientation of the system (defined by &) has only a slight effect on;
efficiency, provided that the departure of the aiming vector (- a) from the centx
area of coverage is not too extreme. :

2. SYSTEM GEOMETRY

Radiation from a feed (which is fixed with respect to the ship) passes through .
in a mirror M and falls upon a fixed reflector S, which reflects it back toward M. T
radiation is linearly polarized, and § is composed of wires aligned parallel to the.di
of polanzatlon The mirror acts as a half-wave plate and rotates the angle of polarlza on
by 90°, so that the radiation passes out through S after reflection by M. Let a bé t]
vector deflmng the direction of the radiation incident on the mirror. Then a is fixe
ship and points into the ship, and its negative (- a) will be called the aiming vector:

Let

P = unit vector normal to the mirror, pointing outward ;

= “reflected’ unit vector, pointing to the target.
Then, since the angle of incidence on the mirror equals the
angle of reflection, the vectors a, p, and £ are related by
(Fig. 1)

E=a-2(a-pp (2.1}

and

E-a
pIEaI

(2.2)

Since target ranges have no relevance to our problem
we can identify each target position with a point on a unit
sphere, whose position is £. The corresponding value of p
(given by (2.2)) will be called the p-image of the target.

Let ¢1), 8 ™) be an arbltra.ry collection of N tar-
get positions, and let p), ., p™) be the corresponding a
p-images, The steering problem is to find the closed curve Fig. 1 — Relation of:th
P = p(t) (0 <t < T), subject to certain constraints, which a,p,and £

3



WILLIAM B. GORDCN

joins all the p-images with 2 minimum update time 7. In the steering problem it is assumed
that the value of the aiming vector {~ a) is fixed and given. The aiming problem is to make
an intelligent choice of a for each given area of coverage.

We shall fix a right-handed rectangular X; X, X coordinate system to the ship, with
corresponding spherical coordinates r, 4, and ¢. As shown in Fig. 2, the mirrar-scan system
is attached to the port side of the ship, the posi-
tive Xy axis points toward the bow, the positive
X3 axis is vertical, and the coordinates of a point

X
on the unit sphere (r=1} are 3
a
x, =sinf cos ¢ X
@
xg =sin f sing >. (Z.3)
X

xg =cos & J 2

a
Since a points into the ship, its Xy coordinafe is

negative. Similarly, the X, coordinates of pand £ Tig. 2 — Relation of ecordinate systems
are always positive.

3. THE CONTROL

Mathematically, the mirror motion is defined by a curve p = p{f} lying on the unit
sphere, that is, by a description of the motion of the unit normal pr. Physically, the mirrey
is moved by applying torques to the mirror around cerfain instantaneous axes of rotation,
and the system control is defined by specifying the total torque vector @ as a function of
time: u = u(t). The relationship between the control u and motion of p is

u=IpXap, (3.1)
where I is a certain moment of inertia.

Fquation {3.1} is a special case of Euler’s equation for the motion of a rigid body, and
in its derivation two assumptions are made:

Al. The mircror is a disk, a square, or some other body having certain symmetry prop-
erties. For a disk, { is the moment of inertia about a diameter.

A2, The torques are applied in such a manner that the mirror motion has no rotational
component around the axis p, because the existence of such a component would imply the
expenditure of energy to produce motions of the mirror which have no effect on its aim.

I turns out to be more convenient to write (3.1) in the form

u=Ip X §%p/6t2, {3.1%}
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where, by definition,

52p/6t2 =p + pI%p.

alence of (3.1) and (3.1*) is a trivial consequence of the identity p X p = 0, which
any scaler multiple of p to be added to the p term in the right-hand side of (3.1}
changing its value, The replacement of p in (3.1) by p + |p|*p and thus by §2p/
therefore appear to be highly arbitrary, but it is justified by the identity

Ip X p | = 162p/5t2,

so that the constraint on the torque magnitude Ju| reduces to a constraint on |§2p/8t2]. To-
show that (3.3} is an identity, one differentiates the identity p * p = 1 twice and obtqi:gs _

p'p=0Oandp-p+ P?=0

Equation (3.3) is a consequence of (3.4) and of the vector identities
a(bXc)=-c*(bXa)
and

aX(bXc)=b{a*c)-c(a*b).

From (3.2) and (3.4) we also have o

152p/8t2 12 = |p|% - JpI*. ' (3 5)

The quantity 62p/8t2 is called the second covariant derivative of p = p(t), and i
Appendix B it is shown that §2p/5¢2 is the tangential component of p, that is, the-pr
tion of the vector p(t) onto the plane tangent to the unit sphere at the point p(t)
curve p p(t) is taken to be the description of the motion of a particle of unit m
52p/6t2 is equal to the tan fennal component of the force acting on the particl :
particular, the condition 5%p/6t2 = 0 is precisely the condition that the motion be inertial, -
that is, on a great-circle arc with constant speed, Hence (3.1%) has the following conse-
quence: if the applied torque u is cut off at a certain time, then p = p{t) will thereafter
move along a great-circle route with constant speed.

4. THE STEERING PROBLEM

In this section we will define the steering problem in its most general form. The con- ' _
straints of this general problem are easy to express and hard to apply, but in our subsequent, -

discussion of the stop-go-stop procedure (section 5) we will show how these constraints
reduce to a single constraint which is simply and directly related to the motion o}

The first constraint can be stated simply as

u <o, (41)
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where o' is the largest torque that can be applied to the mirror. This constraint is related to
the motion of p via (3.1) or (83.1*) and can be written in one of the following equivalent
forms, each of which will hereafier be referred to as the consiraint (4.C1):

p X pl<q,
or
52p/beti<ea, - (4.C1)
or
512 _ 151t
PP -pl*<a, |

where o = &' [I, I being the moment of inertia which appears in (3.1) and (3.1*). The mathe-
matical equivalence of these forms is a conseguence of {3.3} and (3.5},

The second constraint, referring to the beam velocity £(t) as the beam passes through a
target, will be expressed as

E arger < B (4.2}

where f is the largest possible beam velocity which allows the required number of radar
pulse hits on the target. Differentiating (2.1) to express (4.2} in terms of the motion of p,
we get the constraint

(@~ pIp + (@ PIBl e <BI2. (4.C2)

Using the same notation introduced in section 2, we let 1), .., .’E{N } be the position
vectors of N targets and let ptt) ., pt™) be the corresponding p-images. Welet £=§{f)} bea
curve which joins the points £1), ..., £ and welet p = p(t) be the p-image of this curve,
50 that for each value of 7, p(t) and £(t) are related by (2.1} and (2.2). We can now state the
steering problem in its most general form:

The Steering Problem, Find the closed curve p = p{t} which satisfies the constraints (4.C1)
and {4.C2) and joins all the points p(1}, ..., p®) with minimum update time.

Remark 4.1. Later, when the design of the system has been made more definite, it may be
necessary to replace the constraint (4.1} (and hence constraint (4.C1)} by a consfraint
imposing separate bounds on the components of u about certain instantaneous axes of
rotation. A further complication might aiso be required if the moments of inertia about
these axes should have too strong a functional dependence on position. In this case the
constraint (4.1) would be only an approximation but a safe one, since the values of & and «
would always be adjusted 5o as to guarantee that no component of ¢ excceds a certain
amount, and the estimation of the update time T thus obtained would be greater than its
true value.

Remark 4.2. An attractive altermnative to constraint (4.02) would be the “approximation™

2ipl < §. (4.024)

6
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In fact, by setting a * p = - cos y, it is easy to show that [a * p| <sin Y|p|, so that‘\;from

(2.1) one obtains

EZ=4a-pp+(a-p)pl?
=4[(@* p)? +(a- p)*pl?]
< 4[sin? ¢ +cos® Y]Ip12.

In other words

HEST N

so that approximation (4.C2A) is safe in the same sense as in the previous rematk ‘Moreover
the accuracy of the approximation | = 2]p| is usually quite good; it depends on the maxi-
mum permissible excursion of p from - a and therefore depends on the area of coverage. For
example, if the area of coverage is a quarter-hemisphere, then |£] and 2lpi dlffer by‘ BBS; than
8 percent.

5. THE STOP-GO-STOP PROCEDURE

As before, we let §1) _ £#N) pe iy target positions and let p(1), ..., p™) be the cor-
respondmg p-images. In the stop go-stop (SGS) procedure p = p(t) moves along great-circle
arcs in a closed path joining all the p') and comes to a complete stop at each of the piJ),
Hence constraint (4.C2) is automatically satisfied, and we will now show how constraint
(4.C1) reduces to a mathematically simpler form, which will be denoted by (5 CSGSJ)

Our first task is to determine the curve p = p(t) which joins two points, say p(l) and ‘
p(2) , in the shortest tlme sub ect to constraint (4.C1). We let Z(1, 2) be the great le .
dlstance between p( and p (the arc length of the short great-circle arc joining these.
points). Then Cal AL

2(1,2) = cos™ [p®) + p(®7. - - (51)

Let x=x(s) (0 <s< Z(1, 2)) be the short great-circle arc joinii: ., p* io p puru'm'-
terized by s = arc length. Then x = x(s) is (geodesic) motion along a sreat-¢ireie are wizh
constant unit speed, and the acceleration vector is a unit vector which is always dlre(:ted

toward the center. Hence, letting primes denote differentiation with respect to, s, (" ) =
(d/ds), we have s

Ix'|=1
x'x"=0,
and
x"+x=0,
7
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{We recall from (3.2) that by definition §%x/8s% = x'* + [x'12x, so that 62x/8s% = 0 by
virtue of {5.1} and {5.3}; that is, the motion x = x(3) is geodesic.}

Now let
pit) = x[s{t)] {5.4)

be a general motion along the great-circle are whose velocity o] = ldp/fdt! is not necessarily
canstant. Differentiating (5.4), we get

p=sx' (5.5)
and
2", {5.8)

p=sx'+s

But p(t) is merely a reparameterization of x(z), so that from {5.3) we have x'' = - p. Also,
from (5.2}, x is a unit vector perpendicular to p. Referring to {5.6), we therefore see that

$%' = tangential component of p = §2p/5¢2,
so that
Ip X pl=lsp X x't = Is}.
Hence constraint {4.C1} reduces to
Is1<e, {5.C8GS}
where o is the same constant as appears in {(4.C1).

The problem, of finding the curve p = p(t) joining p('n to pt?) in minimum time 7 sab-
ject to constraint (4.C1) as well ag the conditions p(0) = p(T} = 0, has now been reduced to
the probiem of finding the piecewise smooth function s = s(¢} for which

{5.CSGS) is satisfied on each smooth piece,
s{0Y=0 and (T} = Z(1, 2},
s{0)=s(T) =0,
and
T 18 minimum.
This is a standard prablem in control theory and has a well-knnown solution: one

applies & maximum acceleration a for half the time and a maximum decelaration ~ o for the
other half.* Hence we have

*E.B. Lee and L. Markus, Foundations of Optimsal Control Theory, Wiley, New York, 1867, Ch. 1.,
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1 1 Tonin 2
5 Z1,2)= 3 a( 5 )

or, solving for T ;. ,

Tonin = 2V 4(1, 2) /.

There are (N - 1)!/2 SGS paths joining the N points p*?, ..., p), and weno
the problem of finding the one which is optimal,

Consider for example the configuration of four points shown bchematlcally in Fig.
The points are labeled 1, 2, 3, and 4, and there are three SGS paths labeled 1234, 1324 a.nd
1342. For example, the path 1234 is the path which takes point 1 to 2, 2to 3,3 to 4 -and
4 to 1. These three paths are the only three essentially different SGS paths in thls case,
since all the other paths differ from these only in their starting point or orientation.-Thus, -
for our purposes, the path labeled 1234 is the same as paths labeled 2341, 1432, ete.

More generally, for a configuration of N points we can always label the start
as 1, so that the N-tuple (1, iy, i3, ..., {y) runs through all the different path le§
(N - 1)-tuple (ig, i3, ..., iy) runs through all the permutations of the (N - 1) integ

N}, In fact, each path is represented twice, once for each orientation, so t
only (N - 1)!/2 essentially different SGS paths joining N points.

We let Z(i, j) be the arc length of the great-circle arc joining p{¥ to p{/) and let T'(i, ])
be the transit time for the motion of p(t) from p® to pt/), the motion being “optlmal"
previously described in this section. Then as in (5.1) and {5.7) we have

Z(i, j) = cos™ [p) + pl] o (58)

and - o
1, j) = 2/ZC, 7, T (69)

and the update time T corresponding to the path (1, ig, i3, ..., iy ) is

T= 2 WAL + VZia) + . +

3 o
2 - 3 2 B 3
[ 1234 4 I 1324 4

Fig. 3 — Paths joining four points

9




WILLIAM B. GORDON

Hence the optimal SGS path is the one which minimizes the right-hand side of (5.10}. In
brief, we shall say that the optimal SGS path minimizes X/ Z.

For the moderately small number of targets considered in this report (¥ << 7} the opti-
mal SGS path can be found by the straightforward enumeration of all (N - 111/2 cases. The
general problem of minimizing a “cost function’ such as {5.10) over a class of paths is
known as the traveling-salesman problem, and algorithms have been constructed which
make the search for the optimal path more efficient. However these algorithms arve alt
inefficient in the sense that the computational time varies exponentially with N.* Much
atfention has been given to the search for optimal and near-optimal solutions to the preb-
lem of minimizing £ Z. However, simple examples can be constructed which show that
paths which minimize £ Z do not necessarily minimize Z+/Z, and conversely.

6. THE AIMING PROBLEM

Figure 4 shows a half-hemisphere with four “extreme” points on the boundary and
their coordinates. The coordinate system shown here is the same as that shown in Fig. 2.
As § varies over the entire half-hemisphere, its p-image p will vary over a smalter region, and
the range of p depends on the value of the aiming vector a. This is shown in Fig. b for three
valites of a. The outer curve is the boundary of the half-hemisphere, as seen by a distant eye
having spherical coordinates (Fig. 2) 0 = 60° and ¢ = 90°. The inner curve is the boundary
of the range of p, and it is marked off into two subregions [ and II which are the p-images
of the quarter-hemispheres whose extreme points are (1, 2, 4y and (2, 3, 4} respectively.

Table 1 shows how the great-circle distances between the p-images of the extreme
points varies with three values of the aiming vector a. The arc lengths Z{i, J}, in degrees, are
camputed according to (5.8}, in which the values of o{?) are computed according to {2.2}.
Z(1, 3) is always 20°, because the gosition vectors ¢ of points 1 and 3 are the negatives of
each cther, so that, from (2.2}, pD) « p) = ¢ for every value of a.) The results shown in
this table and other calculations suggest that the second value of a listed is optimal when
the area of caverage is the entire half-hemisphere and that the third value is optimal when
the area of coverage is restricted to the quarter-hemisphere {1, 2, 4).

PLEL, G O)
PL2O, 01
Pt 3{1, 0,00
PLELO, 1, O

Fig. 4 — Coordinates of four Yaxtreme”
points on a half-hemisphere

*H R. Lewis and C.H, Papadimitriou, *The Efficiency of Algorithis,” Scientific American 238 {Ne. 1},
96-109 (Jan. 1978).
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2
NGNS e
P-IMAGE
4 OF POINT | 3
-a=(0,1,0) -a=(0, I/JE INZ) -q=(_|/J3,|[;_J3-'.

Fig. 5 — Ranges of p-images p for various aiming vectors a, with the ranges df P
divided into regions I and II (the ends of the subdividing arcs being p-lmagea of poin
and 4) .

7. CONCLUSIONS
7.1 Calculations of Optimal SGS Paths and Update Times

Optimal SGS paths and update times were computed in the manner describ
section 5, with the current design value of the constant « (defining the constraint

o = (100/2) radians/s? ~ 8103 deg/s>.

Optimal paths and update times T were computed for various configurations,ofup to -
seven points and various values of a. Some examples of our calculations are given in-Fig:'6
for the three values of alisted in Table 1. The half-hemisphere shown in Fig. 4 is shown'in -
Fig. 6 as seen by an observer who is in the X, Xy plane at large and positive x3 and slightly -
negative x,. The target positions £ are indicated by heavy dots, and N is the number of
targets. :

7.2 Summary of Observations Concerning Calculated Results
The results of these calculations can be summarized in the following ob_sﬁrv

Observation 1. The Mirror Scan system can simultaneously track at least sev
in a half-hemisphere with an update time of less than 1 second.

Observation 2. The value of the aiming vector - a has only a slight effect on
ency of the system; for the three values of a listed in Table 1, the varlatmn' i
time was about 5% or less.

Table 1 — Variation of Z(i, j) with a

-2 Z(1,2) | Z(1,3) | Z(1,4) | 22,3) | Z(2,4) | 2@, 4)
[0,1, 0] 60.0° | 90.0° | 450° | 60.0° e
[0,14A/2,14/2] 49.2° 90.0° 49.2° 49.2°

[-1A/3,1A/3,1A/3] | 46.9° | 90.0° | 469° | 52.2°

11
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UPTiMAL PATHS. (7265341725384
iT25364

¥20.90,0.86,0.86

T=0.47, 0,48, 0.46

N=4 s N=7 s =T
5
& 4
7
1
OPTIMAL PATHS! |726534, 1764352
OPTIMAL PATHS | ALL 1234 OPTIMAL PATHS © ALL 1263347 1723864
T=0.64, 062, 0.6% T:0.85,0.86,0.86 120,87, 0.86,0.85
NeT S N3 N:T
4 3
3

OPTIMAL PATHS . ALL IS6T234
T20.71,0.74,0.70

N=T

OPTIMAL PATHS | ALL 1762534
T:075,074,0.74

Fig. 6 — Examples of optimal paths and update times computed for
the three values of a listed in Table 1. (The caleuniafed resulis are
Iabeled below the sketches in the same order that 2 Is listed in the
table,) In the first example the four target positions are the same as

those in Fig. 4.
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Appendix A
DERIVATION OF EQUATION (3.1)

As explained in section 3, equations (3.1) and (3.1*) are mathematicaily équ'iﬁ ent,
and, to prove (3.1¥%), we shall first express p in terms of certain angular accelerations and
velocities. B P

As shown in Fig. A, let e; and e, be two unit vectors which are fixed to
in such a way that {e;, e,, p} form a right-handed triple:

el Xe2=p,92Xp=el,pXel=02.

Sincee; - e; =1, wehavee; * €, = 0,50 that &; has no component in the e, dlrectmn
Also, from assumption A2 in section 3, it follows that @, has no component inith, '
direction. Similar remarks hold for @,, so that one can define angular velocities:

satisfying

8; =-w;p and €5 = - wyp.
From equations (A1) and (A2) we get
P=we; +wae,
and
P=aye; + 0, - (W2 + O2)p.
Since 52p/5t2 is by definition the tangential component of p, it follows that

52p/6t% = Gjey + Gge,.

Fig. A — Vectors relative to a disk-
shaped mirror
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We will now compute the torque u. It will be convenient to think of the mirror as

being composed of particles all having the same unit mass. Let r; be the position vector of
the ith particle, and set
M=) 1 X g

Then, by definition,
u= I{J =Zr£ X .;';'. {Aﬁ}
Each particle has “local” coordinates x} and xi2 defined by

I

= o1 2
; T X 8y t X8y,

and xf and xf are constant, since the moving axes e; and &, are fixed to the mirror. From
{A6) one ultimately gets

u= - [Ty +Ipg@oley + [118y +Ijgn]ey
+p(wk - a2) - (hy - Ip)wieslp,

where

112 = E xilx;.z, 111 = E : (xll) H and I22 - z {xtz) *

i
From the symmetry properties of the disk we have
Lip =0 and Iyy =1y =1,
where [ is the moment of inertia about a diameter. Hence for the disk we have
u = I(- (g8 + iq89)
= Hionp X 8y + ;P X 81},
and from (AD) we get {3.1%}:

u=JIp X 6%p/5t2.
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Appendix B
COVARIANT DERIVATIVES

_ide.

Let p = p(t) be a curve on the unit sphere S. We want to show that the ngh _
of (3.2) is the tangential component of p. Since the vector p is normal to S at: the
we have .

normal component of p = (p * p)p.
Differentiating the identity p * p = 1, we get
p-p=0and p-p+ipZ=0
Hence
normal component of p = - Ip|2p,
and it follows that

tangential component = p - normal component,

=B+ pi%p.

The preceding formulas apply only to spheres. More generally let S be any surtaee in.
Euclidean three-space defined by the parametric equations b

Xi=Xi(yl,y2), i=1,2,3,
where y! and y2 are local surface coordinates. Let p(¢) = X(y(t)) be a smooth cur\?

Then the second covariant derivative of p(t), §2p/6t2, is again defined as the tan
component of p(¢) and is given by

2yl . X, 8%yP  aX
5¢2 oyl 52 dy2

]

where

and where I'¢,, are the so-called Christoffel symbols. Details can be found in almos
elementary text in differential geometry (for example, A. J. McConnel, Applu:atwn
Tensor Analysis, Dover, New York, 1957).
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