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ANGLE MEASUREMENTS FOR BROAD-BEAM-ARRAY RADARS

INTRODUCTION

Broad-beam-array radars will be considered in this report. Because of the frequency (less
than 1 GHz) and antenna-size limitation on the ship, fairly broad beams are anticipated. This
naturally raises the question as to the accuracy with which the angle measures of the target can
be made, a topic which is the concern of this report. It is not the purpose here to describe the
entire radar. The antenna would be an array with beamwidths of 5° and 15° in azimuth and
elevation respectively. Four arrays would be required to cover the full 360° in azimuth. The to-
pics affecting the angle measurements will be briefly reviewed. These include antenna pat-
terns, multipath propagation, noise, scanning the array off axis, and the roll and pitch of the
ship. A design and rough results will then be given for the case of the radar being stabilized
with respect to ship motion. Finally a means will be formulated for obtaining azimuth and
elevation measurements when both sea-reflected multipath propagation and ship motion are
present.

REVIEW OF PERTINENT TOPICS
Antenna Patterns

The Kirchhoff-Fresnel theory can be used to determine the antenna patterns for a
planer-array antenna. A simplified form of it in the far field is

:,=~j 27 R/\
_ Je T Jlax/d) + Ey/h)]
R (1 + cos#) ff A(x,y) e/lte dxdy, (4]
where
E = electric field,
R =range,
A =wavelength,
6, = angle between the line normal to the array and the line in a plane normal to
the array connecting the field point to the array (Fig. 1),
A (x,y) =power distribution across the array,
d = aperture width,
h = aperture height,
o =-2:—dcosetan az:maz, 3]
and
13 =%cos0tan el_~:2—:—’lel, 3)

Manuscript submitted March 4, 1977.
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Fig. 1 — Antenna geometry

with az and el being the azimuth and elevation angles. The variation in 6 is neglected, and the
aperture field is assumed to be factorable, so that

E =const f(e)f(a), 4)
where
h2 .
fe) = [ A@)etiih gy
=h2
and
dn
@) = [ Ax)etindld gy,
=dn
The antenna patterns then is assumed to be
Glaz,el) = Gz)Gel) = f(e)f(a). (%)

The set of antenna patterns which will be used is shown in Table 1. These are for 0° pointing
angles. Pointing angles other than normal to the array face will be considered later. The
cosine-squared and double-angle-sine patterns are typical of the sum and difference patterns in
a monopulse radar. The double-null pattern is an even function with a null at zero.

Multipath Propagation

A simple geometrical optics model is used to describe the sea-reflected multipath propaga-
tion. The geometry is shown in Fig. 2. The radiation from the antenna to the target and the
backscatter will be propagated by the direct path and the reflected path. At each point on the
antenna aperture the signal strength is the sum of the direct signal and the indirect signal,
whose relative phase varies. The resultant returned signal is obtained by summing the signals
across the aperture. The results of this simple model are well known [1] and are

S = A[G(el)e™2mhaeN pG(—el)e @mhael/X +6) 6)
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Table 1 — Antenna Patterns

Name A(x) Sfla)
LLa sin =-
. 2 X 2 2
Cosine squared cos - —— — 7
d r? —|&
2
. [24
dw sin —
. . 2mx 2
Double-angle sine | sin T
d a? — %
2
a2 [il sin —
2ax 2 2
Double null cos P 3
a? —&
2
O TARGET
ANTENNA
ol
a
Fig. 2 — Multipath-propagation geometry h' -7 ~
a ~ ~
LIL-- ~ h
.~ ~ t
=~ ~
IMAGE OF ~.
ANTENNA ™ < IMAGE OF

TARGET

where §is the returned signal, 4 is the amplitude, 4, is the antenna height, el is the elevation
angle, p is the reflection coefficient, and ¢ is the phase shift at sea surface. For a smooth sea

the reflection coefficients are
; _ — 2
Jd sin el —~/e, —cos‘el

pye = )]

sin el + /e, —cos?el
b €. sinel — /e, —cos? el

pe "’ = (®)

€. sin el + /e, —cos?el

and
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where €, =¢€; — j60Ao is the complex dielectric coefficient shown in Table 2 for various fre-
quencies [2]. The model presented is fairly good as long as the Rayleigh criterion,

1 A
Ah < = ,
8 sin el

where Ah is the wave height, is met. For higher sea states the picture is more clouded. We will
assume for the remainder of the report that for the higher sea states the reflection coefficient
magnitude and phase shift are unknown and vary with time. A more detailed discussion is
given in Appendix A. In addition the dominent reflection is near an angle equal to but opposite
of the target elevation. If several dominent reflectors are present, terms would have to be ad-
ded to (6) to account for them. Two plots of the radar signal level for zero sea states are given
in Fig. 3. The ordinate value of 0 dB is for the free-space range at the peak of the antenna
pattern. These are the usual lobing plots associated with a ship’s radar coverage.

Table 2 — Dielectric and Conductivity Values Used
in the Reflection-Coefficient Calculations

Value of Dielectric

Frequencies C Value of Conductivity o
(MHz) or(l;t/::)t €l (mhos/m)
f < 1500 80 4.3

1500 to 3000
3000 to 10,000

80 - 0.00733 (f - 1500)
69 - 0.00243 (f - 3000)

4.3 +0.00148 (f - 1500)
6.52 +0.001314 (f - 3000)

T T T T T T T T T T T
10 - /\ - Wr——7—7
0 /1 " "\ FREE SPACE 0
210 _ -10 -
8 5 |
> 2 . g 21 7
* z
-30 _* 5 -30 - _1
_ 40 -
50 | . -50 -
80 I N N A | T DU B [ -60 L L1 L
0 1 2 3 4 5 6 7 8 8 10 1 12 01+ 2 3 4 5

TARGET ELEVATION (DEGREES)

(a) Horizontal polarization, k. = 6 m, beamwidth = 20°,
and nose of beam on the horizon

TARGET ELEVATION
{DEGREES)

(b) Vertical polarization, ke =
24 m, beamwidth = 7°, and nose
of beam at the 3-dB point above
the horizon

Fig. 3 — Lobing due to multipath propagation of radiation with A = 76 cm over a smooth sea
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Errors Arising in Conventional Angle Measurements

Two conventional means of obtaining angle measurements in free space are beamsplitting
for scanning beams and the monopulse method for stationary beams. The scanning beam is of
no concern here. The angle measurement by the monopulse method is illustrated by taking the
ratio of the signals from the double-angle-sine pattern (difference pattern) and cosine-squared
antenna pattern (sum pattern) given in Table 1. This yields

2
i & 2 _|&
dnsmz/w [2]
Z

«a = Ak )]
lesl/ 51/ 1 -
The azimuth angle can be found from (2) and (9) and is
az = \2d)R,, (10)
and the elevation angle can be found from (3) and an equation similar to (9):
el = (\20)4,. an
Since the beamwidth is 6 g, equals 2.88 (A/2d) or equals 2.88 (\/2h),
az =%, (0p,/2.88) (12)
and
el =2, (05,/288). 13)

The azimuth, or elevation, is directly proportional to the ratio of the difference signal to the
sum signal.

The effect of noise on the monopulse measurement [3} is given in Fig. 4. At a 13-dB
signal-to-noise ratio S/N the monopulse error (standard deviation) is 0.1 beamwidth. For a
rough approximation the slope of the monopulse curve, given by (12) or (13), is 04
beamwidth. Therefore the error could be computed by multiplying the slope of the monopulse
curve by 0.1/04 = 0.25. For any other monopulse curve (or any other curve) formed by the
ratios found in this report the angle error would be estimated by multiplying the slope of the
curve by 0.25.

o
|

Fig. 4 — Effect of noise on the monopulse measurement
error normalized to a beamwidth

0.0 \—‘

| 1 | |
20 10 0 10 20 30 40

S/N {dB)

=3
8

NORMALIZED THERMAL NOISE ERROR o/8gw
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Angle measurements in sea-reflected multipath propagation are considered next. In Fig.
5a the 3-dB contour of a pencil-beam radar is shown centered on the horizon for the case
when the beam has no cross-level error. When no cross-level error is present, the target and its
image lie at the same azimuth but at different elevations with respect to their defining planes.
When cross-level error is present, the target and images are at different angles in both the az-
imuth and elevation planes. A well-established fact in radar is that multiple unresolved targets
can cause large angle errors. To simplify the problem, it will be assumed the cross-level angle
(Z in Fig. 5b) is zero and therefore azimuth and elevation measurements can be made in-
dependently. In a later section nonzero cross-level angles will be considered.

ELEVATION z —-|
ELEVATION

TARGET7/
° TARGET AZIMUTH
AZIMUTH
HORIZON
* HORIZON
IMAGE K IMAGE

(a) No-cross-level conditions (b) Cross-level conditions

Fig. 5 — Target and image positions within the 3-dB contour of the beam of a pencil-beam radar

One means of measuring the elevation angle when there is sea-reflected multipath propa-
gation was suggested by White [4]. For two antenna patterns G, and Gg the returned signal
voltages in the form of (6), with ¢ = 180°, for horizontal polarization are

Vy =AlG et —pG,(—el)e™] (14)
and
Vg = AlGg(el)e™ — pGg(—el)e™]. 15
Taking the ratio % of the two voltages yields
e+j9 _ pe_jo GB ( _el)
Vg Gg (el) Gg (el)
R = = . (16)
V4 Gy (el) +b —io Gy (—el)
e — pe —_—
GB (61)
By requiring symmetry of the two beams with respect to the horizon, which means that
GB(_el)/GB(el) =GA(_el)/GA (el), (17)

the multipath terms in (16) cancel out, leaving the ratio of the two antenna patterns:
Gg (el)/G 4 (el). Then the ratio can be solved for the elevation angle. When even-function an-
tenna patterns about the horizon are used, multipath terms can be canceled in the ratio. As an
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example using the double-null pattern for Gg(el) and the cosine-squared pattern for G, (el),
which are defined in Table 1, the ratio becomes

YR
dlRily B

Using (2) and (18) the elevation angle becomes
= J’ (19)

For ratios near zero the slope (sensitivity) is small and the ability to measure elevation in the
presence of noise is poor. In addition the received power has many deep nulls as a function of
elevation for reflection coefficients near unity because of the symmetry about the horizon in
the example used. Improved antenna patterns using this technique will be considered later.

(18)

sin —

Effects of Scanning Off Axis

When an array is scanned off axis, two effects must be considered. First the effective
aperture width d, decreases by
d, =dcos az. (20)

The second effect is that the peak of the beam steers in both the elevation and azimuth along
cones. This is illustrated in Fig. 6, which shows the cone for the azimuth case. The array is in
the yz plane normal to the x axis. The azimuth az and elevation el represent the target’s posi-
tion. The array steering angles are y and 8. The cone shown in Fig. 6 is defined as follows.
The phase is the same at the array for any target along a cone defined by rotating a line from
the array to a target about the y axis such that the angle between the line and the y axis is al-
ways 90° — y. The other cone of constant phase is defined by rotating from the array to the
target about the z axis, where the angle between the line and the z axis is 90° — 8. The rela-
tions between the beam pointing angles and the beam steering angles are [5]

5 =el ¢3))
and ‘

sin y = cos el sin az. (22)

\ Fig. 6 — Relationship of beam pointing angles az and el
to beam’steering angles v and 8
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These results are shown graphically in Fig. 7. The results show that the azimuth y measured
by the radar is coupled to the true azimuth by (22). To find the true target azimuth, the eleva-
tion must be known.

The antenna patterns are then written as

Gly,el) =Gy —yy) Glel —ely), (23)
where G(y — vo ) might be the cosine-squared antenna pattern
sin [(wd,/A) (y — yy)] 2
e Y0 Kl (24)

Gl —yy) =2
YTV T T md, M) (& — ) 72 — [(md,/\) (y —yp) 12

where d, is the effective aperture, vy, is the angle steered off in azimuth, and, by (22),

y =sin ~!(cos el sin az).

Fig. 7 — Beam pointing angles az and el in relation to beam
steering angles y and 8 for a hemispheric volume

d or el (DEGREES)
8838888838888 388

Y7117y T T rTT T T

Errors Due To Cone Correction

Errors in measuring the steered elevation 8 and y result in errors in the true azimuth az.
Since (22) is approximately linear in a region, these errors can be studied by using a truncated
Taylor series expansion

az =azy + C; Ay + Gy, A8 (25)
where
G, = %Z— = cos y/~/cos28 —sin?y (26)
and
G, = %— = sin y tan 8/~/cos2 8 —sin? y. @7
The standard deviation in estimating the azimuth is then
v =TT T ol )
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Figure 8a illustrates the error in azimuth if no elevation information is present. Figures
8b, 8c, and 8d illustrate typical errors in estimating azimuth for various amounts of elevation
accuracy. Several things are interesting. At the low angles good elevation estimates are not
necessary to correct the effects of the cone. However for large angles scanned off axis in both
azimuth and elevation, elevation accuracies approaching 1° are required to make a good az-
imuth correction.

AZIMUTH ERROR, o,, (DEGREES)

ELEVATION el or d (DEGREES)

(a) No knowledge of elevation

10 20 30
ELEVATION el or 6 (DEGREES)

(c) For o5 = 3° and oy = 0.25°

AZIMUTH ERROR, o,, (DEGREES)

4 - T
) 7]
& i3l .
[+ o
] &
e 3
= 5
8 ©
. 2 | i
[+
1 g az=45°
4 & 30°
T T 20°
5 5 10°
s g 1F

i L
09 10 20

ELEVATION el or 6 (DEGREES)

(b) For os = 1° and oy = 0.25°

. 1

10 20 30
ELEVATION el or 6 {DEGREES)

(d) For o5 = 6° and oy = 0.25°

Fig. 8 — Azimuth errors when scanning off axis
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Array Drive Equations

All the discussion thus far, except for a brief comment earlier, has assumed that the array
was on a stable platform. However the platforms of present-day shipboard radars are not stabil-
ized. The equations required to drive the array are developed in this section.

The coordinate system in deck coordinates (x,, y;, z,) is shown in Fig. 9. The Cartesian
coordinates are related to the spherical coordinates by

Xy = rcos ey sin ay, (29)
Yg = rcos e, cos ag, (30)

and
z; =rsin g, (31

where the y, axis lies along the deck of the ship in the aft-to-bow direction and the z; axis is
perpendicular to the deck of the ship. The gimbals of the gyro are set so that the roll axis is at-
tached to the ship and the pitch axis is attached to the roll platform. The roll is positive when
the deck is down on the port side and the pitch is positive when the bow is down.

Zy 4 NORMAL TO DECK

r Fig. 9 — Deck coordinates
sow

- ,
ﬁ}l’/ Ya

X4

The relation between the stabilized coordinates and the deck coordinates is obtained
through two rotations and is

X Xd
ys| = Tlyy (32)
Zg Z4
or
X4 Xs
yal =Ty, (33)
Z4 25
where T is the transpose of T
cos R 0 ~sin R
T =|sin Rsin P cos P cos R sin PJ, (34)

sin Rcos P —sin P cos Rcos P,

in which R and P are the roll and pitch respectively. Sometimes these are placed into polar
form by noting

sin el; = z4/r (35)

10
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and

tan az; = x,/y,. (36)

By combining (29) through (31) and (33) through (36), one obtains the standard stabili-
zation equations

cos el sin az; cos R + (cos el cos azg sin P + sin el cos P) sin R

tan az; = , - (37
d cos el cos az; cos P — sin el sin P

and

sin el; = (cos el cos azg sin P + sin el cos P) cos R (38)
— cos el sin azg sin R.

where the subscript s indicates the stabilized coordinates. Similarly the inverse relations can be
found. The error propagation can be studied by using a Taylor series expansion. However the
cases of interest are more complex than the standard stabilization equations. The effect of scan-
ning the radar off axis can be incorporated into the equation, the orientation of the array on
the ship must be accounted for, and, if any mechanical stabilization is used, the results must
reflect this.

We begin by aligning the axis with the array face. From Fig. 9 the deck azimuth was
measured clockwise from the y, axis in the x;y, plane. It is desirable to measure azimuth from
the array face rather from the bow of the ship, assuming the antenna lies in the x,z; plane.
This is accomplished by rotating the deck coordinate through an angle & about the z, axis such
that the y axis is normal to the array face. If in addition the array is tilted back by an angle %,
the coordinates must be rotated about the x axis until the xz plane lies on the plane of the ar-
ray. The new face coordinate system (xf, Ve zf) has the Ve axis normal to the array, and the ar-
ray lies in the XYy plane. The relation between the coordinates is

xd Xf
Zd Zf

where W W' = I'and
cos & sinAcos B —sin ALsin&k
W =|—sind coscos B —cos. L sinB|. (40)
0 sin & cos B

The stabilized coordinates and face coordinates are then related by

Xg Xf
ys| = TWiys 41)
Zs Zf
and
Xf xs
J’f = W'T! Ys!- (42)
Zf Zs

11
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The effects of the array pointing at the intersection of two cones is next incorporated.
The angles v and 3 are defined by
x
siny = S — 43)

\/x} +y}
cos & = \/xfz + _)gfz/r. (44)

From use of (22), (43), and (44) the beam steering angles in azimuth and elevation are
y =sin™! (xz/r) (45)

and

and
8 =el, =sin"! (z;/r). (46)

If the previous transformations are used, the beam steering angles can be related to the beam’s
stabilized position by

sin y = cos & cos R cos el sin az; 47
+ (cos & sin Rsin P — sin &/ cos P) cos el cos az;
+ (cos #sin R cos P + sin .« sin P) sin el

and

sin 8 = ( —sin #sin Lcos R — sin R cos B) cos el; sin azg (48)
+ (—sin & sin o sin R sin P — sin B cos & cos P
+ cos B cos Rsin P ) (cos el cos az,)
+ (—sin & sin &sin R cos P + sin B cos &sin P
+ cos B cos R cos P) (sin el;),

where & and % are the array orientation angles on the ship, R and P are the roll and pitch an-
gles, az; and el are the azimuth and elevation in stabilized coordinates, and y and & are the
beam pointing angles.

Conversely, if a target’s angular position is measured in the beam steering coordinates,
the target’s position in stabilized coordinates can be obtained with relations which are the in-
verse of (47) and (48). These are obtained by finding

az, =tan"lx/y, 49)
and
el =sin"lz,/r. (50)

When the Cartesian coordinates are converted to polar coordinates at the array face, the cone
effect must be included by noting

sin az, = sin v/cos & (51)

and

cos azy = v (cos2 8 ~sin2 y)/cos 8. (52)

12



NRL REPORT 8114

This is incorporated into the required Cartesian-to-spherical-coordinate conversions:

x; =rcoselssinaz, =rsiny, (53)
= rcoselssinaz, = r(cos28s —sin?y), (54)

and =t iy ’ 4
z; =rsinel, =rsin 8. (55)

When the equations are combined, the inverse beam pointing equations are
= tan"! [cos R cos & Vcos2 8 —sin?y + (cos R sin cos B — sin R sin B)sin y

az,
+ ( —cos R sin & sin  — sin R cos $B) sin 8]/ [sin R sin Pcos &
—cos Psin & )cos?8 —sin?y
+ (sin R sin Psin & cos & + cos Rcos.Z cos B + cos R sin Psin #)sin y
+ ( —sin R sin Psinasin % — cos Pcos.&sin%® + cos R sin Pcos HB)sin 8] (56)
el. =sin~' [(sin R cos Pcos & + sin Rsing)cos? & —sin?y

N

+ (sin R cos Psin & cos & —sin Rcos & cos B + sin Bcos R cos P)sin y
+ ( —sin R cos Psin & sin & + sin R cos & sin & + cos R cos Pcos %) sin §1]. &Y))

Equations (47) and (48) must be computed for each new beam position, and equations (56)
and (57) must be computed for each detected target. The error propagation through the equa-
tions can be studied by using a truncated Taylor series. The error equations are shown in Ap-
pendix B.

So far it was shown that a beam can be pointed toward any point from about +60° in
both elevation and azimuth. However the axis of the beam for angle measurement purposes is
not necessarily aligned with the horizon. This is called cross level. Nonzero cross-level angles
cause two problems. One is that both the azimuth and elevation measurements are subjected to
the target’s image due to sea-reflected multipath propagation. The other is that if the beam is
scanned off in azimuth and elevation, the effects of the cone may limit the elevation angles in
which targets may be seen, and the accuracy required of the angle measures in the array may
become prohibitive in order to maintain good true azimuth and elevation estimates. Therefore
a mechanical cross-level stabilization will be presented.

The drive signal Z for cross level is computed as follows. A unit vector (x, =0,
y =0,z =1) is taken in stabilized coordinates. The unit vector in the face coordinates is
found by using (42), and the Xf and z, components are

x; =sin R cos Pcos & + sin Psin o (58)

and
zp = ( —sin R cos Psin #sin & + sin Psin % cos & + cos R cos Pcos &B). (59)

A rotation is performed through cross-level angle Z about the Vs axis until xf' becomes zero,
which is the condition for zero cross level:

xji =xscos Z + zpsin Z =0 (60)
Therefore, from use of (58) through (60), the cross-level angle-drive signal is

sin R cos Pcos & + sin Psin &
—sin % (sin R cos Psin & — sin Pcos) + cos R cos Pcos B|

Z =tan~! (61)

13



B. H. CANTRELL

Since the array is rotated through an angle Z, the face coordinatles (xf,, Yp zf) must now
be rotated through an angle Z to form a new set of face coordinates (xf, Ve Zg):

xf, xf
zf’ Zr
where
cos Z 0 =—sin Z
S=10 1 0 63)
sinZ 0 cosZ
Therefore the new face coordinates in terms of the stabilized coordinates are
X xf,'
ys| =TWS|y, | 64)
ZS zf:

and (TWS) (TWS)' = I The array drive equations are obtained the same way as before by
replacing (xf, Yr zf) with (xf, Vs zf). These equations are lengthy and therefore are not
reproduced here.

STABLE-PLATFORM RADAR ANGLE MEASUREMENTS

For a low-frequency (less than 1 GHz) radar the antenna size is somewhat limited; there-
fore fairly large beams are anticipated. The question naturally arises as to the accuracy to
which angle measurements can be made.

A radar is considered with beamwidths of approximately 5° to 15°. The antenna is as-
sumed to be a phased planer array; therefore four faces will be needed to cover the full 360° in
azimuth. It is assumed that the antennas have low sidelobes. It is further assumed that the ra-
dar is stabilized in both level and cross level. The azimuth and elevation angles y and & are
measured at the antenna. Given these measurements, (28) can be used to find the random er-
rors in the true azimuth and elevation. Both y and & are necessary, because the beam steers
along cones.

The azimuth measurement is first considered. Because the beam is stabilized, there ap-
pears to be only a single target in azimuth (target and images are at the same azimuth). There-
fore the results quoted earlier from Ref. 3, plotted in Fig. 4, can be used. At a 13-dB S/N the
monopulse accuracy is 0.1 beamwidth. The azimuth y accuracy will be approximately 0.5° or
better with no bias error. (This is not the full azimuth error.)

The elevation error is next considered. To cover elevations up to 30°, two receive beams
are suggested; one placed 1/2 beamwidth off the surface and the other up 3/2 beamwidths.
This is shown in Fig. 10. A monopulse channel can be added to the upper beam position,
which yields elevation estimates of 0.1 beamwidth at a 13-dB S/N. Therefore from previous
results the elevation accuracy would be better then 1.5°. The sea-reflected multipath propaga-
tion can be ignored in this region; however in the low-beam position it cannot.

The elevation-measurement technique in the low angle is similar to White’s technique [4]
described earlier. The upper-beam antenna pattern and the lower-beam antenna pattern are

14
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Fig. 10 — Free-space beam patterns in the elevation plane for a broadbeamed
for a broadbeamed radar

subtracted, and the ratio of the resultant to the lower-beam antenna pattern is taken. This ratio
is plotted versus elevation angle in Fig 11 for free space and when multipath propagation is
present assuming a smooth sea and vertical polarization. First, the figure shows that the sensi-
tivity of the measurement increases as the elevation increases. Second, the multipath has littie
effect on the measurement except in the vicinity of the first null. The accuracy of the measure-
ment is determined by using the rule of thumb developed earlier (the accuracy of a ratio meas-
urement in noise at a 13-dB S/N is approximately 0.25 times the slope of the error curve). Use
of this rule of thumb and the finding of the slopes of the error curve at several locations
results in the elevation errors as a function of elevation angle given in Table 3. The elevation
estimate becomes better as the elevation angle increases, and the bias error due to multipath
propagation can be ignored.

The true azimuth error can then be found using curves such as in Fig. 8. For a 13-dB
S/N it appears that by combining the error due to the cone effect with the azimuth measure-
ments the total azimuth error can be held to less than 1° with essentially no bias error. For
stronger S/N the results improve. For example at 23 dB the results would improve about three-
fold. In summary it appears that the planer phased array can make adequate angle measure-
ments if the array is cross-level stabilized.
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RATIO
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Fig. 11 — Ratio of the difference in signal level in Fig. 10 to the signal
level of the lower beam (free-space error curve) and, compared to that,
the same ratio for smooth-sea multipath conditions
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Table 3 — Elevation Error as a Function of
Elevation Angle for a 13-dB S/N

Elevation Elevation
(deg) Slope Error
(deg)
0 0 ?
4 24 6
8 18 45
12 8 2

UNSTABLE-PLATFORM RADAR ANGLE MEASUREMENTS

In the previous section the radar was assumed to be mechanically cross-level stabilized
and electronically stabilized in level. Under that assumption the steered azimuth could be
measured accurately, because the target and image appear as a point target in that plane. The
elevation was estimated so as to find the true azimuth, which is coupled to the elevation by the
beam steering along conical sections. The problem that will now be investigated is the presence
of cross level, causing the target and image to appear at different locations in both the steered
azimuth and elevation. This is illustrated in Fig. 12.

CROSS LEVEL

HORIZON Fig. 12 — Fan beam tilted in cross level

AZIMUTH

We begin by considering a simple case. Let the array be normal to the ship and pointed
toward the bow of the ship (& =0, % = 0) and let the pointing angle be (az; =0,el; =0).
Let the pitch P be zero and the roll R be finite. From (47) and (48) the peak of the beam in
the face coordinates comes at (y = 0,8 = 0) and the beam is tilted in cross level by the roll
R of the ship given by (61). If the target is somewhere in the beam at angles az; and elg, then
the azimuth and elevation angles in the array coordinates are

yr =sin"!(cos R cos el sin az; + sin R sin el) (65)

and
87 =sin~! (—sin R cos el sin az; + cos R sin ely). (66)

The image is located at az; and —elg; thus its azimuth and elevation in the array coordinates
are

y; =sin"! (cos R cos el sin az, — sin R sin ely) 67)
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and
8, =sin"! (—sin R cos el sin az; — cos R sin el ). (68)

In general the azimuth and elevation in the array coordinates are different for both the target
and image. This causes problems in measuring the angles. The signal returns assuming
geometrical optics are

Sy =AIG, (y)Gs Br)e*? +pG, (y))Gs (5)etP 9], (69)

S,s =AlH, (yr)Gs Br)et® + pH, (y))Gy (3))e™P 9] (70)
and

S;n =AlG, (yp)Hy Br)et? +pG, (v Hy (8))etP+94), (71)

where Gy and Gy are sum patterns in azimuth and elevation, H, and Hjy are difference pat- -
terns in azimuth and elevation, Sy is a sum signal, S, and S;, are difference signals in az-
imuth and elevation, and 8 = (2w h/)) sin el is the relative phase shift between the target and
the image.

Equations (65) through (68) could be substituted into (69) through (71). The unknowns
are the signal amplitude 4, azimuth az, elevation elg, reflection coeficient p, and phase shift at
the sea surface ¢. Thus this model has five unknowns. Using the sum signal (69) as a phase
reference, the magnitude and phase can be found in (70) and (71). Therefore there are five
equations. However the solution could be quite difficult because of the nonlinearity of these
equations. One solution technique is to use- a least-square solution formulated as follows. Given
a set of functional relations

Sj =f(X1; X2y X3r'-0 XN)) I =1: 2) ~-°:N; (72)

if the §; are measured, denoted as S,M , then the following relation holds:

N
Y SM - r(X,, Xy, ... Xy)12 =0. (73)
i=1

The values of X; can be estimated by using a search technique which minimizes (73). For

complex problems this search can be time consuming and may be ill conditioned in regions. In

addition many locally good solutions may not be correct. The nature of the search for given
problems must be investigated in great detail. This technique is basically the same as the one

described in Ref. 6.

The solution for the true azimuth and elevation as formulated assumes an image located
at the same azimuth as the target and with the opposite elevation angle. If the scattering sur-
face does not operate in this manner, more equations can be used by changing the beam point-
ing angles or beam shapes to obtain these additional equations, and the model must be made
more complex with more unknowns.

A technique for obtaining the azimuth when multipath propagation and cross level is
present was suggested by Bernard Lewis, and a simple tentative solution was worked out by
Lewis and the present author as described below. The glint appears in only the elevation plane
even though the beam is not cross leveled, and the target measured angle will be somewhere
along the line connecting the target and image as shown in Fig. 13. The apparent target az-
imuth position in the unrotated frame of reference (az, el) is

az =c¢ + d. (74)
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Fig. 13 — Geometry for obtaining the azimuth when multipath
propagation and antenna cross level are present

az

However what is measured is x and y in the rotated reference frame (az’, el'). The values of ¢
and d can be related to x and y by

c =xcosy (75)
and
= ysin ¥; (76)
therefore the azimuth is
az =xcosy + ysin ¢. an

The azimuth can be found because the apparent target position lies on the line connecting the
target and image. Work is continuing on this concept.

SUMMARY

The intent of this report is to consider angle-measurement accuracies for a broadbeam
search radars whose antenna is a planer array. Two basic systems were considered: an antenna
stabilized against ship motion and an unstabilized antenna system.

The stabilized antenna by normal monopulse techniques yields good steered azimuth esti-
mates, which must converted to true azimuth by using the target elevation. A means of es-
timating elevation with no bias errors was given which was poor near the horizon and im-
proved to that achievable by a monopulse measurement at about 3/4 beamwidth above the
horizon. These estimates are good enough to adequately correct the steered azimuth to the true
azimuth with an accuracy of less than 1° for minimal detectable signals (S/N = 13 dB). The
mechanical stabilization in cross level and electronic stabilization in level have other advan-
tages as well. First, vertical polarization is postulated, which improves the detections when mul-
tipath propagation is present at the low angles. Vertical polarization can be maintained with
cross-level errors but at the expense of a complex feed and dipole structure on the array. Also,
the beams can be accurately pointed in level to minimize the multipath effects and maintain
power in the desired directions. Finally, if the array is tilted in cross level, the ability to scan to
high elevation angles off broadside becomes nonexistent, and better and better steered eleva-
tion estimates must be made to provide adequate estimates of true azimuth. Other alternatives
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to a mechanical stabilization in cross level and full-phased array is a full mechanical stabiliza-
tion. The antenna need then only be column fed to achieve azimuth steering. Of course multi-
ple receive beams are required in elevation. However the difficulty with either approach is that
mechanical movement of a large antenna is required. In this author’s best opinion, when the
antenna is cross-level stabilized, adequate azimuth measurements can be made.

The second method considered was no mechanical stabilization but steering in azimuth
and elevation electronically. The beam is level stabilized but not cross leveled. A means of ob-
taining an estimate of the target’s azimuth and elevation was formulated by assuming the tar-
get and image were at the same azimuth and symmetrically located above and below the water.
A solution technique involving least squares was suggested for obtaining a solution. However
no results are yet available. The difficulties with this method are that the solution is complex,
the polarization changes as the cross level moves, and very accurate elevation estimates are re-
qulred for large cross-level angles and large scan angles. However no mechanical stabilization is
required. Furthermore the method is only suggested and has not been verified.

The concept proposed by Lewis (last paragraph of the preceding section) would provide
good estimation of azimuth when the antenna is not cross-leveled and sea-reflected multipath
propagation is present.
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Appendix A
COMPLEX MODELS

The simple geometrical solutions in the main text are valid only when the sea is smooth.
In this appendix we consider when these solutions are not valid.

The multipath reflection is first considered. Consider forward scattering from a mirror sur-
face as shown in Fig. Al. The classical physical optics solution would show a large first Fresnel
zone and succeeding zones alternating in phase and all in the shape of an ellipse [A1, A2]. The
forward scatter is strong when the angle of incidence is equal to the angle of reflection. The
size of the zones can be fairly large for low grazing angles. For example at a radar of
wavelength 10 cm and a grazing angle of 0.59°, the semimajor and semiminor axis of the first
ellipse is 615 by 6.6 meters [A2]). When the source is a point source, most of the contributions
are usually considered in the first zone, and the remaining zones more or less cancel out. How-
ever if the beam is narrow and illuminates small areas of the Fresnel zones, the forward
scattering changes, because the contributions from the various regions are weighted differently
than when a point source is considered. For targets at low elevation angles the first Fresnel
zones appear at a fairly large distance from the radar, and with normal beamwidths on 2D ra-
dars the illumination of the most important Fresnel zones can be considered as though they
were illuminiated by point source. However at high elevation angles the first Fresnel zone
moves in toward the source and the beam weight may have to be taken into account. A
constant-power contour of two tilted beams on the mirror is shown in Fig. A2. We assume that
the pecular strong contributions lie in a small region near the intersection of the contours,
although there may be some geometries where this is not true.

For rough surfaces the forward scattering is much more complicated. Two experiments
will be considered. In Ref. Al an experiment is described in which the direct path and
reflected path over a rough sea was separated by using narrow-beam antennas. The illumina-
tion was provided by a broad-beam pulsed radar with a 9-cm wavelength. The experimental
results are shown in Fig. A3. The results show a constant signal voltage on the direct wave be-
cause of the absence of multipath propagation. The indirect (reflected signal) shows an in-
terference effect by bouncing up and down with a time constant of a 0.5 s.

RECEIVER

Z ' 4

Fig. A1 — Geometry of forward scatter from a mirror
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for two oppositely tilted fan beams

REFLECTED WAVE DIRECT WAVE

\ y
A\/\\/*\WA
l{(\,l\lvl\Jl 1 1 [ 1 | 1 | 1
o 1 2 3 4 5 6 7 8 9 10 1 12
TIME (SECONDS)

AMPLITUDE

Fig. A3 — Variation with time of 9-cm horizontally polarized radiation reflected
from a rough sea at a grazing angle of 11° (from Ref. Al)

In Ref. [A2] another experiment is described, which was conducted by Ford and Oliver.
The experiment used a narrow beam to examine the scattering from various reflecting areas.
The results basically show that there is a large region of low-level diffuse scatter extending over
a large region away from the more-or-less specular Fresnel zone.

Thus for the forward scatter we ignore the beam shape and the diffuse scatter. Therefore
the geometrical optics solution with p being variable is valid. However there may be situations
where these assumptions break down.

Next the target model is considered. If a target reradiates energy at about the same mag-
nitude along the direct and indirect paths and does not change with time, it is considered a
point target. For height determination it really does not matter (as long as there is signal
strength) if the reradiation is different along the direct or indirect paths.

In summary, many factors affect the height determination in radars. Some of them are
the surface-reflection effects, target characteristics, and signal strength across the antenna aper-
ture. Others are propagation effects such as refraction and ducting. Most of these effects are not
considered in the analysis.
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Appendix B
ERROR PROPAGATION THROUGH TRANSFORMATIONS

The error propagation from the array measurements to the stabilized-coordinate equa-
tions, (56) and (57), are studied by a truncated Taylor series expansion. The series can be writ-
ten as

daz; 0 azg

0 —_—s
azg| _|az; 5y 96 |[ay
[els] [els0 + del, delg [AS]' (B1)
dy 98

with the definition
daz;, 0 az

—_| oy 996
¢ del; del (B2)
dy 996
the errors are
azg| y” T
cov [elsl - C[cov [8 cl. (B3)
The elements of C are
az
B - COsaz [cos R cos o ( —sin y cos y)/~/cos2 & — sin> ¥y + (cos Rsin & cos B

— sin R sin &) cos v ]

— sin az [(sin R sin Pcos & — cos Psing) ( —cos vy sin v)/Vcos?2 8 —sin?y
+ (sin R sin Psin.«/ cos & + cos Pcos & cos B + cos R sin Psin B)cos y], (B4)

9 az cos R cos #( —cos & sin §)

= cos az
a3 : “cos? 8 — sin? y
+ ( —sin & sin Bcos R — sin R cos &)cos SJ
— sin azg [(sin R sin Pcos./ — cos P sin &)
+ (—cos 8 sin 8/+/cos? & — sin 2 v)
+ (—sin R sin Psin & sin # — cos Pcos. & sin®B + cos Rsin PcosPB)cos 8], (BS)
ad el

— [(sin R cos Pcos + sin Psin) ( —sin y cos y/~/cos?2 8 — sin?2 v)
dy cos el

+ (sin R cos P sin & cos B —sin Pcos & cos B + cos R cos Psin B)cos v] (B6)
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and
ad el 1

= [(sin R cos Pcos s + sin Psin &)
03 cos el

( —cos & sin 8/v/cos2 8 —sin2y)
+ ( —sin R cos Psin& sin & + sin Pcos #sin & + cos R cos PcosB)cos 8]. (B7)
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