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ABSTRACT

The Tokamak system is a toroidal electromagnetic field plasma
configuration in which the magnetic field ratio B5/B0 is large. This
toroidal configuration, which is one of the simpler magnetic confine-
ment geometries, has led to relatively high plasma temperatures, den-
sities, and containment times. The growing amount of experimental
data, which needs to be explained, reveals the need for complicated
theoretical plasma models simila to those which have been applied
to pinch plasmas over the past several years.

It does not seem possible to explain the experimental data by
using the present two-fluid model applying the usual (classical) trans-
port coefficients. Two major model expansions are obvious: (a)
increase the number of fluids in the model, and (b) take into account
as many spatial dimensions as possible.

A fluid model that includes neutrals, electrons, and ions with
arbitrary charge Z is derived. Cylindrical symmetry is imposed, al-
though the transport coefficients include corrections for toroidal
geometry. Assumptions are discussed under which this model can be
applied to describe a Tokamak plasma consisting of neutral hydrogen,
protons, electrons, and nine ionization stages of oxygen impurities.
Some methods are outlined for the numerical (difference) solution
of the resultant system of highly nonlinear partial differential
equations.
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FLUID MODELS FOR TOKAMAK PLASMAS

INTRODUCTION

The Tokamak system (Fig. 1) is a toroidal electromagnetic field plasma configuration
in which the magnetic field ratio B,/Bo is large. The duration of the Bo pulse is short com-
pared with the characteristic time period for B,. The plasma density is typically of the order
of 1013 cm- 3 , the temperatures can exceed 1 keV (1), and the energy containment time
reaches 10 ms (2). Because of these qualities the Tokamak plasma has gained considerable
interest for controlled thermonuclear fusion research.

The growing amount of experimental data to be explained, as well as data that will
accrue from Tokamak devices being planned, reveals the need for complicated theoretical
plasma models (magnetohydrodynamic models) similar to those which have been applied to
pinch plasmas over the past several years. These models can be evaluated only by numerical
techniques. A two-fluid system comprising heat conduction of electrons and ions, ohmic
heating, temperature equipartition, and field diffusion has been solved by Y. N. Dnestrovskii
et al. (3,4). Calculations for the same combination of effects, but with different assumptions
for the transport coefficients, have been reported by H. Luc, C. Mercier, and Soubbaramayer
(5,6) and by R.A. Dory and M.M. Widner (7). The influence of impurities has been included
by the present author (8).

It does not seem possible to explain the experimental data by a two-fluid model apply-
ing the usual (classical) transport coefficients. One improvement might be expected from
deriving new transport coefficients which incorporate possible turbulence effects due to in-
stabilities. This does not affect, however, the basic fluid model for the plasma.

On the level of the fluid description, two major model expansions are obvious. The
first one concerns the number of fluids. In the experiment some influence of neutral par-
ticles and of impurities like oxygen has been observed (9). The second expansion refers to
the geometrical dimensions taken into consideration in order to include deviations from
symmetry and macroscopic instabilities.

In the following sections a fluid model that includes neutrals, electrons, and ions with
arbitrary charge Z is derived. Cylindrical symmetry is imposed, although the transport co-
efficients include corrections for toroidal geometry (neoclassical theory). Assumptions are
discussed under which this model can be applied to describe a Tokamak plasma consisting
of neutral hydrogen, protons, electrons, and nine ionization stages of oxygen impurities.

The author is presently at the Max-Planek-Institut fur Plasmaphysik, 8046 Garching bei Miinchen,
Germany.
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Fig. 1 - Co-ordinates for a Tokamak plasma config-
ouration. The ratio of Bz to Bo (magnetic field along
the toroid axis to magnetic field perpendicular to the
axis) is large for such devices.

Finaly, some methods are outlined for the numerical solution of the system of partial
differential equations which corresponds to the multifluid model.

On the basis of this report, a computer program has been developed. It will be applied
to the data of existing and planned Tokamak devices, and the results will be published in
future reports and papers (10).

FLUID DESCRIPTION OF PLASMA

Considering a fluid model for the description of a plasma, we make the basic assump-
tion that we understand the plasma sufficiently well as soon as its densities nk, its flow
velocities Vk, its temperatures Tk7 and the electromagnetic field quantities E and B are given
as functions of space and time. The subscript k indicates that we might have to deal with
several kinds of fluids, such as electrons and ions with varying charges, or neutrals. Each
type of fluid (component) obeys the laws of conservation of mass (Eq. (1)), momentum
(Eq. (2)), and internal energy (Eq. (3)). For the electromagnetic field, we have to satisfy
Maxwell's equations (Eqs. (4) and (5)). The conservation equations are

84- + div(nhv) = Ank (1)

Tt7(nkmkvk)+ (vk grad)(nkm v+ nkmkwk (divv)=- grad ph + Fk + AP* (2)

aj(3 nkTk) +div (3nkkTkv) -div qk -Pk divvI, + AE (3)

and Maxwell's equations are

t = -c (curl E) (4)

2
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and for the neutrals the forces are

Fo = 0. (11)

The electrons lose momentum in recombining collisions and exchange it elastically with
neutrals and ions:

APe = -neniZQmeve -none (memo/me+mo) <aeoveo> (Ye vo) + Pei (12)

According to Spitzer (1ib) we can write

Pei = neehsp i =-Pie. (13)

For the ions, the ionization and charge exchange collisions are important, in addition to the
kinds of collisions mentioned for the electrons.

Applying Eq. (13), we obtain

AP, = nOne s mjv0 - nen1 Q mivi - neenspi

-n0 ni mr (( i + UC) ui0 > (v1 -v0 ). (14)

In these equations 0 e0 (ajo) denotes the cross section for elastic electron (ion)-neutral col-
lsions; OCE is the cross section for charge exchange, The rate of change for the momentum
of the neutrals can be expressed as

APO = -nOne S movo + nenj Q movi

+ nOnimi K(+ + acE) p 1 0 ) (v -v 0)

+ noneme Kaeo Veo)(ve -v). (1)

In a similar way, we construct the expressions for the energy rates of change. The coefficient
of equipartition between electron and ion temperature is denoted by ceq . and ionization
energy by X. The remaining symbols are self-explanatory. The electron and ion energy rates
are given by

Ae -- kTe nenj Q Z-none S x

+ -pr -none &(kTe kTo)-nen/ ( -) (16)2 ~ceq 

4
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and

2 2
AR1 = h lT 0 n~n S - ~kT1 nine Q

+ 3 neni (~~'L - noni 3 (kT; kTo)

+ ri (vi - Vo )2 * (17)

The energy loss due to radiation is denoted by Pr. Frictional heating is described by ri and
ro for ions and neutrals, respectively. For neutrals,

AEO = 3kTi nine Q-2 kro nno S
2 h2 2 1 e lT

+ none (^kTe - lTo) + nonj 0(kTi - hTo)

+ ro 0 V, -vo) 2 . (18)

The collision cross sections, averages (e.g., (ceo Ueo) ), and the functions S, Q, a, A, r1, and
ro are collected and investigated in more detail in Ref. 12.

GENERAL SIMPLIFYING ASSUMPTIONS

We have arrived at a rather formidable number of equations for the variables ne, ni,
no v, VV, vo, Te, Ti, T0 , and B. It is quite obvious that the system is much too complicated
for analytical methods. Also, a numerical treatment of such a set in three dimensions and in
time exceeds the capacity of the largest computers which are available today.

In order to simplify the system of equations we will make several assumptions; we will
not, however, try to justify these assumptions.

The quasi-neutrality condition

nt. (19)
eliminates the continuity equation for the ions.

Inserting Eq. (1), we can rewrite the left-hand side of Eq. (2) as

nkmk ( Ad + (vk grad)vk) + mhvk Ank.

5
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For the following we will neglect the inertia terms, i.e.,

n Mk( (vh+(V' gad)v) v O, (20)

as being small compared to the rest of the equations. In certain cases (e.g., charge-exchange-
created hot neutrals of very low density in Tokamak discharges) this simplification might
have to be revised.

As the remainder of the equation of motion for the neutrals, we obtain

0 - mov0 (neni Q - nenO 8) - grad p0

- nonemovo S + ninemoVi Q

+ nonimi <( 1 + UCE) vio>(Mi VO;

+ noneme (aeove0) (VI -v 0 ). (21)

We resolve this equation for the particle flux n0 v0 :

n0 o 0 = [ -grad Po + noneme (aeoueo) ve

+ (nemo Q + nomi ((O~o+ OCE) p 0 ) nivJ/[line M.( e o (( ~~2 C 0) >) I zI0 nO ° 

1 nimi + aCE) Ui0 ) + neme <OeoVeo (22)

This expression for the particle flux has to be used in the continuity equation for the neu-
trals. The first term can be recognized as the usual particle diffusion term.

In order to arrive at a generalized Ohm's law, we multiply the electron and ion equa-
tions of motion by mi and me, respectively, and form the difference of both equations. We
use

M < and Z me <1 (23)

and the definition of the current density

j 'nieZvj-ne eve =nee(vi-ve).

M- - -

6

(24)



NRL REPORT 7340

Then, Ohm's law becomes

E = Me grad pi -- grad p, -- (vi X B)
minee flee c

+ (j XB) -fme-Z nnSvi
ne e c (i X B)-fnee n0ne i

m me nO ni + (CE uiO) + ne(S (geOUeo) )] (Vi vO

+ [ 7sPne 2 0 (Zs+ (uove0))] j. (25)

The last expression suggests a small correction for Spitzer's resistivity due to the presence of
the neutrals. (Reference 12 presents the conditions for which it can be omitted.) This cor-
rection is

tic =f sp + -ne- n0 (ZS + (aeove0) } (26)
nee

Resolving Eq. (25) for nee (E + -vi X B), and inserting it into the equation of motion for
the ions, results in c

nOni ZS mi + mi + ICE) v4 + meZ(Qeoveo) (v; vo)

1
=-grad(Pe +pd)+-(j X B)

C

+ e- nO (ZS + (eOUeO) )27)
e

In principle this equation could be utilized for computing the ion particle flux nivi. This
direct approach, however, breaks down for no - °

ASSUMPTION OF CYLINDRICAL SYMMETRY

In the following, we restrict ourselves to cylindrically symmetric plasmas (and boundary
conditions). At first we will prove that the radial velocities of electrons and ions are equal
under these conditions. Applying Eqs. (19) and (7), and constructing the difference between
the continuity equations of electrons and ions, we obtain

a Irne (V4-.r)] 0. (28)

�W I I

7
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Since r is bounded,

r ne (Vi-4 ) = const

must be valid. At r = 0, n, and the velocities cannot be infinite; therefore,

const = 0,

and

4 = ue ur. (29)

This equation will be useful for the transport of thermal energy in the equations for Te and
Ti.

From Maxwell's Eqs. (4) and (5), we find

" = {o;04e.. i (rEO} (30)
Tt tc ar r a (rar

(which suggests that Br = 0), and

ec i sr FT{h 

With respect to our special Tokamak field configuration (see the Introduction), we can assume
that

aB, _ -y- a (rEO.s 0 (32)

A procedure analogous to the one which leads to Eq. (28) produces

EO = 0. (33)

Inserting this result into Eq. (25) yields an expression for the radial ion particle flux which
also holds for nO -a0.

c = fl B, e none S Vb

+ neo [ni ((2i+o CE) V1 )i +ne(S-QjeOV ))] (ub-u$)+¶+?jjo. (34)

In order to present i4 in its more familiar form, we multiply Eq. (33) by B.; and evaluate
Eq. (27) for j0 B2 by multiplying the z-component of Eq. (25) by B0 and find

8
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ur (Bz + B( +c (c n~nl (zs m + m ( + acE) u 0) + me Z (0eOLeO)))

me 0 S (ubB, - KBo)
e 

me en0 (l. ((Q + t u> ) +iO) + S (au0 )" [B0 (u' uz }e Kne \2 \e /z-z

-Bz (vo -uo)] + C2 7c nontv? ( ZS mi + Mi (( 2 + IOCE) U)

+ meZ (Ueoueo)) -cEzBo -?, c2a(Pi +PI). (35)

What we did here was actually construct the Poynting flux E X B from Ohm's law (Eq. (25))

and insert i X B from Eq. (27). Without the corrections for neutral gas (no - 0), we arrive
at the usual expression

Vi - / 1\ a (p E Bo_
r TIC Be2 +y 2) ar(p +pi) B2 + B 2 ) (36)

where the two terms constitute the familiar particle diffusion and pinch effect.

It might be worth mentioning that for the temperature Eq. (3) the knowledge of Vi is
sufficient in cylindrical symmetry since v occurs only in the "div" operators. The friction
terms in Eqs. (17) and (18) are usually negligible or well enough represented by the radial
components of the velocities.

INCLUSION OF EFFECTS RESULTING FROM TORUS GEOMETRY

Modifications

Up to this point we have developed a system of equations for the ion and neutral densi-
ties, for their radial velocities, for the temperatures T7, Ti, and TO, and for the electromag-
netic field components. We have imposed the conditions of cylindrical symmetry so that our

plasma parameters depend only on radius r and time t. We intend, however, to apply this
model to a toroidal Tokamak plasma. There, the torus geometry induces several important
effects. The radial ion velocity, for example, is strongly influenced by the Galeev and
Sagdeev trapped particle motion (13) and by A.A. Ware's (14) pinch effect. We also will
miss the Pfirsch-Schluter corrections (15). Fortunately, taking into account these effects is
possible without increasing the number of parameters and coordinate-that is, these correc-
tions can be expressed by variables of our present cylindrical model.

We will use the so-called neo-classical transport theory (16). It has been worked out for
an electron-ion plasma. This theory distinguishes between three different regimes according
to the collision frequency v:
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(a) the "banana regime," where

vT (R B ) < ( RK) (37)

(b) the "plateau regime," where

(R )1VR (R Bo (38)

(c) and the "classical regime," where

vR 7 rB > > (39)
VT \RB /

The major radius of the torus is denoted by R; the quantity B represents the magnitude of
the field, and the thermal velocity is defined by

VT -. (40)
m

The collision frequency has to be treated separately for ion-ion and for electron-ion collisions.
In the latter case we find that (17)

_1 4.J2*7TZ2e4 niIn A.
Vei `T 3,/m [secel] (41)

where (using cgs-units)

J3(k e 2 ,forkT <3619eV
Aei 2/eVhe -(42)

3 X 7.61X10- 6 X kT'
2vTZ e3 V, £forkT >36.19 eV.

The analogous formula for the ions is

it. ± 4' 4 Znln. tseS'1 (43)
rii 3\/ii (kTp)312

where

Aii 2 32 ke ( (T n ) 44)
2 Z2 e3 7rn. 

10
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Particle Flux

It has been shown (18) that electron-ion collisions determine the particle flux in the
present problem. Recently M.N. Rosenbluth et al. (16) derived for the "banana regime" the
relation

Vb= P2OVei1121+k Ia
Ur = el Re kTe )n Wr

+ 043(1 3kIC + 019/ 1 a~
( kT, ar ) (kti br)

-2.44 ( Eze;) (45)

In this formula, Pe0 is defined by

p2 _ 2m, hte c2 [CM2] (46)
e e2 e0

The expression in brackets corresponds to the diffusion term in Eq. (36), and the last term
describes the Ware pinch effect.

In the "plateau regime" we use (19) the relation

r( 2R Brvei \ ( 8 B2 / + Pe Veiy 35 (47
For the classical case the anomalous pinch effect may be neglected (19); however, we must
apply the Pfirsch-Schlfiter factor as a correction for torus geometry:

I + 2 % ( rB) 2 (48)

Using Eq. (48), with i7jl/?ti = 1/2, we obtain

(2kTe me c 2 1 an
.VC -V0 k e22 / 'Hr (49)r c~ei ( 2 B2 ) t- (g

Heat Flux for Electrons

Reviewing our basic system of Eq. (1)-(5), we notice that the heat flux constitutes the
fourth velocity moment of Boltzmann's equation. Since we want to close our system of
variables with the temperatures, we always have to make assumptions for the heat fluxes.
In the present problem we again utilize, of course, the results of the neo-classical transport
theory.

11l
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We assume again that electron-ion collisions are dominant for the electron heat flux.
For the "banana regime," Ref. 16 obtains

n, kTe p2 R /1 3kT_ 1 ak_)

qbeTe~e r7TT~

,jan / ki' fjc +1.53-- 1 + k + 1.75 n kTe- L. (50)nar h( e/

If the collision frequency belongs to the "plateau regime," we have

3 2 -R (nehe ) Pe a n5lqeP 2 2TC)2 Bo ~ (51)

where pe is formed by replacing B2 with B2 in Eq. (46).

The classical heat conductivity must also be corrected by the Pfirsch-Schliter factor,
Eq. (48), which has here a slightly different numerical factor of 1.6. The basic formula is
taken from Ref. 17:

qC nkTfehTe Tei( 1 X2 + _y3 + (6 I rB 21 akTe (52)
me X 4 + 61 X2+60 L RB ar

where X = We Te. The cyclotron frequency is

eB
(oJe . (53)

eC.

The coefficients yq, yo, B, and B0 depend on the ion charge Z and are given by a table in
Braginskii's article (17).

Heat Flux for Ions

The most important part of the plasma heat flux is carried by ions. In the "banana
regime" we use (16)

qb--0.68 Q &O) L (54)

with

2 2 mi kTi c2

O _iZ2 e2 B2

in analogy to Eq. (46).

12
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In the "plateau regime," we find (19)

X =_ 3 T (r pi n' ,k,,Tjc) akTi (55)
2 Be0 R 2 Ze )3r

where

P?=2 m, hkT,. c2 (6

P Z 2 e2 B2

is obtained by replacing Be by B in the similar expression for pie.

The classical case has again been given by Braginskii (17)

(n qiT; ( 2 X )) k kTi (57)

Mi (X4 + 2.70 X2 + 0.677) / r

where X = wiiri, and

ZeB
Cji =Mi C (58)

The correction 4 is the same as in Eq. (52).

Modifications Due to Toroidal Averaging

The formulae for the banana regions are obtained by averaging over toroidal surfaces.
Unfortunately, the "adiabatic compression" terms do not emerge from this procedure in a
form as simple as in the purely cylindrical case. For the ions, we have to write

-Pi div vi --- (r n kTi Ur)

+ V r (k T Ln - 0 1 7n m)k (59)

and in the electron temperature equation we have

i a
-pedivve >-+ a (infki'elr)

I an akT1\
0r v kTi - O.17n - . (60)

13
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For similar reasons we have to modify Ohm's law. Equation (25) would yield for the axial
component of the electric field

I
Ez =-U VB + 7? jZ

if we omit the corrections due to neutral gas. From neoclassical theory, however, we arrive
at

IZ =i(}[n ( Jk sk/-)
X (-2.45 (kTe +ki*) a-0- 7 '- e . . (61)

\ela r r /

The ohmic heating rate H is given by

E = Egj. (62)

It miht be worth keeping in mnd that an Rosenblu07 hs expressions aTe derived onl
for the banana collision frequency regime and only in the limit of small aspect ratio rIR.

ELECTRICAL RESISTIVITY AND EQUIPARTITION TIME

In order to complete the compilation of coefficients, we note here also the electrical
resistivity. Basically, we use Spitzer's formula

,e Pei 63)

For Z = 1, the quantity , assumes the value of 0.51; for Z > 1, it decreases slightly and
can be represented by the formula

0.457
= + 0.29. (64)
1.077+Z

Some experiments indicate an enhancement of the resistivity as soon as the electron
drift velocity

nle

exceeds the sound speed

14
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/2 hT,
vis 

Approximating the experimental results we would have to multiply ta by the function

1.222 (VD ) -1.888 (D) + 1.766 (65)

for VD/UiS > 1.
In Eqs. (16) and (17), we defined the equipartition term to be

3 (kTni ) -kT
1%i K Ceq

In Spitzer's book (11) we find for the equipartition coefficient needed here

Ceq Z2 e4 in Ai ( me mi (65)

Usually we can neglect the ion contribution in the temperature dependent term.

ESTIMATES FOR CORRECTIONS DUE TO NEUTRAL HYDROGEN

In the previous two sections we have compiled the transport coefficients for a fully ionized
plasma consisting of electrons and ions of charge Ze. As indicated in the third and fourth
sections (e.g., Eq. (26)), these coefficients might be modified by the presence of neutral
hydrogen. In this section we will estimate the importance of such corrections in the low-
temperature regime (kTe ; 10 eV) either at the beginning of the discharge or near the walls
where neutrals are likely to exist. We start with Eq. (26) and insert the following quantities:

In A 10,

0eo 5X1O7 1 6 [cm 2]

S 2.3X10- 8 e713 .5l/kTe -[em 3 s-' I
13.5

In these and the following expressions of this section the temperature hiT has to be in units
of electrovolts. Equation (26) can now be written in the form

me hi . [1.5X10- 5
+ n

e2 n LFT (kTe) 2 + 3X -8)
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Depending on kTe and the degree of ionization, the correction term exceeds the first one for

(n0 /n1)(k4e)2 > 500 (66)

Under conditions near ionization equilibrium the correction, therefore, is negligible.

In view of the neutral gas terms in Eq. (38) we will now estimate the ion velocities
and i. To this end we assume that the center-of-mass velocity is zero in the 0 and z direc-
tions, which provides

v,= _ me (67)
e n1 (MinZ;;e

For the angular component

VQ _ me eBB2
I (ke ni mn 4r Br

We need the B_ field, which for a Tokamak can be roughly represented by

B, BZ O
1+Cos

R

In the limit where r1B <C 1, we obtain

a__z BzO cosb Bo0

ain Ri~r\8) 2 R
B kl+ cosO)

Inserting typical data ( = 100 cm, BzO = 30 kG, and n = 101 3 cm 3 ) we obtain

v 5XlO 3[cm sec- ].

The order of magnitude of

q= .me jz

might be calculated from both the total current Iz (electrostatic units) and the discharge
radius R0 (centimeters) through the relation

j2 = Iz ff _R 2).

With z = 100 hA and R = 15 cm, we estimate

LI _ 5X10 4 [cm -l.
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For comparison, the thermal speeds for protons are of the order v' 107
cm sec- 1.

We turn now to Eq. (35) and compare 1B12 with

LI = C2 7& nonim0 [s + ,4( + OCE) 140) + f (eo Ueo)]

The sum of the ion-neutral collision rates is about 5X10- 8 cm3 sec- 1 . With nr
6X1014 (kTer 3I 2 , we arrive at

LI - 5X1W-2 4 non (kTe)-31 2 [cm-l g seC 2 ].

Since B has a magnitude of several kilogauss, we conclude that

L1 <<B2 .

It seems quite unlikely that v4 becomes much bigger than vi; this also allows us in Eq. (35)
to drop the term proportional to v.

Finally we have to compare the terms

L1 = me c Zno S 4 B2 /e

and

2 me 1 [((2 acE) CC 0) +S- @eo Veo)1 B2 (4 -vg)

with the term

L3 c Cojz B 0.

The last expression arises from cEB 0. Application of the above-mentioned estimates and
approximations leads to

L1 1.7X10 1 2 no Bz,

L2 1.4X1011I no B2,

and

L3 t1.7X10 6 Iz B 0
R2 (iTe) 3/2

where IZ is in amperes, iUe in electrovolts, Be in gauss, and R. in centimeters. The ratio of
Li + L2 and L3 provides us with the criterion

17
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no jBz R 2 (kTe) 3 1 2 > oz68n4a >ke } 1017, (68)
I, Bo

which specifies the limit above which the neutral gas terms become dominant. At the center
(r = 0), Bo always vanishes, but so does d in L1 and L2 For a typical set of parameter
values (n 0 0 = 1 13 , kTe = 10, Iz = 104 Bo = 5O, Rt = 15 and B. = 3X10 4 ) in the initial
phase of the discharge, the correction from L, and L2 amounts to a few percent. Similar
results are obtained for increasing Iz and B9 in the interior of the plasma, as well as near the
wall.

Thus we can conclude that for the particle flux given by Eq. (35), all corrections due to
neutral gas are negligible.

Since uf is only about one order of magnitude higher than VI, we might extend this
conclusion to the electric field component Ez (Eq. (25)) and thus simplify Ohm's law
considerably.

TWO NEUTRAL GAS COMPONENTS

Under conditions where recombination is small, we are in the present model left with
the processes of ionization and charge exchange in order to extinguish or create neutrals. In
a discharge, we will start with cold neutrals being ionized at relatively low temperatures. In
later phases only, near the (cold) boundary, neutrals will be left at noticeable densities, On
the other hand, neutrals will arise from charge exchange collisions displaying the temperature
of the ion. According to this picture we will assume two components for the neutrals. Since
the temperature of the cold neutrals is not expected to vary much, we neglect Eqs. (3) and
(18) and replace them by a constant

kTc = const.* (69)

For the hot component we mentioned already,

keT = kid. (70)

We have to consider, however, two equations of continuity for which we take into ac-
count the following source terms:

Anh = -nh ne S + n' n' Q + KOCE Ui 0) n% ni (71)

and

An. -ne ne S -(VCE viO)n ni. (72)

oWe use the subscript h for "hot component," the subscript c for "cold component."

18
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With no = nh + nt, Eq. (8) is still valid, of course.

Applying the estimates of the foregoing section and the formula Q ; 10' 3 (13.5/
kTe )l /2 cm3 sat, we can reduce the radial component of Eq. (22) to

no vr =-|A o + no u, (73)
0 nimi [(ajo/2) +cEI vo)) Ur (8

as long as

ne < 2X104 (74)
no kTe

with k Te given in electrovolts. This condition is practically always fulfilled.

From a review of Eqs. (15) and (21), we learn that we can make use of Eq. (73) for
both neutral species by replacing no with ni or nh and employing the appropriate tempera-
tures.

IMPURITIES (OXYGEN)

There exists experimental evidence (8) to the effect that the walls of the discharge
vessel or the pumping system release high-Z elements in such quantities that their influence
on the plasma is not negligible. Mainly, oxygen contributes to losses through radiation and
ionization. Ionization also modifies the electron density due to the great number of ioniza-
tion stages, even though the impurity concentration is considered to be a small percentage
of the plasma density, i.e.,

9

21 Oi<C ne. (75)
i=1

We further assume that the impurities have the same temperature as the plasma ions and that
their diffusion (flow velocities) is small compared to the ionization and recombination
process. In order to describe these impurities, we follow the procedure of Ref. 20:

ao1-=-ne °1 Si + nOe °1 (a1 + 72 ne),

+one Ok+l 1(ak +yk net),

ao = n. ° 8 8 n°9 0(us + y8 ne)_at 

19g
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The subscript k denotes the stage of ionization and runs here from 1 to 8. Formulae for the
radiative recombination ak and the collisional recombination y, are taken from Ref. 20; at
the relatively low densities of present Tokamak discharges, the three-body recombination -y
is negligible. The ionization rate coefficients S/ were updated by approximating graphs pre-
sented in a recent publication (21).

In the following formulae, we use the notations x log1 0 (kTe) and y -log 1 0 (S). The
percentages in parentheses behind each formula give the root-mean-square and the maximum
deviation from the values given in Ref. 21 for the range 1 eV '2 kT < 10 eV, and
1(tr 6 cm3 s- Is. The subscripts follow the spectroscopic notation (1 is associated with
neutral oxygen.)

Y= -2.9063 x - 15.342 eC + 1.5355 eCX2 for x < 1.2; (13%, 21%)
yj = -0.5533 x - 3.1989 x 1 - 43587 forx > 1.2; (3o, 7%)

Y2 = -0.94488 x - 32.134 e-X + 8.8149 e-X2 for x < 1.2; (14%, 28%)
Y2 = -0.05623 x2 - 2.9465 x- 2 - 6.6862 for x > 1.2; (2%, 5%)

Ya = -10.827 x2 + 27.882 x - 27.504 for x < 1.2; (9%c, 17%)
y= -0.05952 x2 - 3.9097 X-2 - 6.8502 for x > 1.2; (3%, 8%)

Y4 = -1.235 x - 9.5417 x-1 - 1.1978 for x < 1.8; (10%, 20%) 77
y4 = -0.45583 x - 5.6989 X-2 - 6.1611 for x > L.8; (1%, 2%) (77)

y = -2.3318 x - 14.108 x-1 + 2.6555 forx < 1.8; (3%, 8%)
yS =-0.49385 x - 7.328 X-2 - 6.2156 for x > 1.8; (2%, 5%)

y6 = -7.5127 x- 2 - 0.38242 x- 1 - 7.4312 for x < 1.8; (5%, 9%)
y;= -0.46353 x - 8.0959 x- 2 - 6.637 forx > 1.8; (2%, 4%)

Y7 = -54.94 x-3 + 10.256 x-1 - 11.447; (5%, 15%)

Y8 = -67.015 x-3 + 13.062 x- 1 - 12.391; (3%, 8%).

Even the relatively high deviations for y2 lie well within the estimated error (21) for the
curves approximated.

The power ( per unit volume) lost through ionization and recombination can be ex-
pressed by

S 3

Pi = xjn (SjOjjn tOj+) + kTe ajn Oj+l (78)
j=l 

where x is the ionization potential.

20
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For energy loss due to radiation, the most important resonance lines are taken into
account [20]:

P T=2X108 xH (" )1 12 ne (02 e-15/kTe + 03 e-16kTe

+ 04 eC1 6 1/kTe + 05 e-2 0//Te + 06 (e 121/kT + e83/ikTe)

+ 2 07 e 5 75 /kTe + 2 08 e-65 5/iTe). (79)

The radiation power is normalized to the ionization potential XH for hydrogen atoms.
Bremsstrahlung is important in the heV temperature region and taken into account (lic) by

bC (27r kTe l/ 2 25 ¾r e6 Z2 nine 2./3
Pbr 3 me )3h me C3 7r

= 1.334X10- 1 9 Z2 nine VWTe [ergs cm-3 S7-1 ] (80)

if kTe is given in ergs and the densities in cm- 3 . This formula brings up the question of
which Z should be used, since we basically want to treat the plasma as a three-fluid system.
We will adopt here the model of an average ion charge

9

nH+ E Zoii

Z = 1_ =2 n - le (81)
9 9

nFI + 2 0i ne EL (Zp-1)0i
i=2 i=2

because

9

nH f ne-E Zi~i. (82)
i=2

This average charge Z varies, of course, with the location, depending on the status of ioniza-
tion. We already neglected the diffusion of the impurities; the assumption of a small ratio
me/mi is not affected by oxygen. For these reasons, we do not introduce an average mass mi.

SYSTEM OF DIFFERENTIAL EQUATIONS FOR A TOKAMAK PLASMA
FLUID MODEL

In this section we collect the equations previously derived and rewrite them in a form
which is suitable for numerical treatment. The right-hand side of each equation shows, first,
the terms which are common to all three collision frequency regimes, then, following the

21
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dots, the terms which are specific to the banana, the plateau, and the classical regimes, re-
spectively. In the actual calculation, the proper regime should be chosen for each time point
and each volume element.

The equation of continuity for the electrons assumes the form

a e =ne (nh + ne) SH - ne n QH +LE i atZ

where, in addition, we add

(a) "banana regime"

13 a 3ne (r a~r3
r 3r \ ar ar

+ a n2 'kfe -a42 'kT 1) (83)

(b) "plateau regime"

+ar x r(kTe) 2ar' 32 r )

and

(c) "classical regime"

1 a (71 nane)+ i(r ane )

The coefficients are defined in the following way for the banana regime.

ho = 8rZn Ae ( ce ) 2(2r m ) 2

3 \Be \ kT' R 

h, = 1.12 [1 + (hTi/kTe)] h0

h2 = 0-43 hol/Te

h3 = 019 ho/hTe

2.44 X 4 X jZ (In Aei)(ce)2 / 2mer f2

3 B (VR 1.9xD k )Te

g1 =gd0/l4T kTe )

223
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rig2 =2.44g 0 [1 +(k~ij/kTe)1 R B0

r 1
g3 =0.69go RBohie

g4 =0.42g1 RBo Te

With these auxiliary definitions, we obtain finally

a, = h +g2 r

a2 = g1

a3 =g3 r-h 2

a4 = h3 + g4 r.

In the plateau regime, we find

3 X 0.9 X 35 X rBp (kiTe)2

32N/PJR 2 Ze 4 ne (lnAei)Bz

k2 = 0.9 X 35 P ( cr \2 (me kTe\ 1/2
2 32B, (1-kj) keR \ 7ir1

2 (r me kTe)1" 2 { rc ) 2
B. Bo(1-kj) Re

02 = k2 /r.

The classical diffusion is described by

1 8z /2ec rme\'/ 2 /r\ R )2 ( r 2]
1 r 3 \ r kTe LXBz Bo j

The equation of continuity for cold atoms (kTo) is quite similarly structured:

Inc= ncnf SH fr CHnr nH + -r ( a in.) ....atffl C rfl ark dr/
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where, in addition, we add

(a) "banana regime"

.* * * *+ - I na1 _n- + a2 n0 (r BO)
r ar 8ra

+ 3n n akTe _4n. n. akTi f+aC3 C 9e -a 04 ar (84)

(b) "plateau regime"

.. .... , + - el ne kTe an, $ £2 n a-(rBo)

and

(c) "classical regime"

- 1 ya n I n.)
,,,,,,,, ark~n ar}

In addition to the previously defined coefficients, we obtain

r kT0

nimi (½2L + CH)

where L (= (aiejiv0)) stands for the elastic collisions rate, with hT0 in the argument. Also,

el = k1/ne

C2 - 2/n-

The only major difference in the equation of continuity for the hot neutrals comes from
their time- and space-dependent temperature kTi. Defining

r

m2 nim (IL + CH)'

with hTi in the arguments for L and CH, the density of hot neutrals nh is determined from

,3nh
--- nSH + ne~nHQ + CHflfH

at
Ti+ 2 hT1 2 an)

24
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where, in addition, we add

(a) "banana regime"

1 a / ane aerB )-.... + " +a (a, nh In. + °t2 nh a(ro)
r ar ara

+ a3 nhne a(kTie) n a(kT)) (85)
ar 3 r9

(b) "plateau regime"

1 * .. - a /el nh kTe ane + e2 nh a(rB°) I Ir 1 h ear Efn ar 

and

(c) "classical regime"

1 a / ane \
... * + - yj nh f n )

ar \r ar/

The equation for the temperature of the electrons contains losses due to recombination QH,
ionization of hydrogen (XH, aSH), bremsstrahlung (Eq. 80)

¢2 =pbr/n2'

line radiation from oxygen impurities (Eq. 79)

- n

ionization losses from oxygen

t4 = z Xijo
j=1

as well as losses from radiative recombinations

=E 2ki'e ajoj t1i
j=1

I

25
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The equipartition between electron and ion temperatures is determined by

4Z e4 nAei (2rm \1/2

The heat flux is in the banana regime defined by

r = Z 8ln Aei ec\ 2 / 27r me r 112

Ko = ' k RATe J

K1 = 1.81 Ko

K2 027 IC0

K3 = 1.53 g0

and by

k3( 1.75riP4Z B(ln k )((e)2 me r IJ2

X1 = Xo/(4,r r)

X2 = 2.44X 0No

6R 1

X3 = 0.69 No

R Bo

W4 = 0A2X RB

The transport of thermal electron energy is regulated by the coefficients

5
=T j -2 o If 4 4)

while the "compression" is taken into account through the terms multiplied to:

VI = (hlr)+g 2 P2= 0.17 PI

V3 =gl/r p4 = 0.17 V3

V5 = g 3 -(h 2 /r) P6 = 0.17 P5

V? = (h3/r) + g 4 v8 0 = .17 P7.
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For the ohmic heating terms, the electrical resistivity coefficients have to be defined.

4ii Z ln Aei (ce)2

" 0 3 (XF- -1. 9 V/) k Te
(R 2 7rme 1/2

h hTe 2

??1 =-?lon

-02 =2.44 no 
1
rl

irl
V3=0 .6 9flO RB

14 =0 -4 2 n0 RlB

Using these definitions, we obtain for the ohmic heating

1
1 =-r r2

'7 41rrflJ 4).
T e 47r r f emerges as

The equation for the temperature of the electrons, finally, emerges as

a (3 ne ke )
3

=-hi'e ni nHf QH nh + n) nexHfSH
2 e

where, in addition, we add

(a) "banana regime"

r a........ -
r ar

(K1 - X3 kTe) n2 akTe
L ar

+ (K2 + X4 Te}fl ar - X nkTe a(rB0)
ar

-(K3 + X2 kTe) ne (kTe + hTi) ane]

- ( (1+- kTi) ne. 2 2

-G3 + t4 + t6 ) ne.... (86)
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n 'kT ( ane 3+ T 3 )

+ 3n kTe _TO i 01 )+ra ne er - ar

+VnhTie ( 2ae

k ate+ P5 khE ne 13n,

3 k (anr)

( 3r

a(rBo

/ate 1 / at I-1ov ektit ar} \ r)

f BneX 
a'2 ne 1 ar J

vrn2 (takTe)

+ 3(rB )e) 2(

+ 3 e. ( 113r ) (

ak _

( aki'1
ar I

a0r-B))

r )

~V4 ne ( aerB)) i(ak Ti )

2 ( akT 2

-4fle 3r 8r

(b) " plateau regime"

+- (K 4 ne.kTY akT)+ - (p, (kTi) 2 3e +
+ne er -r 

P2 kTi a0rBo ))

ar )

+*5 (8(m 0))
2

and

(c) "classical regime"

, . . .S.+!I ar (hi') 2ar )

I a
r ar

( rBo))

28
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+ ra ( 2 e ar

+ ne kT, 1 71 Ane)

+L a(rBO)) 2
r ar ) -

A few more definitions are necessary for the "plateau" and the "classical" collision regime:

3 (rc)2
K4 = 2BB (2 i me kTe)1!2

3
p, = 2- 1

3 1
P2 = 2 rk2p2=

iTo = kl/n

ir1 = k 2 /(rn,)

= 3Zln eI (ec\ 2 1 2m 1/2

12Ae ) (rkTe)

The coefficient K5 for the classical heat conductivity can be computed from Eq. (52). The
ion temperature is calculated from the equation

( at 2Z ' ) 3 nMHSHf(nC kTc + nh kT1 )

3 3
-2kT' nH ne QH-A kT nc nH CH2 £2 '

+ ¢j (I 1- k Til Te) ne2 .............. , .. 8 +~t~ (~k~u/k e~n (87)
where, in addition, we add

(a) "banana regime"

* *' +ar ( neT ar)
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+ II[n, kh (01 +02 a-

+03 ne T e -04 nk )]

- PI k n , 2I ) -2 3 1 a (nar) ('arB')
-a'1T1 \8r -a'kT \~) 8r/

- V nehl i k a )(/dr) + v ne 8 r /( ar k

(8flfl ari1 a0-Bofl (8r

+ V2 n a (tn_) k aT +) V4 ne ( ar ) ( kY7)

+1)6% a \%a\r '~ r ar

+ n ar) a-r ) Se (ar)

(b) "plateau regime"

........ +! a (1
2 ne kT2 .kT)

ra (Tr) ar +

+ 5e kT a ( aa kt e e (r
.z ; (rok a ar )r

and

(c) "classical regime"

....... +--( 5 (kT)4 akTi )

+ rar (I6 n.e kTi ane 

+ ne i(g 0a i'j'e)
z r ar \Yi;:-7

The heat conduction in the banana regime is given by
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r - 0.68In An lec \2 (? Mr -r1/2
31 -(Bo ) (EkT1R J

The transport of thermal ion energy is related to that of the electrons through

Oj = rj1Z CU = 1, 4)l.

For the plateau regime, we have to define

2B 3 Z (R )2 (2g mi kT)112

g3 P1 /Z.

p4 = P2/Z

The classical heat flux contains

(2.5x 2 + 4.65) X 9B, [1 + (rB13/RBO )2]
(x4 + 2.7 X2 + 0.677) X 16 7r mj c e7 Z6 ne (ln Aji)2

where x = wiri. The transport is determined by

Y6 = 3y1 /(2 Z).

The poloidal magnetic field Bo in the "banana regime" obeys the field diffusion equation

aBe la r 1 a(rB) ane akTe aAT,]
at arLv1r ar ar Br Thife r J

In the "plateau regime" we have

aMO = a I OJr Bo a(rBo) wl Bk

at ar ar Ca2 Br - r1 B0 AT0 r

and in the "classical regime"

an0 = a ( Bo ane + (3 B)
at ar \ a r 3 ar

The 7's have been defined already. In the "plateau regime," we have

wi =I 7ror

C02 = 7rl /r



DIETHELM DUISiS

a =1 ,2 4J3Z(lnAj)e 2 /2rme 1/2
3 r 4- 3 AhT h Te

The last definition needed for the classical regime is

METHODS FOR NUMERICAL SOLUTION OF THE DIFFERENTIAL EQUATIONS

The system of Eqs. (83)-(88) is predominantly of the diffusion type and obviously
highly nonlinear. Together with proper boundary conditons, we will solve this system as an
initial value problem by finite difference methods.

Structure of Difference Equations

The space-time grid in Fig. 2 helps to clarify the notation for the difference scheme.
The function A(x,t) is abbreviated at the grid points, e.g.,

A(xt) = Au

A(xjpt+At)- Ai.

In the most convenient "explicit" difference scheme, Ai is computed from (known) quanti-
ties of time level t without involving A141 or A 1-. For the simple case of a linear diffusion
equation with constant coefficient a, however, the time step At is severely constrained by
the condition

At < ()2 (89)
2a

in order to ensure numerical stability. There exists no indication that, for nonlinear systems
of diffusion equations with variable coefficients, the stability conditions would be less
stringent.

We investigated, therefore, implicit difference schemes which in principle require the
inversion of a matrix with the dimensions of the number of space points N(j = 1,.. . N)
since the equation for A1also contains, e.g., A 1,1 and A-

It turned out that the difference equation had to be centered carefully. By "centering"
we understand the following: the difference approximation for the time derivative on the
left-hand side of a differential equation (e.g., (Ai - Aj)/At) is centered around the time level
t + (At/2), Therefore, the right-hand side of the equation should be taken at this intermedi-
ate level. The analogous procedure holds for spatial derivatives. The diffusion coefficients
in our investigation were proportional to powers of A(x,t) and to powers of derivatives
3A(xt)ax. Detailed results will be reported elsewhere.
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t

Aj_ A A+I
Aj- 1 A AJ+1

it GD

Aj- 1 Aj Aj- 1
_ pi It~~A M No

Xj-1 Xi XJ+1 x

Fig. 2-Space-time grid illustrating the relationships between the functions Aj, Aj, and Aj. These functions
are used in the numerical (difference) scheme for solving the set of nonlinear partial differential equations,
Eqs. (83)-(88).

Of course, the centered nonlinear difference terms have to be linearized; to do this, the
following formulas are useful:

A = (A +A)l2

AA A A

AB=AB +BA -AB

(AB) = (AB + BA)/2

(ABC) = [C(AB + BA) + AB(C - C)) /2

(ABCD) = [CD(AB + BA) + AB(CD + CD) - 2ABCD] /2

(ABCDE) = [CDE(AB + BA) + ABC(DE + ED) + ABDE(C - 3C)] /2.

We also note the special cases occurring most frequently in the present Tokamak problem:

(A2B) A [2AB + A(B - B)] /2

(A2BC) A[A(BC + 6B) + 2CB(A -A)] /2

(A2B2)= AB(AB + BA - AB)

(A4B) = A 3 (4AB + BA - 3AB)/2.

t = t + A

1

2

t

0 M
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Solution of the System of Difference Equations

As we mentioned in the preceding paragraphs implicit schemes require, in principle,
matrix inversion. Second spatial derivatives, however, are usually approximated by three
adjacent space points using the quantities at the unknown new (4) and the known old (t)
time levels. This produces tridiagonal matrixes for which an efficient method of solution
exists (22). It applies to one diffusion equation. In our present problem we have a system
of equations, and often the "shear terms" (e.g., aAat = 82B/8x2 ) are of prime importance.
However, it is possible to generalize the mentioned method of solution. We begin with an
ansatz for m unknown functions A(1), .A. .4(m):

AQ1)=F(1),W? +F412)A() + + FIm),m) +! EO
J I J+1 I J+I ... I ~~~j+1 .1

.A2) = F(21)_A11 Ft22}_4Q) + +,, Fj2m)A&1 *4)+ii~)Am) +E{2)
(90)

A~m)=8mA(11 + Fm 29 + ,, F(m m}Am + E!m)

With the Eqs. (90) inserted in the difference equations, recursion formulas can be obtained
for the auxiliary variables F and E. Utilization of boundary conditions for these recursion
formulas, and the computation of the wanted quantities t'. { = 1,W), is very similar to the
procedure used in Ref. 22, except that matrixes of the dimension m X m have to be inverted.

The Eqs. (83)-(88) have been written in such a way that the corresponding proper dif-
ference equations can be constructed immediately. The outlined methods proved to be
numerically stable. Only the truncation errors have to be considered in the choice of time
step and number of spatial grid points. Typically we restrict the time step by the require-
ment that

( A.() -A(k) •< 0.1 (k a1,...m) (1)

A final remark concerns the treatment of the impurities. The system of equations
given by Eqs. (76) constitute a system of ordinary differential equations. In order to limit
the number of variables to be stored in the computer, the two-time-level Runge-Kutta method
has been applied to obtain a solution. Sometimes the time step from the condition given by
Eq. (91) is too large for ionization and recombination processes. Then this time step is sub-
divided and the Eqs. (76) are solved according to their own characteristic time scale, while
the electron temperature and density change only with the bigger step as long as these two
parameters are not essentially determined by the influence of the impurities. In the latter
case the condition expressed by Eq. (91) enforces a reduction of At.
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