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ABSTRACT

This report discusses the problem of generating uniform distributed ran-
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interpreted to measure the severity of the defect mentioned above. Implemen-
tation of the spaciral test iz described. A random number generator is pre-
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CRITERIA FOR THE DESIGN OF A
UNIFORM RANDOM NUMBER GENERATOR

INTRODUCTION

Many computer techniques in applied mathematics and statistics require a source of uni-
formly distributed random numbers, The problem is to make available on the computer a
sequence of numbers which behaves like a series of repeated independent samples from a
probability distribution uniform on the unit interval,

The source of these numbers might come from outside the machine; for instance, an ap-
paratus using electrical noise to produce random numbers could be linked to the computer,
or a table of previously prepared random numbers could be stored in memory or made avail-
able on punched cards or magnetic tape. The first method, however, makes it impossible to
repeat calculations exactly, and the second suggestion has restricted usefulness in view of
computer storage limitations and input-output time delays.

Alternatively the desired sequences could be generated within the computer using some
programmed arithmetic process. Efficient and easily implemented on any machine, this
method of producing random numbers has received considerable attention and is used almost
exclusively by computing centers today. Consequently many arithmetic generators have ap-
peared, and various statistical tests to rate them on their apparent randomness have been de-
vised. The output sequences of these deterministic processes are sometimes called pseudo-
random or quasi-random sequences to emphasize that they are not really random but merely
appear to be from a statistical point of view.

By far the most successful arithmetic random-number generators are those based on
linear congruential sequences, often referred to as linear congruential generators. This report
will discuss the general class of linear congruential random number generators and will point
out a recently discovered property of these generators which can have serious effects in
Monte Carlo applications. The spectral test, an a priori statistical test for the randomness of
the output sequence of a congruential generator based on the Fourier transform of that se-
quence, will be developed and interpreted to measure the severity of the effects mentioned
above, Finally, a random number generator will be presented in which two linear congruen-
tial sequences are combined in such a way as to produce an output string with better statisti-
cal properties than either sequence used alone,

A CDC 3800 Fortran computer program for the random number generator and a discus-
sion of the linear congruential sequences selected for the generator are given in the appendixes.
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LINEAR CONGRUENTIAL SEQUENCES
A linear congruential sequence {ac n } is defined by the relation
Xp+t = ax, + ¢ (modulom), n= 0, {1)
where

xg is the starting integer value, xg = 0,
& is called the integer muitiplier, ¢ > §,
¢ is called the integer increment, ¢ = 0,
m is the maodulus, m > xg, m > a,m > ¢.

A sequence in which ¢ = § is often called multiplicative, and a sequence in which ¢ # O is
termed mixed. Any linear congruential sequence must eventually repeat itself, since it con-
tains at most m different values with each element determined solely by its predecessor. Since
the period of the sequence cannot exceed the modulus, m should be large; a useful choice is
to select m on the order of the computer word size.

Maximum Period

THEOREM 1. A linear congruential sequence with multiplier a, increment ¢, end modulus
m has maximum period m if and only if:

(i) cis relatively prime fo m,
{iit a = 1 {modulo p) if p is g prime factor of m,
{(iii} a= 1 {modulo 4}if 4 is g factor of m.

A proof of this basic theorem is given by Hull and Dobell {1) among others, fmisa
power of 2, then ¢ need only be odd and ¢ = 1 {meoduio 4} {o insure a maximum period for
the sequence,

A maximum peried, although obviously desirable and assumed to be the case in the dis-
cussion to follow, is not a sufficient condition for randomness; for example the sequence gon-
erated by the relation x,4+1 = X» + 1 {modulo m} has period m but can hardly be considered

random.

Polency

A second important concept related to the apparent randomness of a linesr congruential
sequence is that of potency. The potency of a Hinear congruential sequence of maximum
period is defined to be the smallest integer s such that

{(a— 1) = 0 {modulo m}.
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THEOREM 2. The potency of a linear congruential sequence of maximum period m al-
ways exists.

Proof. The integer m can he expressed as the product of a finite number of prime
integers:

n
m =lz Pi.
=1

By Theorem 1(ii), ¢ — 1 = 0 (modulo p) for every prime factor p of m. Thus there exists inte-
gers ; such that

a—-1 = Ekp;, for i=1,...,n,

or

(a—1)»

n
H kip;
i=1

m InY ki,
=1

so that (@ — 1) = 0 (modulo m), completing the proof.
If a =1, then
Xp = Xp-1 + ¢ (modulo m)

or

Xn xp + ne (modulo m),

which is not randomlike behavior. Therefore we may assume ¢ > 2 and express the nih ele-
ment in a linear congruential sequence in terms of the starting value as

n _
M (modulo m), for n>= 1. (2)

This form follows directly from (1) through induction. Since all integers between 0 and
m — 1 appear somewhere in a sequence with maximum period, we may take 2o = 0 in (2) and
expand the factor a” -1 = [(@ — 1) + 1]™ — 1 by the binomial theorem to obtain

Xy = c[n + (;)(awl) + (g)(a—ljz + .+ (2)(a—1)3‘1:| (modulo m),
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where 5 is the potency of the sequence, thereby foreing terms in @ — 1 of order s or higher
to zero. If the potency s = 1, then x,, = nc {(modulo m), a poor generator of random
numbers. If the potency is 2, then

X, = cn + c(;){a—l} {modulo m)
and
Xneyl = cin+1) + c(n ; 1)(5: - 1) {(modulo m},

so that
Xps1 — X = ¢ + nefa— 1) {modulo m},

illustrating the unfortunately simple relation existing between adjacent values of n. The situa-
tion improves as the potency becomes larger; Knuth (2) claims on the basis of experience that
a potency of at least b seems o be required for sufficienily random values from s linear con-
gruential sequence.

THEOREM 3. A maximum-period linear congruential sequence with multiplier a and
moduius m = 2" > § achieves ils grealest potency when a = 5 (modulo 8).

Proof. By Theorem 1(iii), e - 1 = 0 (modulo 4). I a — 1 is an even multiple of 4, then
a¢— 1= 0 {modulo 8} if a — 1 is an odd multiple of 4, then a2 — 1 = 4 {modulo 8} or equiva-
lenily @ = b (modulo 8). Suppose ¢ — 1 is any odd multiple of 4. Thena-—-1=4 {2k - 1) for
some integer k. By Theorem 2, (a — 1)® = 0 {(modulo 27} for some positive integer s; there-
fore 27# divides 45(2k — 1)%, which implies 2" divides 4. Hence for any other ¢ - 1, say
a— 1 =d, where d is an even muitiple of 4, d° = 0 (modulo 27}, proving the theorem.

Paraile] Hyperplanes

Marsaglia (3) has pointed out a defeet inherent to all multiplicative linear congruential

generators. He has shown that if n-tuples (41, usa, . . ., ug), {ug, ua, ..., Up+rh - . - of sucees-
sive variates produced by such a generator are considered as points in Euclidean n-gpace, then
all the points will lie in a small number of parallel hyperplanes. In many Monte Cario applica-
tions more than one random number is required at a time, so a periodic structure to the behav-
ior of n-tuples of supposedly uniform random samples could be disastrous., Unfortunately

this same effect also appears in the output sequence of the mixed linear congruential genera-
tor, as shown below,

Let {x,} be alinear congruential sequence,
Xpe1 = axp + ¢ {modulom), £=0,1,2,...,

and define {u k} to be the scaled sequence
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up = im’f- £=1,2,3,... .

2

Then the n-tuples (up, g1, - - -, Ugsn—1), (UEs1, Up+2, . . ., Upen), . . . , formed from consecutive
terms of {uk} may be regarded as points contained in the n-dimensional unit cube. For any

set of integers q1, g9, . . ., g, define

n

n i-2
q(e) = Z gia"l;  h(a) = Z qszaf. (3)
i=2 =0

i=1
Note that the following can be obtained from (3):

_ g9{e)-q(1) ) — o 2@)—aq(l)
h{a) = a1 fora# 1; h(1) alinll—m——a_l .

THEOREM 4. Let qi,qs, ..., Gy be any set of integers such that
g(a) = 0 (modulo m).

Then all of the points (uy, ug+1, . - ., Uksn-1)s (Wg+1, Uk+2, « - -, Uksn), . . . lie in the set of hyper-
planes defined by the equations

n

Zqit; =N + .’%“_}E N=0,:1,£2,... .
j=1

Proof. Using induction on (1), the (k + r)th element of the sequence {xk} may be ex-
pressed in terms of the kth element by

r1
Xper = @'Xxp + C E al (modulo m) (4)
j=0
for integers k > 0,r > 1. So
n n i-2
? QiXp+i1 = E gilaFlx, + c? al | (modulo m) (5)
=1 =1 J=0

g(a)xr + h(a)e (modulo m)
upon substitution of (4) for all x, with £ > k. Equivalently (5) may be written without the
modulo as

n

Zq,-xkﬂ-_l = jm + q@zy + h(@e. (6)

i=1
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By the conditions of the theorem, g(a) = 0 (modulo m); that is, g{a} = ¢m for some integer
2. Therefore {6) becomes

n

. h
? Qi+l = U+ Leg) + %ﬁ,

i=1

where each side has also been divided by m. Thus each point (Ug, Up+1, . . ., Upsn_1) llesona
hyperplane of the form

"

Zq;tg =N+ h(:%)c, N=0,11,22 ...,

i=1

and the theorem is proved. Note that ¢{a)= 0 (modulo m) always has a nontrivial solution
and that the number of hyperplanes intersecting the n-dimensional unit cube cannot exceed

Zi’il (gl

SPECTRAL TEST

A relative measure of the nonrandomness due to the hyperplane property of linear con-
gruential generators discussed in the last section is the spectral test, which employs a tech-
nitggue proposed by Coveyou and MacPherson {(4). This technigque involves using Fourier analysis
to investigate the statistical independence of successive n-tuples of values produced by these
generators. Although the statistical properties of a uniform random number generator are
completely characterized by the probability densities of the n-tuples,n=1, 2, . . |, formed
from consecutive terms of its output sequence, these densities are usually guite difficult to
calculate directly. Since the same information is preserved under a finite Fourier transform,
any statistic dependent on the averaging of n consecutive values over the full peried of the
sequence could theoretically be derived from the transformed density functions. Coveyou
and MacPherson point out that the Fourier coefficients themsslves are sufficient stafistics
and are usually fairly simple to caleulate. Thus by comparing the Fourier coefficients of the
transform of a truly uniform random sequence with those of the transform of a uniform
random number generator for given n-tuple sizes, the spectrum of deviations by the genorator
from uniform randomness is obtained.

Finite Fourier Transform
For a given m define
J={0,1,2,....m-1}
andfornz=2

In = {U1. 02, .- wdn) i€, 1=1,. . n}.
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Let e(w) = exp(2niw/m) for any scalar w, 1f x = {x1, x9, ..., X,), define

(x) = 6(x1, X2,..., Xxp) = 1if all the x; are integers,

0 otherwise;
thus
8(x1, x2,..., %) = 8(x1)0(x2)...8(xn).
For any integer g
m
1 _ q
o 2 e(qk) a(ﬁ)
k=1

since if g is divisible by m, then each side is equal to 1 and if ¢ is not divisible by m, then

8(g/m) = 0 by definition and the left side is zero because the summation of a geometric pro-
gression gives

E = €@ [1-e(gm)]
2 tetant = 0 Lot
k=1

Bl

= 0.
Similarly, if z = (21, 29, . . ., 2, ) for integers z;, then

ar ) ers) = o(Z).

yed,

where

o) - L)

THEOREM 5. If f(x) is any complex function defined on dn, then it may be represented
uniquely by

@) = 32 ) etxye0), 0

Y&dp
where
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glyy = Z e(-y-z)f(z), {8)

zedy
the “finite Fourier transform™ of £{x}.

Proof. Forxed,

Tzt

redy

2 L) e

2edy yedy

L) ewn)) etyaie)

fix}

I

= zedy
_ 1
- @Ze(x-y)g(y).
yedn

Suppose g{y} is any function defineqd on Jy satisfying {7}. Then

Z 5 (zn;y)g(fr)

zedp

) ) ele-yraige)

zeddy, xedn

= Z e(—x-y) —m:% Ze(x 2)g(z)

x€dy zsdy

- Z e(x -y ),

xesdy

gly)

and g{v), the finite ¥ourier transform of fix) as defined in (8}, is unique, concluding the proof.
Note that e(w) = e{v) if and only if w = v (modulo m), so that g(v} is a periodic function.

Let {#} be a sequence of elements of J and {ys } a sequence of elements of J, such
that yp = (x5, Xp+t, . . ., Xren_1)- Then for z € J,, define f(z} to be the limit as N approaches
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infinity of the proportion of appearances of z in the first N terms of the sequence {xk} .
assuming this limit exists. That is,

N-1
- 1 2 Yk
o - g 5 (552
k=0
In addition, for r € J;, define
N-1
o1
o) = lim k) e-rom) ()
Nesoo .
k=0
so that, assuming the limit exists,
e(r) = Z e(-r-2)f(2). (10)
zedp

The right side of (10} is in the form of (8), the finite Fourier transform of f, so by (7) we
have

) = 52 ) ez )

TEJn

If {xk} is actually the output sequence of an arithmetic generator and f(2) as defined above
exists for each z € J,;, then f(z) is the joint density function of n consecutive terms of the
sequence {xz} .

Fourier Coefficients for Random Samples

If the sequence {xk} consisted of truly random samples from a uniform distribution on
the integers in J, then each element of J,; would appear equally often in the sequence {yk} s
so that f(z) = 1/m", for allz € J,. From (11) we have

fo) = 15 ) e@met), zed,

redy

so that the finite Fourier coefficients must take the values

o(r) 1whenalr;=0(modulom), 1<i<n,

Il

0 otherwise.
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Fourier Coefficients for a Linear Congruential Sequence

Let {xk} be a linear congruential sequence of maximum period, where xg+ = ax3 + ¢
{modulo m). By (9) the finite Fourier transform of the joint density function of n consecu-
tive terms of the sequence {x;g} has the form

A~1
. 1 '
wlg) = lim Vi 2 e(‘(‘llxk +.. -+qnx;e+n—1)),
MN-seo
k=0
where ¢ = {91. 92, .. ., gr}E J5. Since [ xk} is periodic with period m, this limit exists and
the Fourier coefficients become
m-1
1 E Z
plg) = m e(“(@'lxk NEEE Q‘nxk-;-n—-l})- {12}

k=0

Recall from (4) that for any linear congruential sequence xp+1 = axg + ¢ {modulo m}, X4y
may be expressed directly in terms of xp by the relation

r1
Xpep = a'xp + cZai {modulom)forr=0,1,2,... . {13)
=0
Substituting (13) in (12) gives
m—1

o) = L) et-tatapmn + haped),
k=0

where gla} and h{g) are defined by (3). Since {xk} has maximum period, xp assumes all
integer values between 0 and m — 1, so that

m-1
@) = L) e-latah + hwe)
k=0
Qr
m—1
vlg) = e{~hla)) -% Ze{—qm)k).
k=0
If g{a) is divisible by m, then 1 el
1) Tecap) = L) e
k=0 k=0
= 1.
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If g(a) is not divisible by m, then by the sum of a geometric progression

m-1 m—1
3 X elaon) = &) ataa
k=0

k=0

1 [1-e{-gl@)m)]
m  [1-e(~q(a))]

= Q.

Therefore the Fourier coefficients take the form

ola) = e(—h(a)c)a(ﬂ“—)), (14)

m

where & was defined earlier as

B(q_(a_)) =1 if 4(a) is an integer,
m m

0 otherwise,

I

Note that p(g) = 0 except when g(g) is divisible by m; that is, ¢(g) # 0 if and only if g(a)= 0
{modulo m), and then |p(g)l = 1.

In the preceding subsection it was shown that if the sequence {xy} were a set of random
samples from a uniform distribution on the integers J = {0, 1,...,m- 1} , then

le(g)l = 1if g;= 0 (modulom) forall1 <i< n,

0 otherwise,

Thus the nonzero Fourier coefficients of a linear congruential sequence represent deviations
of the sequence from true randomness and are characterized by the solutions to the basic
congruence

q; + gga + qza® + ... + gua™1 = 0 (modulo m),

where the q; are not all zero.

Nonzero Fourier Coefficients and Parallel Hyperplanes
By Theorem 4 if was shown that if g1, qo, . . ., g, were any set of integers such that

g1 + goa + gza2 + ... + gpa™l = 0 (modulo m),
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then all the points {x1/m, xa/m, .. ., xp/m), {xo/m, xz/m, . . ., Xpe1/m} .. . lie on one of the
parallel hyperplanes defined by the equation

h
qit1 + sty ¥ ... * Quty = N + HEE, (18)

where N ranges over the integers and A{a) is defined by (3). Hence each g = (g1, g3, .. .. 4n)
€ Jp, such that the Fourier coefficient ¢(g) discussed above is nonzero, defines a set of parallel
hyperplanes in Euclidean n-space containing all the n-tuples (xp/m, Xp+1/m, . . .. Xgsn-1/Mm},

k = 1, treated as points in the n-dimensional unit cube.

The distance between two neighboring planes can be calculated by considering the re-
iated families of parallel hyperplanes

gty + gotg + ... F gty = N, N =0,21,23,..,,

which is just (15) shifted so that the plane defined by N = 0 passes through the origin. Ob-
viously the planes are equidistant, and if @ = (g1, 92, .. . Qu)and T =(#3, I3,. ., t3), then
the planes may be written in the form

QT =N N=0,1,£2,...

The distance d between two adjacent planes is the length of the vector from the origin
normal to the plane @-T = 1, so that

- 1
4= @i

or

d=(g +ai + ...+ al) R,

Define P, = {Q = (g1, G2, .- 9n): 0<g;< m not all zero for 1 < i< n and ¢g(a) = 0 (mod-
ulo m)}. For a given m and n, P, represents the collection of hyperplane families for a partic-
ular multiplier ¢, each family containing all the points (xg/m, Xp+1/mM, . . ., Xp+n-1/m), kK =
1,2,.... Each such collection can be characterized by its “worst possible case”: that family
or families of hyperplanes whose interplane distance is the greatest. Actually this distance
itself is of interest, and since the distance between adjacent planes in any family is 1/iQ1,
define

n = min @i,

Q=P
sa that
1. 1
— ' =1 epl,.
Yr {21 or @ &
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Since the sequence {xk} has a finite period of length m, there exists a @ € P, such that

[y
o

Tn @

The larger the value of v,, the smaller the distance between adjacent planes in even the most
widely spaced hyperplane family and the more homogeneous the n-tuples (xz/m, xp+1/m,

. Xpan-1/m), k=1, 2, ..., considered as points in n-dimensional space. Thus v, can be
used as an indication of randomness for a particular linear congruential sequence in regard to
the uniformity of the distribution of its n-tuples.

Unfortunately v, cannot be made arbitrarily large by the proper choice of the mutti-
plier a in the linear congruential sequence (v, is independent of the increment ¢). It can be
shown that

Tn = Bnmlfﬂ,

Where Bn takes on the values 1, (4/8)1/4, 21/6 21/4 93/10 (64/3)1/12 93/7 21/2 forn=1,

.» 8 respectively. (See Knuth (2), pp. 85-86, and his references.) So a reasonable flgure
of merlt may be defined to be the ratio 7n/[3,,m1"" where unity is the best that can be
achieved.

APPLICATION OF THE SPECTRAL TEST

To calculate the ratio v, /8,m1/” for a particular linear congruential sequence, charac-
terized here by 1ts multiplier ¢ for a fixed m and n, the minimum value of the quantity
(g% +qo2 +. @rn”)1/2 must be determined, where the integers 0 < g; < m are not all zero
and satisfy the congruence relation

g1 + agy + a?qg + ... + a™1g, = 0 (modulo m).

Let ¢; = a (modulo m),fori=1, ..., n-1. Then the problem is equivalent to finding the
minimum value of

(vim — ajvg — aguy — ... — a’n—lun)z + U22 + ...+ vnz {16)

for integers vy, vg, . . ., v, not all zero.

Define V to be the set of all n-dimensional column vectors,

with integer components not all zero. Then (16) may be rewritten as vI(ATAW, forve v
and
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mo o-ey g ~p-1
0 1 0 o
A= 1
&
0 0 1

The matrix A consists of integer elements, and det{4) = nz.

Based on the work of Coveyou and MacPherson (3), Knuth has developed a computa-
tional method for solving a more general problem than the one posed above. (The method
outlined here is essentially a more rigorous version of Knuth {(2), pp. 88-93.) Let 4 bean
n-by-n nonsingular matrix composed of integer elements, and define

G4y = {vT(aTaw: ve V)
Since ATA is positive definite and all elements of A are integers, G{A) is a nonempty set of
paositive integers and therefore containg a least member. The problem, then, is to determine
2, where
v2 = min G(4).
Let
w={veVv: vTaTap = 42}

For simplicity define @ = ATA, R = @1, and B= A~!. ¥f E is an arbitrary mairix, let E;, rep-
tesent the ith row of E and E.; represent the jth column of E.

THEOREM 8. If w€ Wand vE V, then w2 < R (vIQv) fork=1,2,.. ., n.
Proof. Let ex € V be the vector which is zero except for 1 in the kth component. Then
wr = efw = T (BAW = (e,/B)(Aw) = (B, MAw}

and

1

[(Bp ) Auw)]2 < [(Bp.) (B )l [Aw)-(Aw)] = [B)-BL) I wTuTaw]

RkkwTQw
by the Schwarz inequality., Thus for vectors w and v
wkz = Rkk(wTQw) < Rkk(vTQv},

concluding the proof.
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COROLLARY. If w€ W, then w? < Rp Qi 1< k<n,1<j<n.
Proof. The proof follows directly from Theorem 6 with v = e;.

Consequently,

wly-s= X (— [(Rkk ij)”ﬁJ, can t(Rkajj)%J), . (17)
k=1

where X indicates the Cartesian product. Since an exhaustive search of the finite set ¥
would yield all the vectors of W, the number of elements in Y, given by

N=]T (2 [(Rkafj)%J + 1), (18)
k=1

bounds the number of vectors to be examined to determine y2. The size of N , however, may
be much too large to implement a direct search for a minimum vector, so a succession of inte-
ger transformations are applied to the matrix A to reduce the values of the diagonals of ma-
trices @ and R until (17) indicates a search is feasible.
Let U be the set of all n-by-n matrices of the form
(Ukj = 85 + ¢bin,

where k is a positive integer not exceeding n, ¢; is an arbitrary integer for j # k, ¢;= 0, and

8 rifi=j,

0 otherwise.
Then it follows directly that:
(i) (U71);; = 8- ¢;6ir,and so U is closed under inverses.
(ii) If x is an integer vector and U € U then Ux is an integer vector.

Consequently any member of U maps the integer vectors one-to-one onto the integer vectors.
Therefore

G(AU‘l) = G(A),
s0 that

v2 = min G(4) = min GAU,
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Define A’ =AU, B' =UB, @ = (U 1)YTQU~1,and R' = URUT, for ¥ H . The objective
here is to select a transformation U € U which makes the diagonals of @ and R’ as small as
possible and thereby reduces the number of vectors to be examined in {17). From the defini-

tions
Qi = (AL (AL,
and direct computation gives

A’-}' =A. - cA.y,

where, since ¢, = 0,

Therefore

2
bl
"

(A.} - ch'k)-(A'j - CjA'k)

(A A — 20(A.A) + cFA.,-4.)

2
Qjj — 2¢Q + ¢ Qi

Lo\2 2

whose minimum value for j # k occurs when

Qe 20
Qrk 20

Cj=

In the case of the matrix R’
R} = (B;.)-(B..),

and a simple computation shows

n

Bi. = B;. + & E eiB; .

j~1
So Rjj =R fori# k,and
n n
Ry = (By. * Z ¢;B;.) (B + Z ¢jB;-)
=1 i

1
n

n n
Rpp + 2 ? cillp; + ? ? ciciRij .
i1

=1 j=1

Il
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Since

n

=2R1¢g+2§ ciRy, for 1<8<n, 0+ k,
i=1

3R
aCQ

the ¢; should satisfy the equations

n

Rpe + 2 ciRij, = 0 for 1<0<n, R#Ek {21)
i=1
in order to minimize the diagonal element R}y,.
For a given k, two sets of conditions on the transformation matrix components c;,
1 <i<n,i+# k, have been derived; the first set, (20), produces a matrix U which minimizes
the diagonal elements @};, 1 < i < n, i # k, and the second, (21), determines a transformation
which reduces the diagonal element Rpj,. Fortunately (20) and (21) are compatlble as the

following theorem shows.

THEOREM 7. Let k be a positive interger not exceeding n. Then choosing

Qlk

c; = for 1<i<n,i+ k,
Y Qe

will satisfy the equations
Ry + E ciRjj =0, 1<j<n, j#Ek.

Proof: Forj=#k

Qrk I:Rkj + Z CiRij:I = QurRp; + Z QirR;j

i=1 i+k

n
= Z QirR;j
i=1

Il

I

@) Q.

Since @ = ATA is symmetric,
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(@)@ = @)@
= O,
proving the theorem,

The ¢; must be integers, so taking the integer nearest to @ /Qgr foreach 1< j< n,
i# k, gives the best integer solution to (19} and close to {but not always equal to} the best
integer solution to (21). Therefore it is plausible that repeated transformations of Q and R
by matrices of the form

(Ul = 85 + cibix

for different choices of k with the ¢; determined as above will give a value for N in (18} small
enough to make an exhaustive search for the minimizing vector reasonable. No proof is avail-
able that this scheme always terminates, but in practice no difficulties have been encountered
and the method has proven quite efficient.

A RANDOM NUMBER GENERATOR

The spectral theory developed earlier offers a powerful test for the randomness of linear
congruential generators by considering the distribution of n-tuples, (x5, Xg+1,. - > Xhan-11,
k=1,2, ... of the output sequence {xk}

It has been pointed out, however, that the confinement to parallel hyperplanes of suc-
cessive n-tuples of variates produced by a linear congruential sequence cannot be completely
removed by adjusting the sequence parameters. Inlight of this problem, a procedure firgt
suggested by MacLaren and Marsaglia (5} is advocated. Two linear congruential generafors are
required, one to shuffle the sequence produced by the other. The method works as fellows:
the first generator initially fills a table with random numbers; whenever a random number is
needed, the second generator determines which entry in the table is selected; the first genera-
tor then supplies a replacement in the table. Tests applied by MacLaren angd Marsaglia, and
later by Gebhardt (6) on a special case using Fibonacci sequences, show this scheme to have
better statistical properties than either of the two congruential generators used alone, Thus
a reliable random number generator can be constructed by selecting two linear congruential
sequences with maximum period, high potency, and minimum distance between hyperplanes
and employing them in the above manner. Although it may take twice aslong to produce a
sequence of random numbers using two congruential generators rather than one, the additional
time seems well spent in order to obliterate the hyperplane structure inherent to the single
congruential generator. A particular random number generator employing this method is
described in the Appendixes.

ACKNOWLEDGMENT

The author expresses her appreciation to Mr. David J. Kaplan of NRL for valuable dis-
cussions and helpful suggestions concerning this work.




NRL REPORT 7311 19

REFERENCES

Hull, T.E., and Dobell, A.R., “Random Number Generators,” STAM Review 4(3):
230-254 (July 1962).

Knuth, D.E., “The Art of Computer Programming: Seminumerical Algorithms,” Addi-
son-Wesley, 1969.

Marsaglia, G., “Random Numbers Fall Mainly in the Planes,” Proc. N.A.S. 61: 25-28
(1968).

Coveyou, R.R., and MacPherson, R.D., ““Fourier Analysis of Uniform Random Number
Generators,” JACM 14(1): 100-119 (Jan. 1967).

MacLaren, M.D., and Marsaglia, G., “Uniform Random Number Generators,”” JACM
12(1): 83-89 (Jan. 1965).

Gebhardt, F., “Generating Pseudo-Random Numbers by Shuffling a Fibonacci Sequence,”
Math. Comp. 21(100): 708-709 (Oct. 1967).



APPENDIX A
RANDOM NUMBER GENERATOR

The uniform random number generator presented here employs two linear congruential
sequences {xn} and {yn}, where

Xpep = @1Xy + ¢y (modulom), n=0,1,2,..,
Y+l = G9¥n + €3 {(modulom), n=0,1,2,...

Given a starting value xg, an array is filled with the first 64 values of {xn} . Whenever a random
number is required, the current value in the sequence {yn} determines which entry in the

array is selected. The number chosen is then repiaced in the array with the current value in

the sequence {x,}.

The generator package consists of three routines. Subroutine RANSET initializes the
linear congruential sequences {x,} and {¥,} and sets up the random number array mentioned
above. Subrouiine RANSET must be called once within a program, prioy io any reference {0
the other two routines. Function RAND returns either a floating-point random number from
the unit inferval or a fixed-point random integer from a specified set of positive integers, de-
pending on the value of its single parameter. Subroutine RANOUT produces the contents of
the 64-word random number array and the current value in each of the sequences { xn}and
{y n} as output on punched cards. These cards may then be read by subroutine RANSET at
the beginning of a subsequent run to resume random number generation from this point, De-
taits on the calling procedure and operation of sach routine are explained in the program list-
ing in Appendix C. A test program using the random-number package and a sampie output are
included.

The routines are written in ANSI X3.9-1966 Standard Fortran, with the exception of
the data statement format appearing in sttbroutine RANSET, which is apparently unique to
CDC 3600-3800 Fortran., The only library function calied by the package is MOD, the
modulo function. The three machine-dependent variables are noted in the program listing,
Trail runs of the Fortran program were made on a CDC 3800 computer, and the time to
obtain a single floating-point random number averaged 190 microseconds.

20




APPENDIX B
SELECTION OF THE LINEAR CONGRUENTIAL SEQUENCES

The parameters of the linear congruential sequences {xn} and {yn} used by the randpm
number generator were determined as follows, The modulo m for both sequences was taken
to be 231, 50 that the generator may be run on any computer whose word length exceeds 32
bits. The increments ¢; and ¢ were chosen such that

v8
6 ’

{
(S

i=1,2,

3|e

in order to minimize serial correlation, as discussed by Knuth* and were made odd to ensure
maximum period by Theorem 1. The multipliers ¢; and ag were required to satisfy

a; = 5 (modulo 8), i=1,2, (B1)

for maximum period and high potency by Theorems 1 and 3 and also to satisfy
m ;=
100 <g < m-+m, i=1,2, | (B2)

as recommended by Knuth in his summary on random numbers, since small multipliers tend
to produce poor sequences. A candidate multiplier that satisfied conditions (B1) and (B2)
was subjected to the spectral test for n = 2, 3, 4, 5, 6. The ratio v, /8,m 1/ was calculated

for each n, and the potential multiplier was rejected if the ratio fell below the arbitrary thresh-
old of 0.6 for any n. In arun of over 100 candidates, two multipliers met the above criteria
and were selected as @1 and ay for the linear congruential sequences {5} and { Yn}. The

two linear congruential sequences used in the random number generator are

Xns1 = 504542181x, + 453816693  (modulo 231)

Yn+1 = 266891877y, + 453816697 (modulo 231),

*D.E. Knuth, “The Art of Computer Programming: Seminumerical Algorithms,” Addison-Wesley, 1969,
pp. 77-78.
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APPENDIX C
COMPUTER LISTINGS AND SAMPLE QUTPUT

HANDGY NuMbkR GENERATER

THE RANDHM NUMBER GENERATOR PACKAGE CONSISTS BF ANE FUNCTIEN AND TWE
SLEReLTINES,

SLARELTINE HanSE? INITIALIZES ThHE LINEAR CONGRUENTIAL SEQLENCES AlD
ALXILTARY HaNLEM MUMBER TARLE USFL 10 PRODUCE UNIFERMLY DISTRIBUTED
RANDBY HUMHERY,

1T MUST HE CALLED ONCE DURING & PREGRAM, PRIGR T& 4NY REFERENCFS To
FUNCTIEN RAND &R SUBRBUTINE RENEUT.

EaCh REFERENCE T8 FUNCTI®N RAND RETURNS & SINGLE RANDEM NUMBER,

SLBABLTINE HANGUT I8 &N 8PTIGN 76 CUTPUT TWE CURRENT YALUES 8F THE LINEAR
CENGRUBNTI AL SEQUENCES AND AUXTLIARY RanD&M NUMEER TABLE EN PUNCHED CARDS
FER Uk A4S INFUT LURING & LATER RLAE,

THRE EATIRE PACKAGE 1S WRITTEN TN AASX3,9~1966 FERTRAN, WITH THE EXCERTIEN
TF TrE DATA STATEMENT FORMAT IN SLEROUTINE RANSEY, WHICE 1S APPARENTLY
LAIGLE T CuC 3bpu-3B00 FARTRAM,

TeE MACHINK DEPENLENTY YAR[ABLES ARE
fh ===~- THE LARGEST INTEFGER Thi MACWINE wILY HOLD, ASSIGNED N RANSET
IKTAPE -~ THE STANDARD INPLT LEGICAL UNIT KUMBER, ASSIGNED IN RAMNSET?
IPTAPE - tHE STANDARD PLNCH @LTPUT LOGICAL UNIT NUMBER, ASSIGNEL IN
HANGLT

TRESE RAOUTINES QUHRENTLY REGUIRE & MAGKINE WORD LENGTH EF 33 BITS
2R GHREATER,

TEST PREGRAM FHR RANDGM NUMBER GEMERATER
PROGRAM TEST
CEMMENARANDEM/ M P, IM, TW, IXs AL, CLa 1Y AZ2,C20 IREE4)
INTEGER 41, ©1: A%, C2
CIMENSTEN Zi1G0), [Z2{100)
FOUIVYALERCE (4412}
CALL RANSET{1:,1,0!
TE 20 1 = 1,100
0 {1y = RANDI(Q)
FRINT 29, (ZC1Y, izt,100)
25 FERMATOLHL, 8xX,»F[RST 100 RANDOF AUMBERS &N THE UNIT [NTERVAL PROD
1LCED BY RAND, WiTH SEQUENCF STARTING VALUES ¥ = &, Y = ie/7/
2 (5EzS, 1071
te %8 1 = 1,100
50 ZUl) ® RaANDOLQO}Y
PRINT 9%, t]2(1), 1=21,189)
55 FERMAT(LHL 29%»NEXT 100 HAMDEM IATEGERS @N THE CLOSED INTERVAL i
1,100 PREDUCEL 8Y RANDSZZ/tS1E3/41)
5ToP
EAD

22
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FLNCTION RAnDEN)
ALTHER
LAURA DAVIS, NRL, CHDE 5308
CATE GF LAST mWiEVI®]IEN
&0TEBER 24, 1970

WEITTEW Ih USA STANDARD FRARIRAN

CESCRIPTIAON

TRE PUXPBSE GF RaND 1§ 16 GENERATE & SEQUENCE OF UNIFERMLY DISTRIBUTED

RaNDEM NUMHERS, A MIXFL LINFAR CENGRUENTIAL SEQUENCF X4 X{lee} =

A1*X{]) + C3 (MEDUL® M), 1S USED T8 SUPPLY INITIAL VALUES T@ A &4 WARD
ALXIL1AKY RANL@M NUMBER TABLF (SFE SURRBUTINE RANSET), WHEN RAND 1S
CALLED, THE 6 KIGH BRNER BITS GF THE CURKENT VALUE [N 2 SECOND LINEAR

CENGRUENTLAL SEGUENCE Y, Y{I+1) = AZeY(l) « C2 (MBLULO M}, ARE

EXTRACTED A8 AN INDEX TE€ SFLECT A NUMBER FRGM THE TABLE, THE LECATION

USED IS TREN mEFILLED %ITH THE NEXT MNUMBER GENERATEL BY THE X
CENGBHUENT JAL SEQUENCE,

LEAGE

WETE =~ THE RANDOM NUMBER GFAERATOR INITIALI1ZATIAN SLBROUTINE RANSET
MLST Bk CALLEL GNCE WITRIA A FREGRAM FR{®R T@ ANY REFERENCES T® RAND,

7 = kKawpind

NoLk.0  KAND RETURNS A FLEATING POINT RANDOM NUMBER UNIFORMLY
DISTRIBUTEN AN THE UNIT INTERVAL.

MaGT.1 HAND KETURNS & FIXED POINT RANTIEM INTEGER UNIFORMLY
DISTRIRUTED AN THE GCLOSED INTERVAL (1,N),

CAaUTIBN == SINCF RAND IS A& TYPE REAL FUNCTION, THE RANLOM

INTEGER RETLRAFL ABGVE SHEULD BE HANDLEL AS FOLLEWS
1) EQUIVALENCE (Z,12Z) [N THE CALLING PROGRAM
2y LET 7 = RAKNDIN), N,GT.1
3y USE 12 TR KEFERENCE THE RANDGOM [NTEGER

FULNCIIBNS ®R SUBRELTINFS REGUIRED
MED ==~ AN INIEGER MApDULR FUNCT]IGN

CEMMEN ZRANDGM /M F¥ JM, TH, IX0A1,C20TY0A2,C2IR(64)

INTEGER A1, Cl1, Az, C2

EGUIVALENCE (wS,IWS)

CALCULATE TABLE INDEX USING LINEAR CONGRUENTIAL SEQUENCE Y
1Y = a2elY

TFCIY,LT,0) EY = 1Y & 1M

1Y = ¢1Y - M} + C&
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TF¢ty, LT,01 [y = LY & M

LSE FIRST Six BIfs @F 1Y FoRk INDEX K
1% 1Y = MBD{IY. M}

K = [¥Y/In « 1

vy

c EXTRACT RANIEBM NUMBER FROM TABLE

, KANG = JROKI/ZFM

£ CALCULATE 1ABLE REPLACFMENT USIAG CUNGRUENTIAL SEQUENCE X
IX = AL*IX

IF(T%,LT,0) I = (X + IH
1x = {IX = M) + (1
TREIX.LY 6 IX = (X + M

£ TAKE [xX M@DULE M
ZB IXx = MODOIX M)

IR(K)Y = 11X
1F (N,LE,B)Y RETURM

L RETURN & {1,N} RAMDIM INTEGER ITh RAND,
TS = NxHAND < 1.4
RANET = WS
Rik TyHb
END




NRL REPORT 7311 25

SLHBRELTINE RANSETCT,JypK)

ALTHGH
LAURA NAVIS, MRL, COOE 5308

CATE GF LAST REVISIEN
ACTOBER 23, 1979

WRETTEN TN USA STANDARD FORTRAN EXCEPT FGR TWE FORM @F THE DATa STATEMENT

LESCRIPTIEN
ThE PURPOSE B¢ RANSET 18 16 INITTALIZ: THE LINBAR CERNGRUENTIAL
SEQUENGES ¥ AND Y AND SET UP TrgE AUXILTARY RANDOM NUMBER TABLE LSED
BY RANY T& GRIAIN A SENLFACE CF UNIFORMLY DISTRIBUTED RANROM NUVBERS,

LSAGE
MNETE =~ RANSET MUST BE CALLFL ONCE WITHIAN A PROGHAM PRIGR 1@ ANY
REFERENCES TH RAND. )

CALL SUBRGUTINE RANSET(I,;yiK)}

Kyl

] m=== THF INYEGER STARTING VALUE FPR THE SEQUENCE X.
X(1+1) 5 AleX{!) + C4 (MOD M), LSED TE CALCLLATE
ToE INITIAL RANDOM NUMBER YABLE ENTRIES AND
SURSFGUENT HEPLACEMENT VALUES,

w w=e= THE INTEGER STARTING VALUE FOR THE SEQUENCE Y.
Y(I+91) % A2%Y (1) « C2 (MOD M), LSED BY RAND TG
URTAIN AN INDEX Te& TAE RANDOM NUMBER YABLE,

Kol T.G

} ===- IGNERED

v =-=- IGMEREN '
RANSET WILL REAC IN VALUES FREM PUNCHED CARDS T8 INITIALIZE
THE X AND Y CENGRUENTIAL SEGUENCES AND FILL THE aUXILIARY '
RaNLOM NUMBER TARLE, THESF INPUT CARDS ARE USUALLY GBTAINEC
ALY EUTPUT FRAM SUEBRELTINE RANGUT AT THF END GF AN EARLIER
RUNI

FULNETIBNY ©R SUBRLLTINES HFECUIRED
FED ==+ AN INTEGER MapuUL® FLNMCT1ION

MAUKIAE DEPeNLEN! VARIABLES
fh e=e-- THE LARGEST INTEGFK THE MACHINE WILL HBLD
IKRTAFE = IHE STANDARD JAPLY (CEGICAL UWIT KUMHER




26

(s N al

io

Tl €
L} p=

41
3]
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CEMMEN/ZRANDAMIMFF  [My W, IX0 AL, 01 1Y 42,02, TR{64)

INTEGER &1s Cis 42, C2 '

FaTA (M=214748358648), (A12504D4L181), (C1=493816693)

LATA (4ZsPE6891ATTY, (GPz453816697)

Th 2 Z+#47 -~ 1 1% USED TH CHRRECY & PESITIVE PRODUCT FRAM THE (84 REGISTEH
WETfR APPRaRS NEGATIVE WHEN STARFL pUE T8 & BIT IN TRE SlGn PESITIBN BF 4
FATA (IW = 14075748B395327)

LATA tINTAPE = &%)

Fr & M

IF s MJES

18 tw3} B¢, 10, 10

INITIALIZE LINFAR CENBRUENTIAL SECLENCES ¥ AND ¥ Wltw PARAMETER VALLES
Ix & 1

Y 3 U

GENFRATE &4 RANDGF NUMRERS LESJMG LCSI AND STERE IN IF

LE 35 L = 1,69

XN =z Alslx

IFOIX.LT,0) Ix = jX & Tu

1X 3 (X = My + L2

EF{IXVLIQG} e = [X +» M

TAKE X% M&DULS M

I = MODOIX M}
TReL) = [X
RETURN

REALD IN CURRENT SeGUENECE valUES ARD RANDON NUMBER TARLE FHAM CaRNDS
FUNCHED PREVIAUSLY RAY SUBREUTINE RANAUT

EEAD (IRYAEPL, S5 1%, 1Y, $IRLLY, L=i,547

FEHFATIZI1O/705 1R

RETL AN

EhD
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66
735
74U
52
39
95
63

59

28
5¢

37

71
51
76
94
98
47

43

NEXT 100 RaNDGM

INTEGERS @N ThE CLBSED

73
10

23

91
33
7%
28
97

35

90
18
3%
50

45

37

INTERVAL

91
22
16
12
66
46
52
94
36
97
1
3
58
22
94
50
100
11
87
a6

(1,100} PRADUCED BY RAN

75
84
94
31
15
65
84
84
11
56
B84
41
19
32
36
17
25
22
aé
“



