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ABSTRACT

An incident plane wave is scattered from a periodic corrugated surface consisting of
semi-infinite parallel plates, alternately filled with density and wavenumber inhomogeneities,
having hard (Neumann) boundaries. Amplitude coefficients of the fields in the various regions
are related via sets of linear equations, the latter of which are solved using the modified
residue calculus technique. The two examples treated are (a) zero-thickness plates with
arbitrary incident angle and no inhomogeneity, and (b) normal incidence with alternate sets
of plates filled with a constant wavenumber and density inhomogeneity. The edge condi-
tion is derived for these inhomogeneous regions.
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This is a final report on one phase of the problem; work on the other phases is
continuing.
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SCATTERING FROM A PERIODIC CORRUGATED SURFACE

Part 2-Semi-Infinite Inhomogeneously Filled Plates with Hard Boundaries

1. INTRODUCTION

We wish to solve the problem of the scattering of a plane wave, incident at angel Oi, from
a corrugated surface as illustrated in Fig. 1. The surface consists of infinitesimally thin, semi-
infinite, periodically spaced parallel plates. The periodicity interval is separated into two
regions by a further parallel plate. A full period (length 2Q) consists of an "empty" region
(length 2a) and a region of inhomogeneity (2Q - 2a). The "empty" region has the same wave-
number and density as the medium above the plates, whereas the inhomogeneous region has
a different constant wavenumber and density. The plates have hard (Neumann) boundary
conditions. References are summarized in previous papers (1, 2) and in a book by Mittra
and Lee (3).

\ +z ~~~~~/
XDo~~~~/

\ / ® k pA

-21+a -o l 2-a 21+a

2 a - 2(1-2o (.-a k PA jSck L
Fig. 1-Plane wave incident at an angle Oi on an infinite grating of
plates which extends to z = and y = ±00 (perpendicular to the
plane of the paper). Region C, bounded by two infinitesimally
thin plates, is filled with a material having different density and
wavenumber values from those of the surrounding media (Regions
A and B). The wavenumber kc is defined by kc = Nk, and the
density Pc by Pc = PPA. The discrete scattering angles are O,, the
periodicity is 22, adjacent empty plates are separated by a dis-
tance 2a, and the parameter t is defined by t Qia. Region A is
z > 0, and regions B and C are z < 0; cI is the phase lag.

The basic formalism, which is similar to that contained in Ref. 2, is summarized in
Sec. 2. The amplitudes of the assumed velocity potential fields are related by sets of linear
equations. The latter are solved using Mittra's modified residue calculus method for two
special cases. The flux conservation relation is also derived.
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The case of an arbitrary angle of incidence and no inhomogeneity (t Q/a = 1) is con-
sidered in Sec. 3. This is the Carlson-Heins problem (4), for which standard residue calculus
methods suffice.

The case of normal incidence (ao = 0) and arbitrary inhomogeneity (t f 1) is also in-
vestigated in Sec. 3. For this case, the modified residue calculus method is necessary. For
both cases the behavior of the field near a plate edge is derived. In particular, the edge effect
is illustrated for these density- and wavenumber-inhomogeneous regions.

The summary and conclusions make up Sec. 4. This report is confined to analytic re-
sults. The numerical results will be discussed elsewhere.

2. BASIC FORMALISM

Scalar Wave Function

The formalism is similar to that given in NRL Report 7320(2). Details will often be
omitted here. A plane wave Oi is incident at an angle Oi on a periodic (period 22) corrugated
surface, as illustrated in Fig. 1. The surface consists of half planes alternately filled with a
wavenumber inhomogeneity and different density. The planes extend to z = - and y = ±
(perpendicular to the plane of the figure). The velocity potential or field i satisfies the
Helmholtz equation*

( aX2 +aZ2 i2) (2.1)

where

PA (X,Z), z > 0 (region A)

PB(X,z), z 60 (region B where-a+2m2 Ax 6a+2m2;
m = 0,+1±,2,...)

kc(x,z), z 60 (region C where a+2m2 6 x 6 2(m+1)2-a;
m as above)

k J k, regions A and B
il Nk, region C

*e-iwt is suppressed throughout.

P(x'z)=

and

(2.2)

(2.3)
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N is a constant representing a wavenumber inhomogeneity; in particular N = 1 represents no
inhomogeneity and N = °° represents an impenetrable plate. Regions A, B, and C are filled
with densities PA, PB, and PC, respectively. We assume here that PA = PB and PC PPA-
In addition, ' satisfies the hard boundary condition

Q (xo z) = 0 for z < 0 and xo = ±a+2mQ (m = 0,±1,±2,...) (2.4)

and the following restrictions:

a. ' and V 'P are finite in each subregion, except at the plate edges where I V ' l =
0(r-(1/2)+e) as r -* 0 in a polar coordinate system centered on an edge. An explicit form for
e is given later where it is shown that lel 1/6.

b. ' and V 'P are continuous in each subregion, and the pressure and velocity are con-
tinuous across the z = 0 interface.

c. Apart from the incident wave 'i, ' represents upgoing waves as z e +oc, and
downgoing waves as z e --.

In the corresponding electromagnetic problem, ' is the y component of the magnetic vector,
the latter's only nonzero component.

Fields satisfying the above restrictions have wave functions in the various regions as
follows: In region A (z > 0),

OA (X,Z) = 'i(X,Z) + '5 w(Xz) (2.5)
and

'Pi(x,z) = exp[ik(aox-goz)] (2.6)

where a 0 sinOi, o = cosOi, and

'SC(X,Z) = E Ah exp[ik(anx+n3nz)] (2.7)
n=-0c

with
an = sinOn

and < In1 a2 a 1 1

an =cosO = {+i >
l+iV~fi , a. 

and the grating equation a, = of+nA where A = X/M. The parameter X is the incident wave-
length. The superscript "h" on the unknown Ah amplitudes is used to distinguish them from
the An amplitudes given for the soft surface boundary situations in Ref. 2. In Region B
(z < 0, -a A x < a), ' is defined as
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'PB(xz) = E Bh cos (j7rx 2a) e-ikqfZ (2.8)
=0 \2a

where

0 [1-(jAt/2) 2 ] 1/2, (jAt/2)2 1I

+i[(jAt/2)2 -1] 1/2, (iAt/2)2 > 1 J

and t = 2/a. The distance between adjacent unfilled plates is 2a. It is convenient to define
pj = jAt/2. In region C (z • 0, a < x < 22-a), ' is written as

'Pc(x,z) 2E Ch cos jir(x-a) e-ikrjz (2.9)
1=0 22Q--2a/

where

{ [ 2 -(ju)2 ] 1 /2 , N 2 > (iu) 2

+i[(jU)2 -N 2 ] 1/2, N2 < (ju)2

and u = ir/[k(22-2a)] = At/[2(t-1)]. It is also convenient to define j = rjlN=j.

Note that both summations for 'PB and 'PC start at j = 0 in contrast to the soft case
(Ref. 2) which started at] = 1. Field representations are completed for z < 0 via the Floquet
conditions

['(x,z) exp(-ika0x)],x=x1+2m2 = ['P(x,z) exp(-ikaox)]=,1 (2.10)

where m = 0,1 .., Ix < a for;P = 'B, and a • x S 22-a for 'P = 'c.

Linear Equations and Flux Conservation

The amplitude coefficients An, Bh, and Ch are related via sets of linear equations.
These are derived using the continuity of pressure and velocity across the z = 0 interface.
First, for the relation between A h and Bh (lx I < a) use

PA(X,O)= 'B (x,O) (2.11)

and

a'A (x,0) a 'B (xO). (2.12)

Substituting the appropriate expressions for 'A and 'PB and projecting out the Bh
coefficients in the usual manner yields the set of equations

4
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E ( _n________ _{ = 0 (2.13±)
cc (A 2±0 )2 { 1 - TM q

n=-o fn qm IOn Amt m f M}

where the upper (lower) sign is read with the upper (lower) term in brackets, To=2 ,
TM=1 (m>0), and

Inm = e-ffian/At -(-)m e7riun/At. (2.14)

Multiplying Eq. (2.13+) by qm and successively adding and subtracting the resulting equa-
tion from Eq. (2.13-) yields

E AnnnaOI-m + 21Tm = 0. (2.15)
f3nFqm ±3 ±qm At m 

To derive the equations relating An and Cjh, use pressure and velocity continuity (for
a •x •22-a), i.e.,

PA 'A (X,O) = PC'Cc(X,O) (2.16)

and

VI/A (xO) = au 0C (xO). (2.17)

Projecting the Ch coefficients from these equations and manipulating the result as above
yields

Ec Aha&nJnm _ aOjom i7r(t-)
n 3+U [0Um A rm Ch(rmFTpum) =0 (2.18±)

n=-00 O~nT-Ur 00+Um At

where

Jnm = e7rian/At (1-(-)megrian/u) (2.19)

and P PC/PA. Next define

am = rm-pum (2.20)
rm-pum
rm +PUm (20

Multiply Eq. (2.18-) by am and subtract the result from Eq. (2.18+). This yields

Ah u( m_ __ -%Orn ( r 0. (2.21)E= 0n0 tn~n ( n+um fn-um ) ° (0-um Oo+Um) 

Use Eqs. (2.21) and (2.18-) as the equations relating An and CJh. Special cases of these
equations will be solved in later sections.
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To determine the conservation of flux condition, use the integral relation

(2.22)f d~u(p0'*(x,z) a ,2'(x,z)) = 0
B+C

where the closed contour B+C is illustrated in Fig. 2, p is the arc length, n the inward normal,
po the density in the particular region, and ¢&nQ(an)-(anO)Q. Equation (2.22) follows
from Green's theorem. Evaluating Eq. (2.22) yields the flux conservation result

1=21 E hI~2(Inn/9o)+ 21 AB 1 2rm(qm12tjo)+p(t-1) 21 IChI2rm(rm/2tI0)
n m m

(2.23)

where summations are over integers such that 0,Bn qm, and rm are real (real propagating
orders). The first sum is the reflection coefficient R, and the latter two sums are the trans-
mission coefficient T(=TB+Tc). Individual spectral reflection and transmission coefficients
are obviously defined as

(2.24)

TBn = IBhj2 ,rqn1(2t90o)

TCn = p|ChI 2 rnrn(t-1)/(2tPo ).

(2.25)

(2.26)

We next solve two special cases of the general Eqs. (2.15), (2.18-), and (2.21) in the
following sections. The general case (arbitrary ozo and arbitrary t) apparently cannot be
solved by the methods we indicate.

z

2 B±C I

0 S 6 j **
* 0

Fig. 2-Contour B+C used with Green's
theorem to derive the flux relation. The
inward normal is n.

6
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3. DISCUSSION OF THE EQUATIONS

Arbitrary ao and t = 1

The first case is for infinitesimally thin parallel plates (t = 1) with hard boundaries and
arbitrary incident angle. This case was first solved by Carlson and Heins (4) using the
Wiener-Hopf technique. For t = 1, Eqs. (2.15) simplify via the application of

Inm It=_ = (-)nIom (3.1)

to the set of equations

E (-)nnAn _ ( + 27riqm { 1A l 0.

n=-c 03 Q±qM 0OTqm A10m 0 0 O =
(3.2)

Also for t = 1, Eqs. (2.18-) and (2.21) are identically satisfied. Equations (3.2) can be ex-
pressed as the residue series of integrals of the form

(2rif) ifC g(w)d = 0
C, co±qm

(3.3)

where C, is a contour at infinity and the meromorphic function g(W) has the properties:

a. g(.) has simple poles at w = 1n (n = 0, +1,+2,...).and w = -1o.

b. g(w) has simple zeroes at w = qo(=1) and w = qm (m = 1,2,...,).

c. g(o) = O(cj-w12) as Icil - °°.

d. ' = 0(rl/ 2) and I V'I = 0(r-1/ 2) as a plate edge is approached (r
is given by

gcw) - 2a0( 0 f(w,q) 1112(700,9) 1 'eiH(w+'0)

gg-CO2 H(-:0,q) 112(w,3) 1+10

where H = 2 ln(2)/A and the infinite products are

00

rl(wq) = H (1-co/q )(2q./imA)e2w/imA
m=1

n, (w,0o) H (1-w/0n)(3n /inA)ew/inA
n=1

and

- 0), and g(w)

(3.4)

(3.5)

(3.6)

00

r12(,f) = H (1-/0-n)(0-n/inA)e/inA
n=1

(3.7)

7
C�:

1� �
I-

I
.- 1

111
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with H12 11112. These products are obviously used to satisfy properties (a) and (b) above.
The rest of g(co) is constructed as in Ref. 2. Substituting Eq. (3.4) into Eq. (3.3) and per-
forming the integration yields the residue series (r(O) is the residue of g at X = 3)

0 r(P.) r(-1o) +{g(-qm)l -0 (3.8)
n=-Soo 3n ±qm -3O.3m 0 ° J

which is similar to Eq. (3.2) if we identify

(-)ndnAh = r(n) (3.9)

and

Bh A-Mm (-m) (3.10)

where the condition r(-0 0) = ao has been used to define g(w). The explicit calculation of
the residue, as in Ref. 2, yields

Ah = (f)n+l 10 1-On (3n,q) H1-2((nl)ji(J3+fn) (3.11)
n O~~fn 1 +00 Hl(-0, q) l-112000 e(too) (3.11

For completeness the explicit value of Bh is

Bh = /Mom °ao1o rl(-qmq) r112(HOX) 1+qm eiH(0O-qm). (3.12)
In 7riq.mrm (:0-q ) rl(ffo~q) rll2(-q.,O) 1+00m 

Using Ah from Eq. (3.11) in 'PA [Eq. (2.5)], property (d) can be shown to follow in a way
similar to that given in Ref. 2. This completes the solution of the first case.

Normal Incidence (aoe = 0) and t =i 1

The Function G(w)-The second case is that of normal incidence on arbitrarily thick*
plates (t # 1), with alternate plates being filled with an inhomogeneous material (depending
on the parameter N) and having a different density. For N = 1 the geometry is a slight
generalization of that of Carlson-Heins (4) since there are superimposed two periodic sets of
semi-infinite plates. With ao = 0 and the result

(Inm-I-nm )'a0o= = -2i sin(7rn/t)(1+(-) m̀),

Eqs. (2.15) simplify, for m even, to

*See footnote on p.2.
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cc nAh sin(7rn/t) it J 1 'rqm {n - 3.3

n=1 A2ntqm-+ A2t -Ah } 2 t 

where Bh = 0 for m odd, and we have used the fact that Ah = Ahn. The latter follows from
the symmetry of both the geometry and the incident field about the x = 0 plane. Using a
similar development and the result

(Jnm-J-nm)lao=o = 2i sin(irn/t) (1+(-)m)

in Eqs. (2.21) and (2.18-) reduces them to (m even)

00 ~/am _ 1rt1
nAh (7n/t) _ -(A+aO) A t 6 = 0 (3.14)

n=1 sm '' I0n+Umn 3n-Um/ A' m

and

nAh sin(7rn/t) 7r(t-1) +r(t-1)

n=1 0n+Um A2 t mO 4A2 t Tm(rm+pum)C = 0

where Ch = 0 for m odd.

We solve Eqs. (3.13)-(3.15) by matching these linear equations to the residue series
arising from integrals of a meromorphic function G(w) which has the following properties:

a. G(w) has simple poles at w = nB (n = 1,2,3,...).

b. G(w) has simple zeroes at cu = qm (m = 2,4,6,...).

c. G(w) has simple zeroes at wi = Ut = Um+6m (m = 2,4,6,...) where the 5m are
found from the symmetry relation

am G(-um) = G(Um) (m = 2,4,6,...). (3.16)

The asymptotic value of 5m (6 = lim ) is given by

6 = -(2iu/7r) sin- 1 (a/2) (3.17)

where a = lim am. The value of 6 is derived as in Ref. 2. Note that in Ref. 2, for a soft

boundary, 6 differed by an overall minus sign from the case here.

d. As J(0 -* o, G(w) = O(W-(1 /2)-e) where e -6/2iu. From (c) note that lel < 1/6.

e. As an edge is approached (r- 0), ' = 0(r(1/ 2 )+e) and I V ' I = 0(r-(1/ 2 )+e).

9
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Now using properties (a)-(d) and Eq. (3.16), residue series resulting from the integrals (for
m = 0,2,4,...)

(2ritf 1 AsG(w)dco = 0 (3.18)27i fCs co±q,,

(27ri)1 if G(So) (c+um co d ) =0 (3.19)

and

(27ri) l f G(c+)do = 0, (3.20)
Cs 0+Um

where Cs is a contour at infinity, match Eqs. (3.13)-(3.15) if we make the following identifi-
cations (where R(f) is the residue of G(cj) at c=:t):

R(O,) = n sin(7rn/t)Ah (n>1) (3.21)

G(-qm) = (7r/A2t) [6mo - (qmTmBh/2)] (3.22)

G(1) = -1rA83/A2 t (3.23)

G(1)-aoG(-1) = (a0 +Ah3)7r(t-1)/A2 t (3.24)

G(-um) = (7r(t-1)/A 2 t)((rm +pum)(Tm Ch /4) - 5mo). (3.25)

Equations (3.21)-(3.23) follow from matching the residue series of Eq. (3.18) to Eq. (3.13).
Equation (3.24) follows from Eqs. (3.14), (3.16), and (3.19), and Eq. (3.25) follows from
Eqs. (3.20) and (3.15). Equations (3.22) and (3.25) for m=0 can be equated [both are
G(-1)], and yield

1-B83 = (t-1) [(p+N)(Ch/2)-1] (3.26)

A further value for G(-1) follows by substituting Eq. (3.23) into Eq. (3.24) and, when com-
bined with Eq. (3.26), yields

1-t-(tA0/a 0 ) = 1-Bh3 = (t-1)[(p+N)(Ch3/2)-1]. (3.27)

For t=1 note thatB83=1 and Ao=0, the latter indicating that, for normal incidence on a t=1
surface, there is no backscatter return. Both these results also follow from the first case dis-
cussed previously if we set (x0=0 in the appropriate equations. It also follows from Eq.
(3.27) that if t, p, and N are kept as parameters, only one of the terms A o, Bh3, and C83 is
independent. Later we choose Ah3 as the independent amplitude and use it to construct
G(w).

10
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Constructing G(w)-The meromorphic function G(W) is defined using the following
infinite products (which are discussed in App. A of Ref. 2) in addition to Eq. (3.6):

co

He(wq) = H (1-wC/q2 , )(q2. /imAt)ec~fimAt (3.:
m=1

00

11e(,u') = H (1-c/U2m) {u 2 m/(2imu+6)} ew/2imu. (3.
m=1

The product rIj (w,,3) from Eq. (3.6) vanishes at (0 = On (n = 1,2,...) and is used to satisfy

property (a); He(w,q) is used to satisfy (b) and neH(Q,u') is used for (c). Additional terms in
the products are to guarantee absolute and uniform convergence and convenient calculation

of asymptotic properties. The function G(c) which satisfies properties (a)-(c) is given by

G(w) = E(U) He(w,q) Hle(wu')/fIj (w43) (3.30)

where E(U) is an entire function to be determined. As 101 - o (see App. A of Ref. 2),

(3.31)

with

H = [tlnt-(t-1)ln(t-1)] /At (3.32)

and e given in the definitions of properties (c) and (d). Choosing E(U) as

E(cw) = E e-iwH (E = constant)

insures (d). The constant E is fixed as follows. Divide Eq. (3.24) by G(1) so that we can
write

a0 G = 1 - (ao+Ah)ir(t-1)/[A 2 tG(1)I (3.34)

where G G(-1)/G(l). On the right-hand side of Eq. (3.34) substitute for G(1) from Eq.

(3.23). We can thus solve for At in terms of G

Ah = a0 (t-1)a0G-t -
(3.35)

G is known from Eqs. (3.30) and (3.33) as

G ne(-1,q) rle(-1,u') H11 (14) e2 iH
ne(lsq) fle(lbu ) nll(-1,9)

(3.36)

To know G requires that 6 m be known. We will discuss the 6m calculation later. Assuming
the 5m to be known for the present, G is known, and thus so is At. Using Eqs. (3.23),
(3.30), and (3.33), G(w) can be written as

11 .- S

'. I

28) ' I

29)

(3.33)

G(w) -- E(w) W-(112)_Iff eiwH
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7rA h r I~(w~q) H, (cjSu') rl, (1,O)eilc .(.7
A2 t He(lq) Hle(l,u') Ill(o),:). (3.37)

Thus Bh and Cm are known via Eqs. (3.22) and (3.25). To find An (n>1) from Eq. (3.21)
requires a residue calculation similar to that used in Ref. 2. The result can be written as

- (-)n~r Ahn r1e(fnq) He(3nu') Hli(-0 ,)A -0 ~~~~~~~~~ei(113 n)H. (3.38)n tWnsin(vn/t) 11,(1,q) He(l1u') rll(-I,O)

For completeness we list the other amplitude values. From Eqs. (3.22) and (3.37) (m = 0,
2,4,...)

Bh 6m0 A rle(-qm,q) 11e(-qm,u') u~i(l ,1)m = MO + _mq He (qlmq) ren(1 '')) r~(1(m:g) ei(l+qn )H, (3.39)

and from Eqs. (3.25) and (3.37) (m = 0,2,4,...)

- 26mo 4Ah He(-Umq) He(-Um,U') r1j(1,1)ei(l+um)H
m p+N Tm(t-l)(rm+pum) rle(1,q) rle(1,u') li(-um,) .

All these amplitudes are known once the set of 5m are known. These latter follow from the
symmetry condition [Eq. (3.16)] and an iterative procedure similar to that in Ref. 2. The
latter is given in the next section.

Zero Shifting-The iterative procedure employed to calculate the 6m follows from
Eq. (3.16). The calculation is similar to that in Ref. 2, and only the final result is listed
here:

6U+1)e2um/imu M-1 62Un1)+n -u

M M ~2n 2n m 6(1+1) +2 um n=1 60) +U U

= (RHS) X cc 6U+ 2 n Um e-um/inu (3.41)
n=M1+1 62n~2n m

where j is the interation index, 21M = m, and

(RHS)= am rfl(umq) Hl(Um'3O) e2iumH. (3.42)
rl,(um,q) Hj(-um,3)_

The iteration is as follows:

1. For m large, 6m 6 = -(2iu/7r)sin-1(a/2). Assume that MO) 6 and substitute
this into the right-hand side of Eq. (3.41). Then calculate first iterations 6(1l)6(1) 5....(1)
such that I6 5 2-6f, 15§) -4 61, ... are zero to any desired accuracy.

2. Set 5P±2,'6P4,... equal zero for all successive iterations. Then 62, 64,..., 6 p
is the iteration set.

12
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3. Calculate higher iterations until Eq. (3.16) is satisfied to any desired accuracy.

The above iteration procedure was developed by Mittra (3) and used in the present
efforts (1,2) with excellent results. Other advantages of the procedure are listed in Ref. 2.

4. SUMMARY

It has been shown possible to solve the problem of scattering from the corrugated struc-
ture shown in Fig. 1 using a combination of analytic function theory and a numerical itera-
tion procedure. The steps in the calculation were as follows: first, determine the 5m zero
shifts, then calculate G via Eq. (3.36) and thus A~ from Eq. (3.35). Finally, the amplitudes
are calculated using Eqs. (3.38)-(3.40). Only the analytic results are presented in this report.
Numerical results will be published later.

This report is the second in a series on scattering from corrugated structures. Further
surfaces similar to those in Fig. 1, but with finite depth plates, are presently being considered.
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