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Analytic Simplification of a System of
Ordinary Differential Equations at an Irregular-Type Singularity

PoO-FANG HSIEH*

Mathematics Research Center
Mathematics and Information Science Division

Abstract:  Let 1,(u) = diag (uyq,....u,) for given complex uz. If Re up = 0
(1 € k < n), then the (m+n)-system x0+1y’ = F(x,z)y, xz' = 1,(u)z is simplified to
x0t1Y' = G(x,2)Y, xZ' = 15(u)Z by a transformation T defined as y = Y + P(x, 2)Y,
z = Z in a sector having property-J with respect to {(A,- - )\j)(oxa)‘l ji=l,...s@#Dy¢,
where A; (=1,2, . . .,s) are distinct eigenvalues of F(0,0) and G(x, Z) is in block-diagonal
form agreeing with the Jordan canonical form of F(0,0).

I. INTRODUCTION

1. Singularity of Nonlinear Equations

For a system of nonlinear differential equations given by
xw' = h(x,w) » (1.1)

where w' = d/dx, w and h are s-column vectors, x is a complex variable, the quantity 4(0,0) = 0, and
every component of A(x, w) is holomorphic at (0,0), the singular point x = 0 is said to be of the Briot-
Bouquet type. Since the work of C. C. A. Briot and J. C. Bouquet [1] in 1856, many authors, in-
cluding H. Dulac, E. Picard, H. Poincaré, P. Painlevé, J. Malmquist, and M. Hukuhara and T. Kimura
(cf. [2]) have devoted study to this type of singularity. Recently, M, Iwano published a series of
papers [3-8] devising a method to find general solutions of Eq. (1.1) when the matrix 4,,(0,0) is
singular, and particularly in the form

0O o
hW(O:O) = H
0 H

where H is a nonsingular matrix whose size is smaller than s. In doing this, he encountered a system
of equations of the form

xoty' = f(x,,2), xz' = g(x,y,2) « (1.2)

with irregular-type singularity, where y and f are m-column vectors, z and g are n-column vectors, o is
a positive integer, f and g are holomorphic in a neighborhood of (0,0,0), (0,0,0) = 0 and £(0,0,0)= 0,

Note: This work is partially supported by NSF Grant GP 14595.

*The author is on sabbatical leave from the Department of Mathematics, Western Michigan University. NRL Problem
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2 PO-FANG HSIEH

A = £,(0,0,0) is nonsingular, £,(0,0,0) = 0 and, furthermore, £,(0,0,0) = diag (u1,u2,. . -.iy),
with Re y >0fork=1,2,...,n. It should be noted that £,(0,0,0) = 0, £,,(0,0,0) = 0 and £,(0,0,0) =
0 are nonrestrictive conditions under the assumption that 4 is nonsingular. However, one of the
assumptions Iwano [6] imposed is that the eigenvalues of A are mutually distinct. In order to relax
this assumption, it is necessary to reduce f},(x,0,z) to the simplest form. This is the purpose of the
present paper; we want to reduce f,,(x,0,z) to a block-diagonal form such that the simplified matrix
coincides with the Jordan canonical form of 4 at x =0,z = 0.

2. Notations and Definitions

In order to simplify expressions we introduce several notations and definitions.

The m by m unit-matrix is denoted by 1,,. For an m-column vector y with elements {y]-},
11n(y) denotes an m by m diagonal matrix with diagonal elements yj}.

If u is an m-column vector with elements u;}, [u] denotes an m-column vector with elements
{lujl}. For another m-column vector &t with elements {L'tj}, [u] < [it] means that |u;| < || for each
index j.

For an m-row vector ¢ = (q1,42, . . .,4,), the components are all nonnegative integers and we
define

lgl = qq + ...+ qp. 2.1
For an m-column vector y with elements { yi} , the symbol y 2 stands for the scalar quantity
y? = yat ...y dm (2.2)

The norm of an m-column vector y with elements { y,-} is

m
il = max Ly;l. (2.3)
l:

For a scalar ¢ and an m-row vector y with elements { y]-}

P o= (71, .,m), 2.4
expy = (eXpPYi,..., eXpPVm) 2.5)

and
Rey = (Rey,...,Reyy), Imy = Imyy,...,Imy,). (2.6)

If y is a column vector, then #¥, exp y, Re y, and Im y are all column vectors.
For an m-column vector y with elements { y]-} and an n-column vector function f(x,y) with
elements { £, y)} » the notation f,,(x,y) denotes an n by m matrix given by

1) = (%f(x,y), . %f(x,y))- @)

A function f(x) which is holomorphic and bounded in x for

0< x| < g, O<agx < 6O 2.8)
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where a, ©, and © are given constants and admits an asymptotic expansion in powers of x as x tends to
0 is said to belong to class C(©,0,a).
A vector f(x,y,z) which is holomorphic in (x,y,z) for

0<lxI<a ©<agx<® Iyi<b lzll<ec (2.9)

is said to have Property-1 with respect to y and z in Eq. (2.9) if its components admit uniformly con-
vergent expansions in powers of y and z for Eq. (2.9) and if the coefficients of these expansions
belongto class € (8,8,4).

Given a finite number of monomials of x~1 of the same degree o

Q%) = —0% G=1,2,...M),
the sectors of the form
1 - I <1 T+ 2k 2.10
slagy — 3 + 2nh; | < argx S\ + 3 wh; (2.10)
and
1 T4 ok )< argx < 2 £ 3y om T @
o \arg + 3 + 2mh, argx < —largy; + = mh; 2.11)

where h; and hj are integers, are said to be a maximal negative region of §; (x) and a maximal positive
region of £;(x), respectively, indicating the sign of the quantity Re Q(x) in these regions.

Asector © < arg x < © is said to have Property-J with respect to' monomials {Q 1), .. .,Qm(x)}
if this sector does not contain any maximal negative region of £,(x) for each index j and if in this
sector there is a direction for each index j such that, as x tends to the origin along this direction,
exp (Re §;(x)) tends to infinity exponentially.

3. Main Theorem
Consider a system of differential equations
xo*ly' = F(x,2)y, xz' = 1p(u)z (E1)
where y is an m-column vector, p and z are n-column vectors, with constant elements {uk} for u,
o is a positive integer, and F(x,z) is an m by m matrix holomorphic in (x,z) with Property- U with

respect to z in

0< x| <a 0 <agx <9, liz)l < ¢ 3.1

with a, ©, ©, and ¢ as given constants.
Let F© denote the matrix

FO = lim F(x,0),for® < argx < ©.
x>0 .

AITITSSYIIND
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We further assume
() the matrix FO has distinct eigenvalues \y, Az, ..., Ny with multiplicity my,m,, . . .,ms,
respectively (my + my + ... + mg = m);
(i) every component of y satisfies
Rey, = 0 k=1,2,...,n). (3.2)
By assumption (i) we further assume, without loss of generality, that

FO = diag (FP,F?,...,FY - (3.3)

where F} is an m; by m; matrix of the form

FP = Nlm; + D; 3.4
with
0
8j2 -
D] = Co . (611 = Qor 1)
(: 5,-,,,]. 0
Put
NN . s
Ay(x) = — ;x" ’. Gi=1,2,...,s8i%)). 3.5)

Then, the main theorem is

THEOREM M. Assume that (i) and (ii) are satisfied and that the sector © < arg x < © has Prop-
erty-J with respect to {A,-j(x)l, ij=12,...,s iaﬁj}. Then there exists a transformation T defined as

xo1Y' = Y + P(x,2)Y, z=2 (D
such that
() Eq.(E;)isreduced to
xo1Y' = G(x,2)Y, xZ' = 1,(WZ Ey)
where _G(x, Z) is an m by m block-diagonal matrix of the form
G(x,Z) = diag (G,(x,2), G3(x,2), . . .,Gdx,Z)) 3.6)
with the Gj(x,Z) being m; by m; matrices; and
(i) the entries of P(x,Z)and G(x,Z)areholomorphic in (x,Z), have Property-U with respect to
Zin

0 < Ixl < ay, @ < argx < O, NZ1l < cq, 3.7
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where 0<ag <a, 0<cy<c, and satisfy

P(x,0) = 0 and iii% G(x,0) = FO, for @ < argx < ©. (3.9)

Assumption (ii) includes the case where the vector u = 0, namely, z is a parameter independent
of x. In this case, Theorem M includes the special cases of the simplification of equations containing
parameters studied by W. J. Trijitzinski [9], M. Hukuhara [10], H. L. Turrittin [11],Y. Sibuya [12],
and P. F. Hsieh [13].

Chapter II will be devoted to preliminary algorithm, reducing the proof of Theorem M to two

types of nonlinear differential equations. In order to find the solutions of these equations, two funda-

mental existence theorems are needed. These theorems, Theorem A and Theorem B, will be stated
and proved in Chapters III through V.

Theorem A and Theorem B resemble two theorems proved by M. Iwano [7] using a fixed-point
theory devised by M. Hukuhara. Recently, they were proved by P. F. Hsieh [14] using the successive-
approximations method. The first theorem actually is in simpler form than earlier results. However,
because of the complication and also the resemblance in the proof of Theorems A and B, the sketch
of the proof of Theorem A will be given in Chapter III. Theorem B is a refinement of earlier result,
due to the fact that assumption (ii) is broader than earlier assumptions.

II. PROOF OF MAIN THEOREM AND NONLINEAR EQUATIONS

4, The Leading Term

Since the matrix F(x,z) has Property-ll with respect to z, it can be expanded into a uniformly
convergent series of the form

F(x,z) = Fo(x) + Z Z9F 4(x) “.1
lql=1

for x, z in Eq. (3.1), where Fo(x) and F,(x) are m by m matrices holomorphic in
0< x| <aq, @<arge <O 4.2)
and belong toC (@, ©,q).

As the first step in proving Theorem M, it is necessary to block-diagonalize Fo(x) according to
the form of Eq. (3.3). This process itself resembles the proof of the Main Theorem.

LEMMA 1. Given a system of m equations
x9*1y" = Fo(x)y (4.3)
where Fo(x) is an m by m matrix holomorphic in Eq. (4.2), belongs toC (®, ©,a), and satisfies
lim Fo(x) = FO, for ® < argx < ©. 4.4)
Then, there exists a transformation

=n+ Q) 4.5)

AITITSSYTIINN
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such that the system of Eq. (4.3) is reduced to
xo*ly' = (FO+ Go(x))n
where Qfx)and Go/x ) are m by m matrices holomorphic in
0<Ixl]<d,and ® < argx < O, for 0 < o' < g,
belong to C{©,8,d'), and satisfy
ii_r}r(l) Q(x) = 0 and i]—{% éo(x) =0, for @ < argx < O,

Further, Gy(x) is in the same block-diagonal form as that in Eq. (3.3).

In order to prove this lemma, put |

Fo(x) = FO + Fy(x).

"~ Then ﬁ'o(x) is holomorphic in Eq. (4.2), belongs to C(@,0,4); and

1irr(1) ﬁo(x) =0, for @ < argx < ©.
X

From Egs. (4.3), (4.5), and (4.6), we have
x71Q" = Fo)(lm + Q) = (m + Q))(FO + Go(x))-

Or, by Eq. (4.9),

xo*1Q" = (FOQ — QF0) + (Fo(x) — Go() + (Fo(@)Q — 0Go(x)).

(4.6)

4.7

4.8

(4.9)

(4.10)

(4.11)

In order to find Q(x) and_éo(x) satisfying Eq. (4.11) and the properties described in Lemma 1, let us
denote Fy(x), P(x), and Gy(x) in block forms according to that of FO as shown in Eq. (3.3). Due to

the first formula of Eq. (3.8), it is sufficient to find Q(x) in off-block-diagonal form. Thus, put

FO(x) F{L(x) ... FL(x)
I*:'O(x) = F&_(x) ng(x) .- ng-(x)

F;{(x) Fs°2:(x) ... FOo()

. G,0(x) O
Golx) = O GL(x) | ,
T GO(x)

0 012(x) ... Qu®
o@) = ng(x) 0 sz(x)

0n(¥) Q) ... O

and

(4.12)
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where F,-(}(x) and Qy;(x) are m; by m; matrices, and GP(x) are m; by m; matrices. Then the F,-‘}(x)
belong to C(@,0,4) and satisfy

lim F(x) = 0, for © < argx < ©. (4.13)
X

Substituting Eq. (4.12) into Eq. (4.11), we have

GO(x) = FR(x) + Z FO()0;

j#E

xaﬂQi'j = (FioQij - Qi]FjO) + Z Fﬁ,(x)th - QijGjo(x) + Fi(;(x) (4.14)
pEs ()

By finding the solutions Q;;(x) from the second equation, then Gio(x) can be obtained from the first
equation.
Substituting the first equation of Eq. (4.14) into the second, we have

h#i h#j

By picking the entries in each of the Qi]- suitably, Eq. (4.15) is an (m, — Eml?)—column vectorial
nonlinear equation of the form

x0*1y' = f(x,y) (4.16)

where f(x,») is holomorphic in (x, »), has Property- U for
0 < x| < g Q< agx < O, Iyl < b (4.17)
and satisfies
lim F(x,0) = 0, for ® < argx < ©. (4.18)

Moreover, the matrix F,(0,0) is nonsingular and in the lower triangular form with eigenvalues
NN 7=12,.. 0,8 1),
From these facts, we know that Eq. (4.16) has a formal solution of the form

o0

y ~ E x%g, (4.19)
=1

where the gq are constant vectors. Further, due to the fact that the sector ® <argx < © has Prop-
erty-J with respect to {A,-]-(x)li, i=1.2,...8 (i#]')} by Theorem A to be proved in Section III, we
know that Equation (4.16) has a solution y(x) which is holomorphic and bounded in

AATITSSVIOND
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0<IxI<a and @ < argx < O, for 0< a' <z (4.20)
and belongs toC (8,0,4") with asymptotic expansion given by Eq. (4.19).
By the use of this result, we know that the Eqs. (4.14) have solutions G?(x) and 0Q,;(x) which

are holomorphic, bounded in Eq. (4.20), and belong to C(© ,8,4") with asymptotic expansmns of the
form

Gl(x) = E x*GY (i=1,2,...5)
Q=1

oo

Qif(x) = Z xQQi]'Q (i,j= 1,2,...,3,'1.#].).

=1

5. Nonlinear Equations

In the light of Lemma 1, we can assume without loss of generality, that F(x) is in the block-
diagonal form of FO + Go(x) Similar to the process in Section 4, put

F(x,z) = Fo(x) + H(x,z), G(x,z) = Fo(x) + G(x,2). G.1)
Then H(x, z) and G(x, z) are holomorphic in
0< Ikl <d, ©<agx<©, llzll < ¢ (5.2)
and
H(x,0) = 0, G(x,0) = 0. (5.3)
From Egs. (E,), (T), (E,), and (5.1), P(x,Z) and G(x, Z) satisfy
(Fox)P — PFo(x)) + (H(x,Z) - G(x,Z)) + (H(x,Z)P - PG(x,Z)) } (5.4)

1n(W)Z.

xo+1P’

xZ'

Put

i) O )
FQ(X) O F 2(x) .
" Fyx)

Hy, Hyp His

H H e H
H(x,Z) = .21 ‘22 .2s
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o . 0 :
G(x,2) = G
O :
> (5.5)
0 Py Pis
P 0 P
o . 2
Psl Ps2 0 J
Then
. A
Gi(x,2) = Hy(x,Z) + E H;i(x,Z)P;i(x,Z)
[
) : - o (56)
xo1Py; = (F;(x)Py — PyF;(x)) + 2 HipPpj — PyGj + Hy 5.
P (i#7)
xZ' = 1,2 )
Or, by substituting the first equation into the second,
xOFIPy = (F;Py — PyFy) + E H;iyPp; — Py(Hj; + E HipPp;) + Hjj
= A () (5.7)
xZ' = 1, (W)Z

/
Similar to Eq. (4.15), Eq. (5.7) can be written as an (m, — Em,?)-column vectorial equation of
the form

xoty' = f(x,,2)
(5.9)
xz' = 1,(u)z

where y and f are (m? — Eml?)—column vectors, and F(x,y,z) isholomorphic in (x, y,2) and has Prop-
erty-1l with respect to y and z in

0< Ixl <d, Q< agx < O, vl < b, lizll < e. (5.9
Furthermore,
f(x,0,0)=0 (5.10)

and the matrix

AITITSSYTIIND
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A® = ;g% f(x,0,0), for © < argx < O, (5.11)

is in the lower triangular form with nonzero eigenvalues \; = A; (3,7=1,2, . . .,s; i%)).

Thus the problem is reduced to finding the solution y =R(x, V(x)) for (5.8), where ¥(x) is a
holomorphic solution of xz' = 1,(u)z, such that R(x z) is holomorphic in (x,z) and has Property-lU
with respect to z in Eq. (3.7).

6. Formal Solution

By the assumptions on f(x,y,z), it can be expanded in the following uniformly convergent
series

100D = folx D) + A + ) yPhy(e2) ©.1)
_lp|=2

where p is an (m? — 2m2)-row vector with nonnegative integer components, and the vectors fy(x, 2),
fp(x,z) and the matrix A(x z) are holomorphic in (x,z) and have Property-U with respect to z for

0< IxI <d, @ <argx <0, llzll < e (6.2)
Moreover,
fo(x,0) =0
and

1in(1) A(x,0) = A9, for © < argx < O.
xX—

Thus we have the following uniformly convergent series expansions

Fos2) = ) 295

lgi=1

fp(x:z) = Z qupq(x)
lq1=0

Ax,z) = z94 ,(x)

where g is an n-row vector with nonnegative components, and f,(x), fpq(x), and A4(x) are in the
class C(©,8.4).
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In order to find a formal solution of the form

oo

v~ Z 29R () | | (6.3)

lgl=1

for Eq. (5.8), differentiate Eq. (6.3) formally, and, by the fact that xz' = 1,,(u)z, we have

x0+ly’ ~ xot1 ? - Z9Rg(x) + x E g uz9Rq(x). 6.49)
lgl=1 lql=1
On the other hand
x0+1y' ~ E zqfoq(x) + % quq(x) E zqRq(x)
lgl=1 lq1=0 . lql=1 ) . 65)
o0 oo p - -
+ E E z9R4(x) 2 29 pq(x)]:
Ipl=2 \ Ilql=1 lgl=0

Equating the coefficients of z2 in the right-hand members of Eqs. (6.4) and (6;5), we have
xR, = [Ao(x) - (X"Q'u)l(mz_,:mlz)] Ry + Hy(®) 6.6)

where the H(x) are linear combinations Qf foq» fpq»> and Ay, with coefficients being polynomials of

Ry(14'1<1q)).
Since lim 4¢(x) = A is nonsingular, we can find a unique formal solution, successively for g,

in the form

Ry(x) ~ Z x*Rgy. 6.7)
2=0 ) '

However, by Theorem A to be given in Chapter III, there exists a unique solution R,(x) which is
holomorphic and bounded in

0< Ixl <d, 0 <argx <O (6.8)

and belongs toC (@ ,0,4’) with asymptotic expansion given by Eq. (6.7). Let z = V(x) be a holomorphic
solution of xz' = 1,(u)z. Then we get a formal solution

oo

5~ Z VOOIRE) (69
qi=1 '

Remark. Since Eq. (6.6) is alinear differential equation with 44(x) independent of g, we thus
have R, (x) holomorphic in (6.8) for all q.

for Eq. (5.8).

HERERRSY AN
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7. Analytic Solution

Since the sector ® < arg x < © has Property-J with respect to {A,-]-(x)li, =12, ..., i#j},
Theorem B, to be given in Chapter IV, assures that Eq. (5.8) has a solution

y = R(x, V(x)) (7.1)
such that R(x,v) is holomorphic in x, v for
0 < Ixl < ag, 0 < argx < 6, vl < ¢ (7.2)

where 0 < gy < 4a', 0 <cq < c, and it possess a uniformly convergent power series expansion (6.9)
whenever (x, V(x)) satisfies Eq. (7.2). Furthermore,

R(x,0) = 0. (7.3)

By the application of these results to Egs. (5.7) and (5.6), Theorem M is proved.

III. FIRST EXISTENCE THEOREM

8. Theorem A and Its Equivalent Problem

The remainder of this report will be devoted to two existence theorems mentioned above for
the proof of Theorem M.
For the first theorem, consider a system of nonlinear differential equations

xoHy’" = f(x,y) (Es)
where y and f are m-column vectors, and f(x,y) is holomorphic, bounded in (x,y) for
0 < Ixl < g 0 <agx < 0O, Iyl < b 8.1

and belongs toC (©,0,4). Further, we assume that

() the matrix

A0 = limofy(x,O), for ® < argx < O, (8.2
x—‘)
is in the form of
A0 = 1,(y) + D,  detly(y) # 0 | (8.3)

where v is an m-column vector with elements {'y,-} and D is an m by m nilpotent matrix of lower
triangular form; and
(i) equation (E3) possesses a formal solution

y ~ Z x%g, 8.4
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where the gy are constant m-column vectors, and in particular
llgoll < B. 8.5

Let

_ Y - ‘ . :
-Q:](X) = (F (] = 1, 2, « ooy m) (86)
The first existence theorem is

THEOREM A. Assume that the sector ® < arg x < © has Property-J with respect to
{Q x) ..., Qm(x)}. Then Eq. (E3) has a unique solution ®fx) which is holomorphic and bounded
for

0 < |x| < a, @<agx <O 8.7

where 0 < ag < a, and admits the asymptotic expansion (8.4} as x tends to 0 in the sector (8.7).

In order to prove Theorem A, let N be a positive integer and consider the following transforma-
tions to Eq. (E3):

N—-1 .
y = E x%y + wy \ (8.8)
=0
and
wy = L (e )y o (8.9)

A

where £2(x) is the m-column vector with elements {Qj (x)}. Then 7y (x) satisfies
X7y = 1n(e™ 2N e, lm(e *ny) (8.10)
where f(x, w) is an m-column vectér héving Property-1U with respect to w in
0 < Ixl < ay, @ <argx < 0O, Hwll < by (8.11)
and satisfies the inequality
IfGe W)l < Hilwll + By 1xI¥ (8.12)

where ay, By, H, and by are constants, with H independent of N. Further, f (x,w) satisfies a
Lipschitz condition

lI£Ge,wh) = Fx, w2l < Hllw! —w2i| (8.13)
for (x,w!)ar’ (8.11).
Sinc- atlix , = D and is nilpotent, we can assume, without loss of generality, that

H sati

AITITSSYTIND
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! 13 m X :
4H < |yl sin 2g¢, for |lyll' = miln ;1 (8.14)
]:

for a preassigned positive constant €.
Then, the proof of Theorem A is reduced to solving

Problem A. If we have Eq (8.14), then there exists a unigue solution pn(x) of Eq. (8.10) such
that, for a suitable choice of aN and K,

() on(x) is a holomorphic and bounded m-column vector for
0< Ixl <ay, ©<agx<® (8.15)

and
(ii) ww(x) satisfies

Ton(x)] < Kylx|V[e~Re 20 (8.16)

forxinEq.(8.11).
Furthermore, a solution of (8.7) satisfying

fon(x)] = O(ixV)[e™ Re )] (8.17)

is unique.

Theorem A can be derived from the solution of this problem by an argument similar to that to
be given in Section 13 below.

9, A Stable Domain

In order to find the solution of Problem A, it is necessary to replace (8.15) by a domain of the
form

0 < |x| < ayw(argx), O <agx <O 9.1)
where (7) is a strictly positive-valued, bounded, continuous function of 7 for @ <7 < 9, to be
defined soon. The domains (8.15) and (9.1) are equivalent in the sense that any point in (9.1) is
contained in (8.15), if ”;v is suitably chosen, and vice versa. The domain given by Eq. (9.1) is called
a stable domain of Problem A.

The directions arg x = 0; in the sector

Q< agx < O, (9.2

such that Re £;(x) = 0 for arg x = 0, are called singular directions of £; (x) and are given by

1 T
E(arg Nt gt 21rh> : 9.3)

or

1 ™ r '
E(arg % T3 + 277h) (9.3)
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where % and k' are some integers. Singular directions of the form (9.3) are called ascending singular
directions of §;(x), and those of the form (9.3)' are called descending singular directions. When
Re £;(x) isregarded as a function of arg x =8, it is 2 monotonic increasing (or decreasing) function of
arg x in a small neighborhood of each direction of the form (9.3) (or of the form 9.3)).

For the indices j such that Re £2;(x) change their signs in (9.2), we choose arg 7; so that at
least one of the two singular directions

o1 4 T +
6].+ = 0<arg'y, + 2> (9.4)

1 3n : -
6]_ = -(;(arg vt -5-> (9.4

is contained in Eq. (9.2). By the assumption that Eq. (9.2) has Property-J with respect to
{60, ..., 2., (x)}, we can classify the set J = {1.2,.. .,m} of indices into four classes:

Jo = {/;Re@y(x) > 0 for @ < argx < 8},

L={ie<o.<o_< 8},

I, ={i;e< 6, <0< 6,-},

Js={j; 04 <@< 0. <8}
For jeJ, we define 8._ by Eq. (9.4)", and forjeJ3 we define 6., by Eq. (9.4)*. Some of these four
sets may be empty. Especially, either Jo or J; isempty because (aﬂ when J, is not empty, ® —© <m/o,
and (b) when J; is not empty, ©® — © > n/g. Therefore, J=J; UJy UJz, 01T =Jo UJy U Js.

Since the sector given by Eq. (9.2) has Property-J with respect to {Ql(x), e S2y (x)} ,fora
sufficiently small positive number €, © and © must satisfy the inequality

m T ' _ m -
max 0., — (— +66)]<O<O<minb,_ +<—— - 66) 9.5)
j=1 ] (4 =1 7 g
foralljeJ, UJ, UJ3 or Jo UJ, UJ;. Put
© . = max 6., and ©, - = min 0._. 9.6
Kt jer, At K= e ] ©.6)
A scalar function A(7) in ® <7< © is defined as
1 m
o(t— 0, +4¢), for O, + 2 4e < T7<0O
i L i
=<5 - = 710, + 7~ — .
A(7) L for ©,. T t4e <7< 0O, + % 4e 9.7)

o(1—0,,—4e) + m, for ® <7< 0O

\. 2+ 20

AITITSSYTINN
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Then A(7) satisfies
20e < A(1) < m—20¢, for © < 7 < 0. (9.8)

The function w(7) is defined as

w(T) = exp f cot A(t)dt [, 9.9
%

where 0 is an arbitrary angle in (9.2).

10. A Fundamental Inequality

In order to find the solution to Problem A, we need an integral inequality.

LEMMA 2. Let x; be an arbitrary point in the domain (9.1). Then there exists an m-vector
path T with elements {Ty, } such that

(i) each curve Ty, , Joins the point x; with the origin and is contained in (9.1), except for the
origin, and
(ii) if ay satisfies

QN(a}(, ma.x_w(r))‘r < |lyll’ sin 2ge, (10.1)
0<7<06 ‘ .
then
, :
J x| Vo le R gy, < 5 |, [N 7ReQj(x1), (10.2)
I IVl sin 20e

71

Here s; is the arc length of Ty ; measured from the origin to the variable point x on this curve.

In order to define jx,, we define first an m-vector a(7) with elements a;(7) in the closure
of Eq. (9.2). If jeJ,,

a;(7) = % for @ <7 <O, (10.3)
If]'eJl,
o(r—0,_+4de), for ;. — 26 <7< ®

ai(r) = 1’2- for 6,1 + 26 <7 <6, — 2 (10.4)

0(7'"0]._‘46) ta,for @ <7< 0].+ + 2e
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If]'er,
™ —_—
E,for0j++2€<'r<®
aj(T) =
0(7'—9].+—4e) +a,for @ <7< 0].+ + 2¢ .
Ifj€J3,
0(7'—0]._+4e), for 0}.- -2<7<80
a]'(T) =

,for@<‘r<0]._+2e

(TR

By virtue of Eq. (9.4), we have
20e < gi(1) < m — 20¢, for © < 7 < e,
and by Eq. (9.5),
a;j(1) < A(7), for 6]._ -26<7<0 (eJyi,J3)
ai(1) < A(7), for @ < 7 < 0j+ + 2 (jeJq,J3)
Hence, we have
7 T
J cot g;()dt <J cot A(Hdt
0 0

for 0 <7<0_, +2e (jeJy,J,),and for 0._—2e<7<0 (jeJy,I3).

17

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

Let (7,6) and (p,7) be the polar coordinates of the point x, and of the variable point x on the

curve Iy, respectively. Then the curve T, , is defined as follows:
i) o< 6j+ +2eor 0]._ —2e<0, the curve T;

T
p = rexpj cot a;(¢)dt
]

6<T<0].++2e or 0]._—2e<'r<6,

and of a rectilinear part T} given by

.
0<p< repr cot a;(£)dt
]

T=0, %+ 2 or 6, — 2e
j i

N

jxy consists of a curvilinear part 1"]-' given by

> (10.10)

J

(10.11)

A3ITITSSYIONN
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(i) If 6].+ +2e<0< 0]._ — 2€, the curve I'y,, consists only of a rectilinear part F}'given by
0<p<r T=40. (10.12)

By virtue of Eq. (10.9), the curves Ty, defined by Eqs. (10.10) and (10.11), or (10.12), are
contained entirely in the domain given by Eq. (10.1), except for the origin. This proves assertion
(i) of Lemma 1.

In order to prove assertion (ii), we will prove

%(leNe—-Reﬂj(x)) > ”’Y” ;11’1 20¢ leN—-o—l e—-Rer(x)’ (1013)
J

instead, for x on TYy,, except for xf, the joint of I and Tj. By the fact that lx[Ve Re%() j5
bounded in the neighborhood of x;-'}, Eq. (10.2) follows immediately by a limit process and by Eq.
(10.13).

For x on the curvilinear part I}, p is a function of 7 given by Eq. (10.10). By a simple computa-
tion, we have

| &

dr

- = te'T(cot a;(r) + i) sin'aj(7) = %@+ (10.14)
i

B
|
iy

T

d
where the negative sign is for § <7< 6].+ + 2e, and the positive for 6]._ ~2e<7<0.
Hence, we have

a‘-i;(— Re ;(x)) = +p™"y;| cos (g;(r) — o1 + arg?;), (10.15)
7

and consequently,

-‘%ie‘ReQi(x) = 2p 7 y;le TR Meos (g;(7) — or + arg ;) (10.16)

with the positive sign for § <7< 8;+ + 2¢, and the negative for . —2e <7<9.
On the other hand, from the definition of g;(r) and of the angles 9j+ and 0]._, we have

% —4oe,for6<'r<0j++2e
aj(t) — or + argy; =

—72! +4ae,for6]._—2€<1<6

Hence
*cos (a;(1) — or + arg?;) = sin 40e > sin 20¢,
and we have
%—e‘Rer(") > xRl ||' sin 20¢ (10.17)
7

for x on I'}.
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Also, since s; is real, we have

_y dlx| d dx

P ol R = -1 24
x| as, 75 log |x| = Re x a5 (10.18)

Thus, by Eq. (10.14),
—1 im >

x| ds; = —|x| (10.19)

for x on T},
On the rectilinear part I', we have s5; = p = |x|. Thus

A ReQj(x) - _,~Reix) L p. .
a5 e / —-e ] a Re ©;(x)

L1}

—e R0y | cos (arg y; ~ 08) > e REHX) T )y | sin 20e

because 0+ + 2e < 6 <0, — 2. Therefore Eq. (10.17) holds also for I'; . Equation (10.18) follows
immediately for x on T}’ since |x| = s;.
By the fact that Egs. (10.17) and (10.19) hold for I, , we have

dii—uxlf"e—“eﬂf(x)) > x|V 17 ReLX) |1y ||’ sin 20¢ — Nlx|o),
i

and Eq. (10.13) follows immediately from Eq. (10.1). Thus, assertion (i) is proved. This completes
the proof of Lemma 2.

11. Solution of Problem A

For an arbitrary point x, in the domain given by Eq. (9.1), consider a system of integral
equations given by

p(x1) =J X Ly (e O] (x, 1 (e *p(x)) d, (1L1)
Tx,

which is equivalent to Eq. (8.11). By the use of Lemma 2 and a discussion analogous to that in
Chapter V, below the solution of Problem A can be found. . ~
Thus Theorem A is proved.

IV. SECOND EXISTENCE THEOREM

12, Statement of Theorem B

Consider a system of m+n equations given by

x0+1y’ = f(x»J"»Z), xz' = 1”(“)2: (E4)

GATATSSYTINN
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where y and f are m-column vectors and u and z are ncolumn vectors. Here we assume that
(i) f(x,y,2) is holomorphic in (x,,z) and has Property-1l with respect to y and z in

0< x| <aq @ <argx <6, lIyll < b, lHzlf < ¢; (12.1)
(ii) the matrix

liné f(x,00) = A° = 1,,(y) + D, for @ < argx < © (12.2)
X

where v is an m-column vector with nonzero elements {7,-}, and D is an m by m nilpotent matrix of
lower triangular form;
(itiy every component of u satisfies

Rey, 2 0 k=1,2,...,n); (12.3)

and
(iv) for a holomorphic solution V(x) of the equation xz' = 1,(1)z, Eq. (E4) possesses a formal
solution

oo

5~ ) Vg (12.49)

lq1=0

where g, (x) are m-column vector functions belonging to C(© ,0,0), and, in particular,

llgo()Il < b. (12.5)

Now, the second existence theorem is

THEOREM B. Assumé that the sector ® < arg x < © has Property-J with respect to
{S} wx) ... (x}}, where the };(x ) are given by Eq.(8.7). Then Eq. (E4) has a solution of the form
{@Cx, V1)), V(x)}, where x and V(x) are in the domain

0 < Ix| < aq, O<argx <O, il < ¢, (12.6)
and 0 <ag <a, 0<co <c. Furthermore,y = &(x,V(x)) admits uniformly convergent expansion of
the form (12.4) so that ®(x,v) has Property-U with respect to v in the domain given by Eq. (12.6).

This theorem is similar to a theorem proved in Refs. 6 and 14. However, the conditions given
by Eq. (12.3) are milder than those assumed for earlier results. Also, Eq. (12.3) includes the case that
ux = 0 (k=1,2, .. .,n) which, in turn, reduce z to a parameter independent of x, and Theorem B be-
comes a special case of problems studied in Refs. 9-13.

13. Reduction of Theorem B

In order to prove Theorem B, we first consider, for a positive integer V, the following transfor-
mations to Eq. (E4):

y = Z V(x)g,(x) + wy (13.1)
lqi=0
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and
wy = 1, (e2® )y (13.2)
Then, ny(x) satisfies
X0y = by (672N F(x, V(x); 1m(e 2 )ny) (13.3)

where f(x, v;w) is a holomorphic and bounded m-column vector function of (x,v,w) for
0 < |xl < ay, O < argx < 0O, vl < ey, lwll < by. (13.4)

Here ay, cy, and by are positive constants depending on N, ay < a, ey <c, and by depends on b,
ay, and ¢p. Further,

£(0,0:0) = 0, and lim fw,00) = D, for © < argx < O, (13.5)
X

and Eq. (13.3) has a formal solution

() = L(e=2) Z V(x)9g, (). (13.6)

lgl=N

Since D is nilpotent, we have the inequalities
17Ge, v;w)ll < Hllwll + BylvIlV (13.7)
and
FGe,vwh) — f(x,v;w2)Il < Hllw! =w?|| (Lipschitz condition) (13.8)

for (x,v;w), (x,v;w!), and (x,v;,w?) in Eq. (13.4), where H can be taken, without loss of generality, to
satisfy

4H < |lyll' sin 20€. (13.9)

Thus, the proof of Theorem B is reduced to solving

Problem B, If Eq. (13.9) is satisfied, then there exists a solution on(x,V(x)) of Eq. (13.3) such
that for suitably chosen ay, ¢y, and Ky

() on(x,v)is a holomorphic and bounded m-column vector function for
0 < ixl < ay, 0 <argx <0, Il < ey (13.10)y
(i) wn(x,v) satisfies the inequality
lon(x,v)] < Kyl [e~Re)] (13.11)y

for(x,v)in Eq. (13.10)y.

AATITSSYIIND
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Moreover, a solution of Eq. (13.3) satisfying
[ (%, VEO) = 03IV (x)|V) [eReU=)] (13.12)

is unique.

In fact, we can prove Theorem B from the solution of Probiem B in the following manner.
Owing to Eqs. (13.1) and (13.2), the quantity

N-1

Z V(x)Yigy(x) + 1m(e @)y (x,V (x)) | (13.13)

lql=0

is a solution of Eq. (E4) provided that (x, V(x)) is in the domain defined by Eq. (13.10)y. Let N'be
an integer greater than N. Then

lm(e‘ﬂ("))ZV(x)ng(x) + on(x,V(x)) (13.14)

lq\=N

is a solution of Eq. (13.3) satisfying Eq. (13.12)y if (x,V(x)) belongs to the common part of Egs.
(13.10)y and (13.10)y’. Hence, by the uniqueness of the solution, the solution (13.14) must coin-
cide with ¢n(x,V(x)). Thus the solution of Eq. (E4) expressed by Eq. (13.13) is independent of NV.
We denote this solution by <I>(x V(x)). By analytic cont1nuat1on the functlon &(x, V(x)) is defined in
the domain of the form shown in Eq. (12.6) with ag = sup aN, Co = SUp Cyy-

On the other hand, v = 0 is an interior point in which ®(x,v) is defined. Therefore, by Cauchy’s
theorem, ®(x, V(x)) can be expanded into a uniformly convergent power series of V(x) whenever
(x,V(x)) is in the domain defined by Eq. (12.6). Clearly, from Problem B, ®(x,V(x)) admits the as-
ymptotic expansion of Eq. (12.4). By the uniqueness of asymptotic expansions, this asymptotic ex-
pansion must coincide with the uniformly convergent expansion. This proves the uniform convergence
of the formal solution, Eq. (12.4).

Thus Theorem B is proved.

14. Stable Domain For Problem B

In order to find the solution of Problem B, it is necessary to replace Eq. (13.10)y by an equiva-
lent stable domain defined by

0 < |x| < ajw(arg x), @ < argx < O, v] < ey[X(arg x)] (14.1)

where w(7r) is given by Eq. (9.9) and X(7) is an ncolumn vector function with elements {Xk(T)}
defined by

Xi(r) = expy(Re uk)J cot A()dt + (Im u)06 — 11, - (14.2)
6o

with 0 being a fixed angle satisfying ® <0, < 0.
Instead of finding the solution of Problem B, we shall prove
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THEOREM B'. There exist positive constants a}(,, c}(/, and K py such that Eq. (13.3) has a unique
solution gn(x,V(x)) satisfying

() én(x,v) is a holomorphic and bounded m-column vector function for (x,v)in Eq. (14.1); and
(ii) @n(x,v) satisfies the inequality o
[onCe )] < KylwlV [eReS2()] o (14.3)

for(x,v)inEq. (14.1).
This Theorem will be proved in Chapter V below.

15. Fundamental Inequalities for Problem B
In order to prove Theorem B', we must prove fundamental inequalities stated in

LEMMA 3. Let (x;,v1) be an arbitrary point in the domain of the form
0 < Ix| < ayw(argx), 0 < argx <0, ] < ey[X(arg x)]. (15.1)

Let Vix) = 1,(x*)C, with C = lp(x;=* v, namely V(x;)=v!. Then there exists an m-vector path
Ty, with elements {Tsx 1} such that
(i) each curve Tjy, joins the point x; with the origin and is contained in the domain

0 < Ixl < ayw(argx), © < argx < O, (15.2)
except for the origin;
(i) asx moves on Tjy,, we have
V)] < ey[X@gx)], @ <agx < 8; o (53)
(iii) if ap satisfies
2NI|uIl(aN max_ w(7))° < Iy}l sin 20e, : (15.9)
0<r<®
then
J;, le""_lIIV(x)IINe"ReQi(x)dsj < mlly(xl)”Ne—Reﬂj(xl)_ (15.5)

X1

Here s; is the arc length measured from the origin to the variable x on Iy, .

The curves I';,, are defined exactly the same way as in Section 10 above. Then assertion (i)
is evidently satisfied.

For assertion (ii), we introduce the polar coordinates x; =7 ¢/® and x = p €/7. Let the compo-
nents of V(x),»!, and u be {Vk(x)}, {vkl} , and {,uk} respectively. Then Eq. (15.3) is equivalent to
n inequalities :

W) < ey exp<(Re uk)J cot A(Ddt + (Im )06 —17) (15.6.k)
o

~

A3TITSSYIIND
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as x moves on the curve I, . Observe that the curve consists of the two parts F,'- and I'} , in general,
and we have Vi (x) = v, ! (x/x;)**. Thus

Vi@l = vt |<€> ReIukexp {(m e )6 - 7)}. (15.7.k)

For x on I‘;, p is a function of 7 given by Eq. (10.10), and we have
T
V() = v !l exp<(Re #k)J cotal(f)dt + (Im )6 —7)p;
7}

consequently, by Eq. (10.9),
,,
V@)l < Iv | exp<(Re #k)J‘ cot A(H)dt + (Im )6 — 1)} (15.8k)
]

On the other hand, since v! = V(x;), v,! must satisfy the inequality given by Eq. (15.6.k) with
7=0. Namely,

.,
vl < en expd (Re uk)J cot A(H)dt + (Im ug)(6o —0)}. (15.9%)
o

Hence, by Eqs. (15.8.k) and (15.9.k), Eq. (15.3) holds for x on 1"]5.

For x on 1"]'-' , p < r and 7 is constant. Hence, by virtue of Eq. (15.7.k), |V(x)| is 2 nonincreas-
ing function of p, since Re i > 0. Therefore, Eq. (15.3) continues to hold if it holds at the starting
point of T’} . Thus assertion (ii) is proved.

For assertion (iii), Eq. (15.5) is reduced to Eq. (10.2) if u= 0. If u # 0, notice that, analogous
to Eq. (10.8),

d d dx
—1 — = —1 e = —1 —
V() as [Vi(x)] = Re <Vk(x) s, Vk(x)> Re <ukx ds,-)' (15.10)
Since Idx/ds;| = 1, except for xj; (the joint of I} and I'} ), we have
d ~1
75 VeI = = L™l TV eI (15.11)
j
for x on Ty, , except for xj;. Thus
%(IIV(x)IINe“ReQi(")) = x|V (x)|IVe R (|ly||" sin 20e — Nlull [x1°) (15.12)
j

for x on T;, ., except for x,"; Thus, if apy satisfies Eq. (15.4), then

]x17
d N ,—Ref2i(x) “'YHISin 20¢e —o—1 N ,—Re2;(x)
75, (V)N e™ReE®) > —ma——— x| 7V (x)IIN e™R" (15.13)
i
for x on Ty, , except for xj;.
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By the fact that |[x[~1 ||V (x)|IVe"Re%() is bounded in the neighborhood of xj;, Eq. (15.5)
follows immediately by a limit process at x}'} and by Eq. (15.13).
Thus Lemma 3 is proved.

V. PROOF OF THEOREM B’

16. Successive Approximations

We shall prove Theorem B' in this chapter by means of successive approximations which involve
improper contour integrals and analyticity with respect to several complex variables.

Let (x,,v1) be an arbitrary point in the domain given by Eq. (4.1), where ay and cy are to be
specified shortly. Let ¥ (x) be an n-column vector function defined by

V(x) = v1, for u=0

X

V) = 1p <(;I-)M>v1, for u#0

Namely, V(x) is a holomorphic solution of xz' = 1,,(1)z such that V(x;) =v1. It is evident that the
system of Eq. (13.3) is equivalent to

®(x,,v1) =J, X701 (e~ 2N F(x, V()3 1 (e REND (x, V(x)) . (16.1)
T

The successive approximations for Eq. (16.1) are defined to be the sequence {®®)(x;,»1)I0=
0,1,2.. } where

®(0)(x,,v1) = 0, (16.2)

BED(x,,v1) =J X0 L (=00 ), V () m(e HNBOx, P ()dx. (16.3.0+1)
Tx;

We shall prove that such a defined sequence as {®(%(x;,v1)} converges to the desired solution of
Eq. (16.1), or equivalently, that of Eq. (13.3), in the following steps:

()  Each term of the sequence {®®(x;,»1)} is well defined and holomorphic in (x,,v*) for
Eq. (14.1).

(I) The sequence {CP(Q)(xl,v‘)} converges uniformly to ¢(x;,v!) in any compact subset of
Eq. (14.1).

(III) The timit function ¢(x,v?!) satisfies the integral equation given by Eq. (16.1), namely, the
contour integral and the limiting process are interchangeable.

(IV) The function ¢(x,,v!) satisfies the integral equation given by Eq. (13.3).

(V) A solution of Eq. (13.3) satisfying Eq. (14.3) is unique.

Due to the relationship between ! and x; through V(x), Step IV is not an immediate conse-
quence of Step III.

If Steps I to V are proven, the unique solution ¢(x,v) will be denoted by @ (x,v). Thus Theorem
B' is proved.

GITITSSYTIINN
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17. The Function ®(1(x,»)

We shall prove Step I by means of mathematical induction. In the meantime, the constants
ay, ¢y, and K will be specified.
Let us define

d(D(x,,v1) =J O,V (x))dx (17.1)
Tjxy

where
FO,v) = %7071 (e M) f(x,v;0).

Existence of Integrals—From the definition of Ty, in Section 10, we know that each element
Tjx; or Ty, has rectilinear portion I'j of positive length. Furthermore, the jth component f;(!) of
£ tends to zero exponentially as x approaches the origin along I'; . Thus each component &;(1) of
the integral given by Eq. (17.1) exists at x = 0.

At the joint x}; of T} and I, the integrand ®,(1) is bounded. Also, the arc I'jy, is rectifiable.
Hence, ®;(1) exists at x};.
Thus, ;{1 (x;,v?!) exists for (x;,v!) in Eq. (14.1).

Upper Bound—By Eq. (13.7), we have

O, Ve < XM BAlIVE)IN [e~Re2()] (17.2)
for
0 < |x| < ayw(arg x), 0 < argx < 6. (17.3)
Choose a}(, so small that
2N1Iuli(ay max w()? < Ihyll’ sin 20e. (17.4)

Then, by Lemma 3, we have

2B
&M (x,, )] < N |yl N [p,—ReQ(x;) 17.
@))€ e e ] 7.5)
for (x;,v!) in Eq. (14.1).
Now, we can choose K and c}(, such that
2By
Ky = 17.6
N " Tl sin 20e — 2H (17.6)
and ¢}y satisfies
Ky{ey max_ IIX@IPY < cy. 17.7)
o<r<8

These inequalities are needed in defining ®()(x,v) by Eq. (16.3).
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Analyticity—First of all, when x, is fixed, Eq. (17.5) implies that the integral given by Eq.
(17.1) converges uniformly with respect to v!. Thus ®((x,,v!)is holomorphic in v! for
[¥1] < cy[X(arg x)] when x, is fixed.

Next we shall prove that ®(1(x,,v?) is holomorphic in x; for Eq. (17.3) when »! is fixed. This
is trivial when g = 0. Thus, it is sufficient to prove for 1 # 0.

Let xq be a point in Eq. (17.3) and sufficiently near x;, and we want to show that

J FOx, V(x) )dx J f(l)xV(x)) J f(l)(x,V(x))dx. (17.8)
r

%1 T *0X1

In fact, let #o and #, be, respectively, the intersections of the paths Ty, and [y, with a small circle
bel = 5. Since »! is fixed and f;(D(x,V(x)) is holomorphic in Eq. (17 3) the jth component of Eq.
(17.8) is an immediate consequence of Cauchy’s integra! theorem and

>0  asé - 0. ' (17.9)

J £ (x, V(x)) dx
7ot

0?1

Here 77, denotes the circular arc of |x| = 8 in Eq. (17.3) joining ¢y with #;. However, from the con-
struction of Ty, and Iy, we know that Re £;(x) > 0 for x on fof1. Thus the left-hand side of Eq.
(17.9.j) tends to zero exponentially as & tends to zero, and Eq. (17.8) is proved component-wise.

Now let V(x) be specifically denoted by W(x,x,,»1), namely, W(x;,x,,»1) = »l. Let
v = W(%,,x1,v). Then, by Eq. (17.8)

®(xy,v1) — @My p1) = {@M(x, v1) — S(E;, 1))

+ {@M(x,,51) — W%, v}

=J f(l)(x,W(x,xl,vl))dx —J f(l)(x,W(x,X'l,ﬁ‘))dx
r

X1 Pi‘l
+ {2W(x,,51) — @y, p1)}

= _j_f(l)(x:w(x’xlyvl))dx + {(I)( 1)('*1:171) - (I)(l)(jlyvl)}'
x1%1

Thus, we have that

dvv pl

D (x, p!) = SD(F, pl
oMy v!) — GV _ FOG 1) + SPEN) T
x1-xq X T X xX=x1

exists, since we have just proved that the matrix CI>‘(,1) (31,v1) exists. Therefore, ®(1(x,,v1) is holo-
morphic with respect to x; for Eq. (17.3) when »1 is fixed.
Hence by Hartog’s theorem, ®(1)(x,v1) is holomorphic in (x,,v1) for Eq. (14.1).

GITIISSYIINN
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18. The Functions { @@ (x,»)}

Let II(2) denote the proposition

N(R). () The function ®%)(x ;1) is well defined and holomorphic for (x;,v1)in Eq. (14.1);
(i) ®Y(x;,v!) satisfies

By

By (L)an WlemReatD]  (18.1.0)

i 1C9) 1y — H@-1) 1 <
[ (xlrv ) (xlrv )] H ”'y”r sin 20e

and

2BN 2H >$2-—1 .
® N < ———{1+.. . +| —7———— 1IN [eReQ(x1)] (18.2.8
(2P Dl < 206{ <||7|| anzee) [P I 1829

for(x;vl)inEq. (14.1).

We have seen that II(R) is valid in Section 16 above.

Suppose that TI(R) is true for €= 1,2,...,a. We want to show that [l(a+1) is true.

First of all, by Eqs. (17.6), (17.7), and (18.2) with & = a, the function f(x,V{(x));
1 (e 2CND(D(x,V(x)) is well defined and holomorphic in Eq. (17.3). Thus, ®@*D(x, v1) is
given by Eq. (16.3) for £ + 1 =a + 1, which does exist, by the same reasoning as that in the first sub-

section of Section 17.
By Eqgs. (13.8), (18.1) for £ = a, and (15.5), we have

B atl
[BE (e, 1) — @, 1)] < 2 (I—w”?sfl 206) [V [eReR0:0] (18,1, a+1)

and, consequently,

[@@*1xy,01)] < —?—?—"L—— 1+.-.+<¢—>a ItV [e~Re21)]. (18.2.a+1)
[l¥1]" sin 20e [Iv]]" sin 20€

Thus, II(a + 1) is true. Hence, by mathematical induction, I1(2) is true for all positive integers
2. Therefore Step I is proved and we have the estimates given by Egs. (18.1.2) and (18.2.%).

19. Convergence of {®(9)(x,»)}
By Eqgs. (18.1.2), (13.8), (15.5), (17.6), and (13.9), we have

[@@D(x,,01) — O(x;,¥1)] < % 1|V [eRe2(x1)] (19.1)

for x4,v1 in Eq. (14.1). Thus, the sum
2—1
&®)(x, 1) = E {® @ Dx ) p1) — B@(x; 1)} (19.2)
a=0
converges absolutely and uniformly in any compact subset of Eq. (14.1) as £ tends to . Denote the

limit function by ¢(x;,v1). Since each term ®(®)(x,,v1) is holomorphic in Eq. (14.1), ¢(x,,v1) is also
holomorphic in Eq. (14.1). Moreover, we have
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[e(x1,p)] < Ky IV [emRe2xD] (19.3)

for (x,v!) in Eq. (14.1). Thus Step II is proved.

20. Integral Expression of o (x,v)
We want to show that

0(x;,01) =J x0711,,(e ™) fx, V(x); lim lm(eﬂ("))cb(‘z)(x,V(x)))dx. (20.‘1)
Tx, Qo0

Let the jth component of ¢ be ¢;; it is sufficient to prove that for a given & > 0, there exists a
positive integer L(8,x,) such that

| x"“‘le“ﬂi("){ﬁ<x» Vs ofs V0 = e 61 8, V(x»)}dx <o oa
T

221

for £ 2 L(8,x,) and all indices;.
In fact, since the integral in the left member of Eq. (20.2) exists at the origin, we can choose a

point x?j, independent of £, on I‘]'-' such that the portion of the integral in Eq. (20.2) from the origin

to x}} is less than §/2. On the other hand, by the uniform convergence of ) to ¢, we can choose

L(8,xy) such that, when £ > L(8,x,), the portion of the integral in Eq. (20.2) along I';,, from x,‘-’l to
x, isless than §/2. Hence, Eq. (20.2) is proved, and consequently, Step III is shown.

21. ¢(x,V(x)) as a Solution of Eq. (13.3)

For the sake of simplicity, rewrite the integral equation satisfied by ¢(x,v) as

TR =J W(x, V(x)) dx (21.1)
Tx,

where
W(x,v) = X707 (e~ 2N fx,v; 1(e ¥ p(x,1))

and V(x) = W(x,x;,v!). In order to show that ¢(x, V' (x)) satisfies Eq. (13.3) whenever (x,V(x)) is in
Eq. (14.1), it is sufficient to prove that

d
dTO"”(xO’vO) = W(xo,9) (21.2)

where v® = W(xo,x,9).
Since W(x,x,v%) = W(x,x,v1), Eq. (21.1) can be written as

0(x0,v0) =J ¥ (x,x0,v))dx. (21.3)
Ty

HERERRRY ANIN
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Hence,

d oy — 0 AV (x,W) | aW(x,x4,v°)
axg #C0r) = lor) +er oW oxo
0 (21.4)

+aw(x)x0’vo) . aw(xOrxl’vl) }dx,

aVO axo

However, for any constant &, the quantity n = W(§,x,v) is an integral of the equation xv' = 1,,(u.
Thus, n = W(§,x4,v%) = W(§, x4,v1), and

d o —
dxo W(Eerrv ) - 0'

Hence the expression in the braces of the integrand of Eq. (21.4) vanishes identically. Thus, Eq.
(21.2) holds and Step IV is proved.

22. Uniqueness

Suppose that there are two solutions of Eq. (13.3) satisfying Eq. (14.3). Let Y(x, V' (x)) be the
difference of these two solutions. Then there exists a positive constant K such that

[d(xy,v)] < K|V [eReR(x1)] (22.1)

for (x1,v!) in Eq. (14.1). By the Lipschitz condition given in Eq. (13.8), and by Eqgs. (15.5) and
(13.9), we have

K
[V )] < I [eRet)]
for (x4,v1) in Eq. (14.1). Repeating this process, we have, for any positive integer p,
1 K 1[N o~ ReQ(xq)
(0Dl < S I e V]

for (x;,v1) in Eq. (14.1). Hence,
‘l/(xl’vl) =0

for (x;,vY) in Eq. (14.1), and Step V is proved.
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