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A REVIEW OF NARROWBAND AMBIGUITY FUNCTIONS

INTRODUCTION

The narrowband ambiguity function was introduced by Woodward (1) in 1953. Its
properties have been extensively explored and used to study range and velocity resolu-
tion of radar and sonar targets by Woodward (1) and others (2-41). The wideband am-
biguity function is of more recent origin and has not yet been as fully developed. Refer-
ences to both functions are scattered through the literature, in widely varying notations,
This report reviews the derivations and properties of the narrowband function and some
of its generalizations, using a consistent notation. A companion report ("A Review of
Wideband Ambiguity Functions,') is concerned with the wideband function and the rela-
tionship between the two functions. '

These reports originated as a set of notes for a Branch Seminar and have been re-
vised for more widespread distribution. The intent was to elaborate on and explain
Woodward's (1) Chapter 7 and then to discuss some of the subsequent work. To facilitate
reference to Woodward, the initial sections follow his work closely. Notational changes
were necessary for consistency in the sequel. Details of some of the developments have
been relegated to the appendices.

RESOLUTION AND AMBIGUITY
Range Ambiguity

Let a signal transmitted at time ¢ be represented by the real part of the analytict
gignal ¥(¢). We consider first the problem of range resolution of point targets, where
range is determined by the known velocity of propagation and the measured delay in the
signal echo. We assume no attenuation. To¢ achieve maximum resolution, we would like
the echo ¥(t - 7) to differ as much as possible from W¥(t). Using a mean-square cri-
terion, we would like?

Flweey - wee-my|? e (1)
to be as large as possible, except, of course, near r = 0. That is, we wish to maximize

JU¥(E) = W=7 [WH(E) - ¥¥(t~7)] dt

N

fweey|? dar + Flwt~my |2 de = WY W¥e-71) dt - [W(E~-7) ¥ E) dt

2E - 2RE [JW ()Y ¥*(t~7) dt]

where [|¥(#)|? dt = [|W(t-7)|® dt - E, the total energy of the analytic signal or twice
the total energy of the real signal. Equivalently, we wish to minimize

tA complex signal is said to be analytic if its imaginary part is the Hilbert transform of its real
part: Im [W(e3y] = B {RT[¥ ()]},

IHere and in the sequel integration is over the entire space of the appropriate dimension, £« for
all single integrals, unless otherwige stated.
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RL Y ey w¥et - 1y dt} (2}
except near ~ = ¢. Let
Wty = u(t) exp (int) . {3}
Then
WHE -y = w¥(t - T) enp [-fel(t - T3] .
and Eq. (2) becomes
BE fexp(twT) fu(tyu®re-T7y dt} {4)
which oscillates with .
The requirement is that 18(¢+)| be as small as possible, where
R(ry & fuqtyub(r-ry dt {5

is the complex autocorrelation function, and the symbol 2 means “is equal by definition
te.”" Sincet

Foplu(t-m) = Ju(t-ryexp(-2mift) dt = exp(-2mifry¥(f) .
Parseval's theorem gives us from Eg. {5}
R(ry = JIUCE|® exp (amifry df = FRIUCH)) {6)

Furthermore, R0y = [{u(t)[? dt = [[U(F)|* df = E.

As a measure of total signal ambiguity, Woodward (1} defines the time-resolution
constant

I
T E2

T TR(my|? d7 = é—lg-fw.if)r‘ df {0

where the last equality again uses Parseval's theorem.

Ambiguity in Range and Velocity

If the effect of moving targets is assumed to be adeguately approximated by a simple
shift in frequency, we can define in an analogous fashion in terms of the frequency shift a
“frequency autocorrelation function”

{8)

=

k(@Y E [UCHUNF-dy df

1"

flugey? exp (-2mivt) dt = T ucty}?y {9y

[y

1In general, ¥ ,[7(x)] = ¢(y) symbolizes the Fourier transform g(y) = [ f(x) exp(-2mixy) dx.
The inverse transform will be symbolized by ¥} [e ()] = f(x)y = | 2(¥) exp (2mixy) dv.
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since Frr[U(Ff-D)] = exp (27idt) u(t).

Without loss of generality we can let E = 1, and by analogy with Eq. (7) define the
frequency resolution constant

F2 flxq@)|? do= [lu(ty]* at , (10)
where the second form comes from Eq. (9), using Parseval's theorem.
If the targets are at different ranges and are moving with different radial velocities,
we need a combined time and frequency correlation function (two-dimensional correla-

tion function). For the time being we consider only the narrowband approximation:

The Doppler effect is approximated by a frequency shift ¢, constant across the signal
bandwidth.

The echo of ¥(t)is thus given by W(¢- 7) exp [27id(t-7)]. Again, we let ¥(t) =
u(t)exp (iwt) = u{t) exp(27ift). The function to be minimized is now, by analogy with
Eq. (2),

RE fexp (2mi®r) [W(tYV*(£- 7) exp (-2nidE) dt]
=R {exp [2ri(F+®y 7] [u(t) u®(t - 7) exp(~2midt) dt] .
We require the modulus of the combined time and frequency correlation function
X (T ®) 2 Ju(t) u™(t-T) exp (-27idt) dt (11)
to be as small as possible, except near [x(0,0)| = E= 1.

The ambiguity function (Woodward ambiguity function, narrowband ambiguity func-
tion, n-b autoambiguity function) is defined as

A7, @) 2 |x(r o) . (12)

Other definitions of the generalized autocorrelation function (GACF) which lead to
the same ambiguity function appear in the literature. For example, let

Xm0y & Ju(esr/2) u(t-7/2) exp (-2midt) dt

Jugny o™(p - 7y exp [~2mid(y - 7/2)} dy

exp (7ihry x (17,d) ,

$0 that
(T ®)|? = |x(r,®)|? .

The present definition, Eq. (11), has some useful transformation properties which
will be discussed later.

The name of the ambiguity function stems from the fact that it does not uniquely de-
termine a waveform. For example, let the GACF of Eq. (11) be labled y,(+. ) to dis-
tinguish it from x (7.9)= [v(t)v¥(t - 7) exp (- 2nidr) dt, where vty » u(t). Ambiguity is
apparent if we consider the frequency-shifted and time-delayed waveform
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vty = u{f~- e)yexp{Imift}) ,

where ¢ = 0 and ¢ 2 6. Then

Ix (0% = (e

SOME PROPERTIES OF THE GENERALIZED AUTOCORRELATION
FUNCTION AND THE WOODWARD AMBIGUITY FUNCTION

YT, 0} = futyu®(t-Ty dt = B(T) {13y
x (0.8 = [lu(ty[? exp(-2midty dt = x (9} {14)
X€0.0) = flu(ty|Pde=E=1. {15}

Theorem 1
The GACF as an integral in the frequency domain is given as
X(T, 9y = JURNEYU(Fr ®yexp (2mifry df. {16)

The proof of theorems 1 through 4 will be found in Appendix A,

Theorem 2
The combined time-frequency resolution constant is given as
f}rt){(?,@)iz drd® = 1 . £17)
“Phe effective ‘area of ambigulty’ in the time-frequency domain is independent of the
transmitted waveform and is equal to unity.” Thistheorem is called the "Radar Uncer-
tainty Principle” by Siebert (3). It is one of the most important properties of the narrow-

band ambiguity function and will be discussed further after some examples have been
congidered.

Theorem 3

[x (r,®y]* € x3(0,0) = 1. {18)

Theorem 4 (Siebert's theorem {(4})

The ambiguity function is its own two-dimensional Fourier transform:
fﬂx(r,dﬁ)f exp [~2mi ( fr-@a)] drdd =[xt )| . {19}

Theorem 2 can be obtained from Eq. (19} with + = f = 0.
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Symmetry
X{=7,~®) = Ju¢t)u*(t +7)exp (2midi) dt = Ju(n~7) u®(n) exp [27iP(y - 7)] dy
= exp (~2midTy (7. 0)

-y =[x (2 (20)

Relationship to Matched Filter

Consider a filter matched to a real transmitted signal « (#); the impulse response
i8 h(¢t) = u(T- ). Let the input to this filter be the time-delayed and frequency- shifted

waveform
x(ty = uft+T)yexp [-2miD(E+7T)] .

Then the output is vy () = x(t) ~h{t) = [ x(a) h{i-a) da

v(#y = {uig+7)enp [F2witiat Tyl u(T~ ¢t +q) dy

= (u (BYu{p-7 4+ T~t)exp(-2nidB) dR

y(T) = x(7.9) .

Thus, the GACF is the output of a filter matched to the transmitted signal in re-
sponse to an echo with constant time delay and constant frequency shift (narrowband ap-
proximation to Doppler effect).

Convolution Theorems

Theorem 5

If two functions are convolved in the time (frequency) domain, their generalized
autocorrelation functions are convolved in the time (frequency) coordinate.

Proof of {requency convolution case

Let w(ty = vty w(t). Then U(F) = v(Ffy «W(£)
X (7, ®) = JUSFYU(F+ @) exp (2mifr) dF
= JIIV* W~y V() W(F+ D=0 exp (2mifr) dydpdf
= JIIVEQO VO W W (v p -0 + @) exp [2mi(y+nY7) dydady
= fIV*uyV(e) Xy (T - v+ d Y exp (2mipT) dpdv

- Jl'j'V*(;I) Vie+¢) exp ( 2mipT) X {7, @~ ¢) dpd

it

Fxp(r )y xy(mo0-¢) de

i xv("’,‘b)g-\’w(‘ﬂ‘i’) .

’—_
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where g indicates convolution with respect to ®. The proof of the time convolution case
is similar. The operation of these two theorems is noncommutative {31).

Unigueness Theorem

Theorem 6

The function v(t) is uniquely determined to within a multiplicative constant of gnit
magnitude almost everywhere (a.e.) by its generalized auloeorrelation function,

Proof

fxu(fﬂb) dr = [lu(tye™(t-vyexp(-2mi®t) dtdr
= Ju(tyesp(-2mibt) [u*(n) dudt = U(RIU*(D) .
Therefore, If x.(7.0) = x.(r.®), V(O V*(0) = U(®U* D) and hence if v*0) = 0,

Vidy = cl¢dy, where ¢ = U*0y/¥*(0). Bince two functions having the same Fourier
transform are equal a.e., we have v(f) = cu(ty, a.e,, and

X7 Dy = X (7.9) = Jou(€) et (t- Ty exp (~2mibt) dt = Jcf? x (7.0 .

so that jel = 1.

Complex Energy Density Funclion

Ribaczek {41} has recently defined a complex energy density function which may be
obtained as the Fourier transform of the GACF.

Consider a real signal represented by R4 {u(t)], where u (r) is an analytic signal,
ang let

Flu(ey]? dt = [{U¢H® dF = E ,
where £ is twice the (otal energy of the real signal.
Then ju(t)|* represents power, or "energy density waveform," and "Wy £)? is the
energy density gpecirom. U the autocorrelation function of «( ¢y is given by Eq. {5}, then

from Eg. (6}, or by the Wiener-Khintchine theorem, the spectral density is

WeF) = T iR = (U 21

Similarly, the autocerrelation function in the frequency domain, Eq. {(§}, transforms
into the "waveform deusity.” From Eq. (9) we have

Felic () = fage)]® . {22

By analogy, the two-dimensional Fourier transform of the GACF is
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i3

‘};g T DX (T.®)) jj x(m,®Yexp [-2ni(f7- ®EY] drd®

= [ffu(nyu(n-7)exp(~2mi®n) exp [-2mi( f7 ~ )] dnd7dd
= u(t) [u¥(t-71)exp(-2mifT) d7
= u(tYyexp(=2wift) [u¥(L{yexp (2MifY) di
= u(t) UX(Fy exp (- 2mift) . (23}
Thus, just as the autocorrelation functions in time and in frequency each are the
Fourier transforms of an energy density function, as shown in Eq. (21) and Eq. {22), we
may define the complex energy density function in time and frequency from Eq. (23) ag
e(t, £ £ u (Y U¥(Fy exp (~2mift) . (24)
Then the energy density spectrum is
Te(t. Fy dt = [UCH|?
the energy density waveform is
fe(t, £y df = |u(t)|?
and
Ifece, £y dedf = E
the total energy of the analytic signal,

The energy of the analytic signal within a "cell" of area T8 centered at (¢, f;) in the
time-frequency plane is given by

totTr2 fatB/2

Erg = e(t, f)y dfdt .

EXAMPLES OF NARROWBAND AMBIGUITY FUNCTIONS
Single Gaussian Pulse

We consider first an example discussed by Woodward (1). Only slightly more general
than Woodward's simplest pulse is the single Gaussian pulse

u(ty = kexp(-at?) , a>0 . {25)
where the parameter 2 determines the width of the pulse, and & = (2a/7)%'4 g0 that

Fuloey de = 1 .
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it is shown in Appendix B that
X(T-®) = exp (-ar¥/2- w202 2a-7idr) . (26)
Thus,
[Xa(7 @7 = exp [-(ar?+ w20 a)] e

and contours of constant ambiguity are given by the ellipse ar? + #2d2/a = constant, as
shown in Fig. 1.

SHORT PULSE la) 7w __#

LONG PULSE (a ¢ 7}

Fig. t - Curves of constant ambiguity:

Note that
(R 5 (. 0)( = exp (-aT?)
and

{Ku(ql)gz = IKU(G,(D)LE = EXP(»???(IJ?;’Q}

so that in this case the ambiguity function is factorable: |w¢r.®)1* = |R(my* |w |7
This result is nol general. When it holds we have from Egs. {7}, {10}, and {17} that

TF = 1.

Singie Rectangular Pulse

Let u¢ty = (2a)°1/2, {¢t| < a, zero elsewhere. In Woodward's (1) notation,
u(ty = (2ay"% ? rect {t/2a). Then
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N (T ®) = Fpalu(ty (- 7] = Fp{(2a) trect [(2¢t-7)/2(2a~ |7[)]}
[{1-|7!/2a)| sinc [(2a- |T|) ®) exp (-widT), |7| £ 2a
h{o 7l > 24 (28)
and
X (T2®) [ = (1= |7]/2a)? sine? [(2a- {7[) 0], 7] € 2a, (29)

. & .
zero elsewhere, where sinc x = sin 7x ‘nx,

Modulated Uniform Pulse Train

To facilitate Woodward's next example, the Gaussian pulse train, we consider a train
of (Dirac) delta functions. Eschewing questions of rigor and using Woodward's notation,
we let

w(ty = ) #(t-nT) = repr5(t) .

-0

Then
W(Fy =

If the pulse repetition period T is unity, the train of delta functions Fourier trans-
forms into itself.

The GACF of a train of delta functions is shown in Appendix C to be

X (T D) :%_ 2 8(r-nTy 3 (cp . %) : (30)

n,m

This "bed of nails" (5,22, 33) is shown in Fig. 2, drawn as if the delta functions had finite
amplitude,

Let a general pulse train be represented by
V(t) = reppru(t) = u(t)y . 1 8(t-nT) = ult)+w(t) . (31)

By Theorem 5 we have

Xv(T’m) = Xu(T‘(I)) * XW(T‘(D)
T

= %Z & ((IJ —%) I x (e, 9y 8 (r-nT-q) du

n,m

1 m
= = -nT - == \.
. Zm X (T-nT,®) 8 (@ r) 2
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HRFINIT UM

T

Fig. 2 - "Bed of Nails" generalized
autocorrelation function

If the pulse train of Eq. (31) is, in turn, modulated by an envelope function x{¢3, the
resulting waveform and its spectrum may be represented by

Yy = x(tyv({t) and Y{F) = X(Hy.V(FH .
Using Theorem % and Eq. (32} it follows that

}(Y(Tfﬁj} = Xx("r'ffbj :I;Xviﬂr‘é})

:% ,; Fx troy X T-nl, &~v)4a (ﬂ) —%- V) dv

i o d m
= ? Z X, (q--,d} - -’E) X, (r - nTﬁT—) .

n,m

Thus, the ambiguity function is

; i k k m m
X (7,97 = = Xy (—;,m - H) xu(?' ”gfﬁ“—)k‘*(‘?‘,ﬂ} - —)x* (’r-ﬁ‘&—ﬂ))
(@t = g > T = X~ ) Xa 7

k.fﬂ‘m‘n

We now impose the additional conditions that the GACF of a single pulse vanishes
for {vi > T and that the GACYF of the envelope funcfion vanishes for |@| » 1/T. With
these conditions we can write

Wl AT By xh(T-nT @Yy = |x (7 —iT. 02 B {331
and
12
o-ghilre-7) b (o 7).
e Sy A g =
X LT 7 X T Xy, 17 T( Spm -
where 35, is the Kronecker delta. Hence,

— e ——————————————————————————
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2

(34)

m
- nT,—
Xy (7 n T)

For arectangular pulse, u(t) = (2a)”17?rect (¢/2a), with a rectangular envelc_)pe,
x(t) = (2b)"172 rect (t/2b), Eq. (28) shows that the conditions Eq. (33) are approximately
satisfied if 2a < T << 2b. We then have

(1= [r]/2b)?
—J—— Z {(1- |7 -nT{/2a)?

2
lxy(T‘qJ)l B T2 o.m

x sinc?{(2a- |7-nT|) m/T} sinc? [(2b- |7|)(P-m/TH]} .

Gaussian Pulse Train

If u¢ty is a single short Gaussian pulse, we have from Eq. (26)

2
X (T =nT, @y x (r-mT, &) = exp {—Z— [('r-'n?!')2 + (T-—mT)Q} - la- @2 - wi®(m-n) T}

- (_1)(n-m)‘I>T exp {— _‘;— [('r—n]")2 + (’.‘““mT)Z:I - 'JT_: ({)2} .

If rn = m, this equation reduces to |x,(7 - nT,®}|® in agreement with the conditions
in Eq. (33). However, for n = m, the product does not exactly vanish; there is some
overlap of the Gaussian tails. We will have a close approximation if

a
exp {— ) [(—r—ni'“)2 + ('ran)z]} <1, V¥Vmzn, V7,

This requirement is satisfied if a7? »> 0, as must be the case for a short Gaussian
pulse — moderate T requires large «.

Similarly, if x(+) is a broad Gaussian envelope, x (t) = k' exp (-bt2), we have again
from Eq. {26) with b replacing a:

Xx(”r.d) —L;;),f('r,fbu %): exp{_bqr:z - ;T_b [(tb . %)2 N (qu ~ %)2] _ m’(:;— n) T}
= (=1)(n-m} 7T oxp{-—bq-?- ?T; [(q} . %) . (q’ _ %) ]} .

If » = n, this reduces to

2
Xx (T'(D .q_n_)‘
T

If m = n, we require 1672 >> ¢, Thus, for T moderate, we must have 5 very small,
consistent with the broad Gaussian envelope.

Thus, if 5 << T << a, the ambiguity function for a train of narrow Gaussian pulses
with a broad envelope, obtained from Egs. (34) and (27), is

R
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. ’ 2 1 2 2
B O e e i ) NS U ) R

For each n and m, the contours of constant ambiguity are ellipses. Centers of
ellipses are spaced at intervals of T in r and 1/7 in ¢, and the overall ambiguity de-
creases exponentially in = and @,

A sketch of this ambiguity function is given in Fig. 1% on page 122 of Ref. 1.

Single Gaussian Pulse with Linear Frequency Modulation

vty = uctyexp (ibt?) for any u(t), the "instantaneous frequency’ is

s

£ a4

i
i bt2y = btfw .
! 2w dt ( ;

Thus, f,; varies linearly with time, The GACF is
X, (7. 0y = [v(ey vt - T)exp (- 2widt) dt

= exp (-ibTdy fu(tyut(E~Tyexp [-2ri(@-br/my e dt

= exp (ibT ¥y x (7. ®-bBT/vY |
Henece,

I (7, 832 =[x (m,@-br/myt {36}
From Eq. (36) we see that
Ix, (7. br/myl? =[x, (7,037

That is, the ambiguity along a line ¢ = b7/7, whose slope is equal to the rate of change
of the instantaneous frequency, is equal to the ambiguity along the » axis in the absence
of frequency modulation,

For the singie Gaussian pulse with linear FM, we have from Egs. (27} and (36}

3 2
. z ks br
(X0 037 = exp [—872 - (CEJ - _7::_):’

Curves of constant ambiguity are again ellipses,
z z

(a + E—) 72 - 27504 1 T2 92 = constant . (37}
a a 2

The eccentricity of these constant ambiguity ellipses depends on bath a and &, and
their axes are rotated with respect to the +.® axes by an angle ¢, where

tan 24 = dub/[#% -~ (al+ b7)] | {38}

as is shown in Appendix D.

I =



NRL REPORT 7007 13

Note that in this case

2
[RCO* ()] = exp [ (a *%’)"'2] exp (-2 03/a) = |x (7,91

The Ideal Ambiguity Function and its Approximation

We saw in Eg. (27) and in Fig, 1 that the parameter a suffices to reduce the ambi-
guity in either the r direction or the ¢ direction but not in both, Equation (37} shows that
with two parameters it is possible to reduce the ambiguity both along the + axis and the
@ axis but not simultaneously along a line @ = 7 tan 6. One would surmise that with ad-
ditional parameters we might do better. Ideally, we would like the ambiguity function to
be a delta function at the origin, but this we cannot achieve. We might hope to obtain as
an approximation a narrow spike in both directions as shown in Fig, 3.

[x[*

Fig. 3 - Approximation to
ideal ambiguity function

Equation (35) and Woodward's Fig. 19 show that with a train of pulses we can reduce
the ambiguity in all directions in the vicinity of the origin to an arbitrarily low level,
We do this, however, at the expense of having additional peaks appear elsewhere. This
is a consequence of Theorem 2; if we reduce the ambiguity in one place it must pop up
elsewhere so that the total area of the ambiguity surface remains constant.

The closest to the ideal ambiguity function we can expect is the so-called "thumb-
tack™ ambiguity function. This consists of a narrow spike surrounded by a uniformly low
pedestal, with most of the volume lying under the pedestal. We do not know of any wave-
form which produces the "thumbtack” ambiguity function., For many applications, an
ambiguity free region near the origin, as obtainable with a train of pulses, is sufficient,

Pseudo-Random Sequences

We recall that the ambiguity function along the - axis is the square of the autocor-
relation function of the signal (see Eq. (13)). Thus, to approximate the "thumbtack™ am-
biguity function, a necessary but not sufficient condition is that the autocorrelation function

*—
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of the signal be small near the origin, One practical signal known to have such an auto-
correlation function is the signal generated by maximum length pseudo-random sequences.
Such a sequence, {a;}, may be specified by its recursion formula

n

a. = E CiE i=0,1,2, ..., (38}

i
F=1

where c; = ¢ or 1 and } indicates module 2 summation and by the initial conditions given
by the values of

a

G Aepapo e _y -

=-n

A new sequence formed by the module 2 addition of a maximal-length pseudo-random
sequence and a nontrivial shift of itself will be a shifted version of the original sequence.
That is, if

b;= a, ®a, . where T# 0 (mod 27 - 1)

then

= Z Cjbj_j ,

i=i

Thus, {b;} oheys the same recursion relation as {a;}. Since {a;} contains all
n-tuples {except the all zero n-tuple), these sequences are idential to within a phase
shift,

This so-called "shift-and-add"” property can be used to obtain the narrowband ambi-
guity function of signals generated by such sequences for time differences of = = k¢,
where k is an integer and ¢, is the shifting period of the generator.

The additive group of integers module 2 is isomorphic to the group consistiag of -1
and 1 with multiplication as the group operation. If we let s(t) represent a signal ob-

tained {rom a pseudo-random sequence of ~1's and 1's, the "shift-and-add” property
becomesg a ""shifi-and-multiply' property, as shown in Appendix E,

sCtys(t-kt )y s s(t-ktgy

where & and &' are integers. Thus from Eg. (11}
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x(kty @) = j s{tys(t-kt,)exp(~2midt) dt

:j s(t-k't )exp(-2midt) dt

= exp (~2uik' Ot ) S (D) .
Therefore,
2 2
I (e, @3 * = 1S (@)]* .
That is, for = = kt,, the narrowband ambiguity function of maximal-length pseudo-
random signals is proportional to the power spectrum and is independent of k.,
GENERALIZATIONS OF NARROWBAND AMBIGUITY FUNCTIONS
Cross~-Ambiguity Function

An extension of the concept of ambiguity functions to two waveforms was defined by
Stutt (7).

Let u,(t) and u,(t) be two complex waveforms. We define the generalized cross-
correlation function as

X, (7, @) = fu (&)yu, ¥ (£-7) exp (~2midt) dt (40)

Il

FUF(EYU,(f+ ) exp (2mifT) df | (41)
and the cross-ambiguity function as

(42)
A, (T.®) = |, (7 @)%

These functions may be useful when it is desired to identify one of many possible wave-
forms, Some, but not all, of the properties of the autoambiguity function apply to the
cross-ambiguity function. For exampile, by Parseval's theorem we have

Fixp(r.®? do = [ |u(eyui(t-7)]* dt .
50 that

ST 1x,, (7 @3 dodr

Jlu () 1 juy(t-7)* drdt = 1,
if the energy in both waveforms is normalized to unity. Furthermore,
Xm0y = Ju(Hulf(t~7) dt,

Xy, (0. ®) = JUF(HU (F+a) dFf,
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but
%1000 F = [fu ey ey def?
< Fagey® de flu(y)? de = 1
by the Cauchy-Schwarz ineguality,
Therefore, if « (¢) = kuy¢ey, where & ig a constant,
b 0.0y <1, {43)
in contrast with Eq. (158}, Also,

(T @) [P 5 LT () wh(e - 7y exp (<27t dt]?

< flu ) deflaf(t-ryexp(-2mive)y 4t = 1. (44}
It does not follow from this relationship that {xn(f,cp)f g ;x“(D.O}i"’,

In fact, if u (6} = wy(t- 7, exp (2mit,ty, 7
%X'n{%"!’oﬂz = 1. If, in addition,

®, = 0, then equality holds in Eq. {44):

.
w (£ 7) exp (2miE) = ku,(¢t)
then from Eg. (43},
e (0,e < 1,
so that in this case [x,,(0.0)|" < |x,,(7,. ¢,3/*. Inthis case,

(x,,(0,031" = o (- 7oy exp (2midg 1) ub(ty d112 = {x,(7,.9,3(%

By proof similar {o that for Theorem 4 if can be shown that the generalization be-
comes

I Ixp0r @y exp [(~2mi (Fr - @) drd® = NN SN ST {45)

In place of the symmeiry relation, Eq. {20}, we have

X o=@y = Ju (tyuh(t+ ryexp (2midt) dt
= exp (~2mibT) fu {t - Ty 5(E) exp (2midt) dt
= exp {~27idT) X3 (7 8y .
Hence,
{Xiz("?"q})V = }Xn{""@)iz . (46}
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Convolution Theorems
Thecrem 7
Let u (t) = v () =w (L), u,(£) = vy (t)*wy(t). Then
X u, (T @) = r\’vlv2(r‘<b),;xwlwz(7.<b)
- xvlwz('r,(b) ?xwlvz(fr.q)) . 47
The proof is similar to that of Theorem 5.
Similarly, if v, (t) = v (&) w (£) and u,y(t) = v,(t) wy(t), then

Xului(‘r'(b) = leuz(‘r'q)) :I') lewz('r'tp)

Xy w (’r‘d)) * Xy v 7,0y (48)
1%2 3 F1va(T®)

Invariance Relations for the Real and Imaginary Parts of Ambiguity
Functions of Analytic Waveforms (Ref. 7)

Let x,,(7.®) = {,,(7, @) + ig&,,(r, ) be the generalized cross-correlation function of
analytic waveforms v, (t) and u,(¢). Then

ff 4’?2(7,(1’) drdd = ff é—'fz('r‘tb) drd® = 1/2, (49)

if u,(r) and u,(¢) are both normalized.

Proof
IT X, (7 ®) |2 drde = 1

= [J[&3,(r. @) + £2,(7,@)] d7d® .

Since
$i = (L/2)(X1y +X15)
I ¢3(r @y drd® = (1/4) [ (33, + 2 [x,]* + xF2) drdo

= /24 [f (xf, +x{2) drde .

But
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FEx o dydrd@ = [[[{ U, (FHUF(F+ @YU, (oI UF (e + )
x exp [-2mi (f+v) 7] dfdvdrdd
= [T HU(F+ oYU, (-HUf(-Ff+e)dfdd =0,

since u,(t) is analytic, so that

U(fy=90, f=<0
and
U(-fy=90. >0
Similarly,
fPxl(r, @y drdd =0,
50 that
fI &3 (mdydrdd=1/2
hence,

JI €L cr @y drd® = 1/2

Notice that the autoambiguity function is a special case of the cross-ambiguity func-
tion, so that in general the real and imaginary parts of the ambiguity function of analytic
s&gnals coniribute equally o the invariant volume under the ambiguity surface.

The Most General Ambiguity Funetion

Before considering other ambiguity functions, it is of interest to reformulate the
problem in complete generality. From this generalization we will rederive the previous
results and then define an angular ambiguity function. The generalization is used in the
companion report to obtain a wideband ambiguity function.

Let s,¢¢) and s,(¢) be functions, square integrable on {(-»,x}, representing signals
which we wish to resolve. Obviously, if s, and s, are to be resclved at all, they must
differ in some respect.- As in Eq. {1}, we use a mean-square criterion {o maximize their
difference., That is, we wish to maximize

d? = [ls,(ty ~ s6)]? dt

[s, ()" de [ syt de - aRE [T sy sheey ae] . {50

Equivalently as in Eq. 2}, we can achieve maximum resolution by minimizing
ses,] OF X IQ, where

Xsis, & S s (tysi(ty de . (a1}
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|Xsys,|® may be termed the "most general ambiguity function." It is'too general to be
useful in itself; its only value lies in the fact that from it we can obtain less general but
more useful ambiguity functions. The argument and functional form of Xs,s, depend,
of course, on the characteristics of s, and s, that are, in fact, distinguishable.

1. If s (&) =u(t) (which may be the low-frequency part of a high-frequency wave-
form ¢ (t) = u(t) exp (iwt) but need not be so restricted) and if s,(t) = u(¢t~7), a time-
shifted version of the same waveform, we have

Xsy sy = X7 0) = Ju(t)u*(t-mydt = R(my,
the complex autocorrelation function, Eq. (5). In this case \x5152[2 = |R(7)|?, the range
ambiguity function.

2. If s,(¢) = u(t)y and if s,(¢) = u(t) exp(2widt), a frequency-shifted version of the
same waveform, we have

Xsysg = X,(0.9) = [|u(6)|? exp (-2mi0t) dt = k(D) ,

the frequency autocorrelation function, Eq. {(8).

3. If s;(t) =u(t)and if s,(t) = u(t-7)exp [27mi® (¢t - T)], & time- and frequency-
shifted version of the same waveform, we have (neglecting exp (-2midr))

Xs s, % Xg(T:®) = Ta(t)yd®(t-7) exp (-2mi®t) dt ,

b}
as in Eq. (11).

4. It s (#) = ay(t) and if s,(t) = uy(¢~7) exp [27i0 (¢~ T)], @ time- and frequency-
shifted version of a different waveform, we have

.
Xs. s

152 ° X,JI,_,Q(T,CD) = ful(t)u*z'(tr'r) exp (~2mibt) di |

as in Eq. (40).

Angular Ambiguity Function

The distinguishing features between s, and s, need not be temporal. By considera-
tion of spatial differences, Urkowitz et al. (13) define an angular ambiguity function.

We consider two plane waves from distant sources incident on a linear aperture.
Let x be the distance along the aperture from a reference point (Fig. 4) and let ¢, and
¢, be the angles between the directions of arrival of the wavefronts and the normal to
the aperture. Let s(t) represent a signal transmitted with a propagation velocity ¢, as-
sumed congtant. If the incident waves are echoes from stationary targets at the same
range, then
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x sin §,
s{fY = s {6, %0, )= 5t =T« ——p—l

X sin ¢
2
s,(¢t3 = s, {t, %8,y = 5 (t -7 - —T—> ,

and from Eg. {(81)

xsinﬁl xsiﬁ{}z
Xsisi}{x,(jfl,@l}:fs t~'r-——E— sFle - 7 - —— 1 dt

sin &, - sin 4
i [ (],

¥ vt {singy - sing,)/c, then x5 5, (x, vy = [ s(t) s¥{f+xv) dt = R(xv), where R.(*) 18
the complex aufocorrelation function of the transmitted signal,

Urkowitz et al. define the apgular ambiguity function J(v) as
Jovy 2 [I(x)gg Ey{xvy dx {52}

where I(x)is the "illumination function” of the aperiure. A detailed discussion of the
itlumination function and its spatial Fourier transform, the "space pattern" of the aper-
ture, is beyond the scope of the present treatment.

If resclution in both azimuth and elevation is considered, a two-dimensional ittumi-
nation function I(x.y) is reguired, and a two-dimensional angular ambiguity function isg
gefined, T I(x,y) = [ (xy I,(»), the two-dimengional angular ambiguity function be-
comes the product of the individual ambiguity functions.

if the targets are at different ranges and are moving with different radial components
of velocity, a four-dimensional ambiguity function in azimuth, elevation, range, and "range
rate® {Doppler shift} is required. For narrowband signals this four-dimensional arbi-
guity function is separable into the product of the range-Doppler ambiguity function and
the azimuth-elevation ambiguity function. The same is true, in general, of 3 six-
dimensional formutation which includes angular velocity as well.
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If the illumination function is complex, Eq. {52} cannot account for the effect of th
aperture phase function on angular resclution. To avoid this difficulty and to avoid de
pendence of resolution on the orientation of a receiving array, Procopio et al. {15) rey
Eq. (50} with the integrated squared difference criterion

Hife

c2?

S {8t @y - Byt,0,,9,31% sin 6 dodddt ,

where
S8 0,00y = [ I(x ) s,(t%,y,0,,®) dxdy
and

5,(t.6,,¢,) = [J I{x,y) S, {t,%.y,6,.9,) dxdy

are the signals received by the entire array, and the angular orientation of the array i
"~ by the coordinates ¢, . An angular ambiguity function may now be defined as

“n

. :*ft,ﬂ,z ,(132) sin @ dedddt
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Appendix A

PROOFS OF THEOREMS 1 THROUGH 4

Theorem 1

X(T,9) £ Tu(tyu*(t -7y exp (~2midt) dt

W

TITUQYU*R(Fy exp {271 [vt - f(t~T7) - ®¢]} dvdfdt

4

INT O Uy s[v - (£F+ D)) exp(2nifTy dudf

]

FU(F+ @Y U*(FHexp(2mifrydf ,

using the well-known properties of the Dirac delta function 5¢-).
Theorem 2
X(7T,0) = Fop[u(t)u®(t-7)] .
Hence,
Fpt [X(T.0)] = u(t)u(t-7) ,

and by Parseval's theorem,

Flx¢ray|*de = [ u(e)l2luct-7)|? de .

Thus
I x(r, @)% dbdr = [ Ju(ty]? [lu(r)]? drdt = 1 .
Theorem 3
[N(T. 02 = |Ju(eyu¥(e- T) exp (-2midt) dt|?
STlu(ey)?dt fluge-m)2 dt = 1,

by the Cauchy-Schwarz inequality,

Theorem 4

%}ff,rf Dx('r.tb)f] = [ x(r. )P exp [-2mi (fr-®t)] drdd

25
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729, [ix(ro)2] = F155 u(ny wign -7y exp (-2mi®n) (<Y u (£ -

% exp { Iwi®dy exp [-2wi( Fr - BE)] dydldrdd

if uiny U*(?z-'r)u*(n- tyu{g-t-T7) exp {~2nifT) dydr

Fluguyu¥(n- tYyu*(EYu (€ -ty exp [-2wif(n ~ £)] dgd§

(e B




Appendix B

GACF OF A SINGLE GAUSSIAN PULSE

u(t) =

X(7,@) =

(2a/m)1 % exp (-at?),

a>>0

(2a/m)t72 [ exp [~at? - a(t-T)? - 2midbt] dt

= (2a/myt/ Zexp (~ar2/2) Fg{exp [-2a(t-7/2)%]} .

From Woodward (1), page 28, "pair 3," we have F.; [exp (-7£?)]= exp (~nf?).

be shown as follows:

¥, clexp (~7t?)]

Then
Fiplexp (~2at?))

by Woodward's "Rule 8," and

Fiplexp[~2a(t-1/2)%} =

exp (-wt2~2mifty dt

—m

@

exp (-7 f?) j

—m

exp [~m(t+1f)?2) dt

wt i f

exp (-mf?) exp (=mt?) dt

~m+if

exp (-7f2) j exp (~mt?) dt =

(7/2a)l"2exp (-w2f2/2a)

(m/2a 1/ 2 exp [~n? f2/2a ~ 2mifT/2)

by "Rule 6." Applying this result to Eq. (B1) we have

X{(7,®) = exp(-ar?/2-nw2d?/2a-wid7r) .

27

(B1)

This can

exp (-7f2) .



Appendix C

GACF OF A THAIN OF DELTA FUNCTIONS

ay

w(ty = ) s(t-nT)

-

Z ot -nTys (t~-7-mT)exp(-2midty dt

iy

H

Xy (T )

i

Z §{(n-myT-7)lexp(-2mind®T) = Z §(r-nTyexp(-2mim®T) .

Now consider the formal Fourier series expansion

Ay
7

> S{®-n/Ty = Z C oexp (-27in®TY .

Then
17271
7 5(®- /Ty exp (2mindT) d® = 1
" Teisar
1727
= Z Ch {. exp [-27i{n-m)Y 0T} d@
» Tevsar

= Z Cnﬁnm-"’T = Cm’{T *
a

so that C. = T, ¥=m. Hence,

i

Z exp (—27im®Ty

»

Tt ) a(e-m/TY

and

T™t % 5(7-nT)5(0-w/T) .

o, m

it

X7 )

28




Appendix D

ROTATION OF AXES OF THE AMBIGUITY DIAGRAM OF A SINGLE
GAUSSIAN PULSE WITH LINEAR FREQUENCY MODULATION

Equation (37) will be in the standard form for an ellipse if we define new axes, 7',
¢’ rotated by an angle g with respect to the +, ¢ axes, where

T=7"cos g - @' sin @
and
d=7"sin g + ®° cos & .
If this is substituted in Eq. (37), rewritten in the form A+2 + Br® + C®? = K, and if

the coefficient of +'¢’ is required to vanish, we obtain tan 20 = B/(A-¢) from which
Eq. (38) follows.

29




Appendix E

MULTIPLICATIVE PROPERTY OF PSEUDO-RANDOM SIGNALS

Theorem

Let s(ty represent a signal obtained from & maximal-length p3cudo-random sequence
of -15 and Is, of infinite duration. Let & be an integer, & 7 0 {mod p}, where p is the
period of the pseudo-random sequence, and let ¢, be the shifting period of the generator
producing the signal. Then s¢t)s(#-kt, ) = s(t-k' ¢y, where k' is ulgo an integer,
Proof

We may write

2

s(ty = ) a;ai(e) .

i

where {z,} is the pseudo-random sequence, andf

1. (i~1)f, <t < ity
Ap(t) ‘—5{ . (EY
0, otherwise
Then
s(t=ktyy = 3 ajh(t-ktgy =} a; Al
F j
since
o (i-hyf, < b=kt < it 1, (i+k-1yt, <t <(itk)t
Aj(t~ktyy = =
0, otherwise &, otherwise
= Buk(t) = A(Ey, i j = itk
Thus
SCEYS(E-keg)y = ) 3 aja; A0 ALY - (E2)
i
Now

1This notation is similar to that used on p. 18 of J. L. Lawson and G. E. Uklenbeck, "Threshold Sig-
nals,” New York:McGraw Hill, 1950, I am grateful to DBr. H. L. Saxten for ¢alling my attention toit,

30
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Bi8jok = A Ao (kajriy T Fiept o (E3)

where k' is an integer by the ''shift-and-multiply'' property of pseudo-random sequences
of 1s and - 1s.f

Using Eq. (E1), we have

1, [(i-1)ty <t <itg] N[(J-1)t, < & < jty]

il

B;()8;(t)

0, otherwise
1, iy [max (4,7) - 1] <t <ty min (i,j)
0, otherwise

If i< j, this product vanishes unless (j-1)¢ < t < it;; thismeans j- 1 < i <

< J,
which can only be satisfied for i = j. Similarly, if i 2 j, A;(£)A;(t) = 0 unless
(i-1) ¢ty < ¢t < jt,, for whichweget i- 1 < j < i, and again j = |,
Thus, we can write A;(t)A;(t) = A;(#)5;; and from Eqs. (E2) and (E3),
S(E) s (t-ktg) = D0 Y A 8,(t)8y;
i
= Z @i B(t)
= s(t-k't)) .
Q.E.D.

tSee, for example, C. McCoy, Jr., “Power Spectrum Estimates of Sampled Pseudo-Random Sequences,”
NRL Report 6673, p. 68, Dec. 29, 1967; Thesis, The George Washington University, Feb, 22, 1968,




