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ABSTRACT 

Electrical network analysis from associated system 
matrices generally results in determinants which are 
awkward to handle because computation becomes labori- 
ous with an appreciable number of meshes. This paper 
is a study of several ladder-type networks where recur- 
sion formulas for the system determinants are solved 
by the method of finite differences. It appears that a 
broad class of networks are amenable to this type of 
analysis and certain generalizations of the subject 
method are set forth. 

PROBLEM STATUS 

This is an interim report on this problem; work is 
continuing. 
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A FINITE DIFFERENCE SOLUTION OF RECURRENT NETWORKS 

INTRODUCTION 

It is well known that electrical networks can be analyzed from the standpoint of their 
associated system matrices. In general, however, the resulting determinants become 
awkward to handle. Should a circuit have an appreciable number of meshes, the computa- 
tions become extremely laborious. The present paper is a study of several ladder-type 
networks, uniform and otherwise where recursion formulas for the system determinants 
are obtained which are then solved by the method of finite differences. It appears that a 
broad class of networks are amenable to this analysis. With the ladder-type circuits as 
points of departure, certain generalizations of the method are set forth. 

THEORY 

A basic recurrent ladder network is illustrated in Figure 1. 

By definition, 
Figure 1 

z, + sz, = s 

and Z, = B 

Then the loop equations become, in matrix notation, 

1.“1-~~~ Ii] 
n 

(1) 

(2) 

(3) 
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where designating the first matrix on the right hand side as II 1 M.. 
1J ’ 

Mii =s 

Mi 
f 

i+l = Mi+l i=-B 
7 

M.. 
1J 

= 0 (j+i, jSi+l) 

Equation (3) could also be written 

k] = [kng [I] 
the argument denoting the number of meshes in the system. 

With S + 0, let 

B 
s =P 

The case of S = 0 is considered later. 

It follows, therefore, that 

[E] = s [Q(n)] [I] 

where 

Q(n) = 

A complete analysis of the circuit, Figure I, requires 
of [M(n)3 , its zeros, and its first cofactors. 

Defining the determinant of = D(n) 

and the determinant of L- 1 Q!(n) = A(n) 

then D(n) = S” A(n) 

SOLUTION OF A (n) 

Consider the determinant A (n). 

Expansion by the first row (column) results in 

A(n) = A(n-1) - d A(n-2) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

evaluation of the determinant 

(11) 

(12) 

(13) 

(14) 

Where A (n-l), A (n-2) are determinants of the same form as A (n) but of dimensions 
(n-l), (n-2), respectively. 



NAVAL RESEARCH LABORATORY 

Assume a solution 

A(n) = CA” (15) 

where C and A are constants. 

Direct substitution into (14) yields 

A” = An-l -p2An-2 

or 

A2-A+p2 = 0 

yielding 

A = 1&W 
2 

(16) 

(17) 

(18) 

Defining A, and A, as 

A 4 = ‘+ mandA =l-6-@- 
2 (1% 

2 2 

The complete solution is then 

A(n) = C, A,” + C, A,” wo 

since (14) is a linear finite difference equation and (16) through (18) justify choice of 
bases A, and A,. Where C, and 6, are arbitrary constants, it should be noted that 

A, + A, = 1 (21) 

A, A, = p2 (22) 

To evaluate the constants C, and C,, two boundary conditions are required. 

By definition of A (n) 

A(1) = 1 

A(2) = l-p’ 

(23) 

(24) 

Using (20) through (24), it follows that 

- Al A2 

‘1 = A,-& and ‘2 = AZ-Al 
Hence the complete solution becomes 

n+l A(n) = a’-A, A2 
c 

-A, n+l 1 

(25) 

(26) 
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The solution (26) can be transformed into a more convenient form by the following 
substitutions: 

Let 

HenceR=+m 

Choose R = + a 

A, = Re@ 

A, = Re-4 
(27) 

(28) 

(29) 

By (22) R also equals p 

1 Consequently, cash ~4 = 2~ 

or, referring p back to the circuit parameters, 

cash 4 = 
2,+=2=1+ Zl 

2z2 222 

The angle 4 is recognized as the propagation constant of the network. 

By means of the transformation (27) r 7 

or 

A(n) = p”+’ 

Ah-4 = 
n 

P 
sinh (n+l)d 

sinh + 

and D(n) = B” sinh (n+l)4 
sinh 4 

Since B = Z, 

where 

D(n) = q” ?!!!?~l~~~4 

4 = cash -1 I+z, 1 1 222 
Equations (35) and (36) were obtained by assuming 

s 5 z, + 22, -f 0 

If S = 0, it follows that 

D(n) = -2,’ D(n-2) (37) 

D(1) = 0 (38) 

D(2) = -Z22 (39) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 
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Solving (37), and using the bounoary conditions (38) and (39), 

D(n) = -j” z,” 
2 

(40) 

Hence 

D(n) = 0 if S = 0 and n is odd, and 

D(n) = t-1) d2 Z n when S = 0 and n is even. 2 

(41) 

(42) 

ZEROS OF D(n) 

To obtain the natural modes of vibration of the system, which are required in analyzing 
the transient behavior, the zeros of D(n) must be evaluated. 

If B = Z2 = 0 then from (3) D(n) = S” = Z,” 

Thus, unless Z, and Z, are zero simultaneously, Z, = 0 does not yield a zero of D(n). 

The preceding analysis shows that only zeros of sinh (n+ l)b 
sinh 4 

need be considered, 

If sinh (n+l)+ = O,C$ = j$$ . 

However, since sin kn = 0, k = 0 and k = n+l must be excluded. 

Hence zeros occur when k = 1, 2, . . . . n 

Specifically, then, since cash j 0 = cos 0, zeros are determined by p = l/2 set-$ 

(43) 

It should be noted that equation (41) yields a possible source of zeros, namely if n is 
odd and S = 0. 

This case corresponds to choosing k = n+1/2 in (43), and solving for p. The solution is 
p = Q), i.e. S = 0. 

The circuit of Figure 2 may be considered as an example. 

Figure 2 

Zl = R1,Z2 =lFp where p is the required angular frequency mode. 

.‘~ 
p;j 

” i 
if!.. 

S’ ,,,, 

1)“” 
2  I I’ 

fT 
SW 

P,, 

1.” IW 
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Zeros occur when cos kn 
n+l- 1+= 2 9 -1 

1 
GENERAL STEADY STATE BEHAVIOR 

To determine the steady state currents, it is necessary to evaluate the first cofactors 
of D(n). If the drivingvoltage is placed in the first mesh, the relevant cofactors are D1 j(n) 
(j = 1, 2, . . . . n) and for applied voltages in the k-th mesh, Dkj(n) (j=l, 2, . . . . n). 

By a Laplacian expansion about the first (r-l) rows.of Dr r+k (n), it is apparent that 
9 

D r, r+k (n) = Bk D(r-1) D(n-r-k) 

with the convention that D(0) = 1 

Since D(n) is symmetric 

or D r+k,r (n) = Bk D(r-I) (D-n-r-k) 

(44) 

(45) 

(46) 

Hence, for a voltage e, applied to the first mesh, the current in the k-th mesh is 
given by 

‘kl =‘D(n) el 
= Bk-1 D(n-k) e 

D(n) l 

and substituting the appropriate values from (2) and (35), 

11 

sinh (n-k+l) 4 e 
= Z, sinh (n+l)$ ’ 

Similarly for voltage in the jth mesh 

ikj' 
Bjsk D(k-1) D(n-j) 

D(n) 

or ikj= sinh k 4 sinh (n-j)4 
Z, sinh (n+l) 4 sinh+ 

and 

which is equivalent to 
k’ 

Bk--j D( j-l) D(n-k) 

JXn) 

ikj= sinh j &sinh (n-k)4 
ZZ smh (n+l)+ sinhS, 

Finally, for voltages e,, e2, .*.e, in all the loops 

1 rk 

(47; 

(43) 

(49) 

e (W 
j 

ej (k>j) 

ej (k>j) 

(50) 

(51) 

(52) 

n 

‘k = Z, sinh (n:l) 4 sinh 4 j-1 
1 

C ej sinhj&inh (n-k)4 + C 
t =k+l 

et sinh k 4 sinh (n-t) 4 

(53) 
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GENERAL TRANSIENT BEHAVIOR 

The preceding analysis carries over to the transient case as well. For the steady 
state, Z, and 4 are functions of the impressed angular velocities, wi for the transient case 
they are the same functions of the natural modes pi. The amplitudes of the transient cur- 
rents are proportional to the cofactors Da k (n). If j + k, the cases of j>k and j<k must be 
distinguished as in equations (50) and (5lj. 

TAPERED LADDER STRUCTURE 

The preceding analysis applies to a uniform ladder structure. In this section the 
applicability of the method to a nonuniform structure will be indicated. 

Consider the network of Figure 3. 

ZI KZI K’Z, Kn” Z, 

Figure 3 

Let Sj be the self impedance of the j-th loop 

S, = Z, + (l+k) Z, 

Sj = Kj-’ S, 
. 

The system de-eerminant, D’ (n), becomes 

Sl -k% 0 

D’ (n) = -kZ, 

\ 

\ , 

\ 

- :r n-I 
z&3 

0 -k”l’Z, S, 

Removing the factor kj-’ from the j-th row yields 

D’ (n)= k.k2 . ..k 
n-l 

Sl -kZ, 0 

-Zz 

(54) 

(55) 

(56) 

(57) 

,I : 
. . . , 

r;. 
11: 1 ,.A. 
u 
% ” 
1,x-, 
“is 
y, 
I&* 
11:” 
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and expanding by the first row of the determinant results in 

D’ (n) = k n2/ D’ (n-l)- k Zi D’ (n-2) 1 (58) 

which can be solved by the same method as that for the uniform ladder structure. 

Let p’ = %/Sl (59) 

Then 

Where 

D’ (n) = k n2/2 z n 
2 Q’ (4 

1 -kp’ 0 

Expanding Q’ (n) by its first row (or column) 

Q’ (n) = Q’ (n-l)- kp” &’ (n-2) (62) 

(60) 

(61) 

Hence, p’ *replaces p of the uniform ladder structure. 

The solution of (62) becomes 

D’ (n) = kn 7 2 Z p sinh (n+ l)d ’ 
sinh 4 ’ (63) 

where cash 4’ = (64) 

For k = 1, the solution reduces to that of the uniform ladder. The currents are obtained 
in a similar manner. 

CONCLUSIONS 

The preceding analysis applies to networks actuated by ideal generators. The case 
for generators and loads of a-rbitrary impedance can be readily obtained for the steady 
state; the transient case involves the solution of a transcendental equation which cannot, 
in general, be expressed in a closed form but requires design curves. With the more 
common types of terminations, however, transient solutions are obtainable. 


