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ABSTRACT

A general solution has been developed for the melting of solid
materials, including a phase transition in the one- and two-dimensional
models requiring a minimal amount of computer time and space and
using a nonstandard finite difference approach. Accuracies of 1%
in temperature profiles with time can easily be achieved. Both of
these programs will handle a wide range of heating power levels and
any desired thickness of liquid layer retained.

Techniques developed in the one-dimensional case have served
as helpful guidelines for the more complex two-dimensional geom-
etry. Similarly, comparisons of the one- and two-dimensional burn-
through times and temperature profules have aided in separating out
the effects of radial heat conduction and geometry.

PROBLEM STATUS

This is a final report on this phase of the problem; work on
other phases of the problem is continuing.

AUTHORIZATION

NRL Problem R05-31A
Project ORD 0832-129/173-1/U 1754
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A GENERAL SOLUTION TO THE ONE- AND TWO-DIMENSIONAL
MELTING USING A FINITE DIFFERENCE APPROACH

INTRODUCTION

Two programs have been developed to solve the melting of solid materials including
a phase transition in both the one- and two-dimensional models. Both of these programs
will handle a wide range of heating power levels and any desired thickness of liquid
layer retained.

The technique employed in these programs is an unconventional finite difference
technique in which the fusion front position is treated continuously, and, presently only
in the one-dimensional program, a sixth-order, space-time expansion is employed in
both the heat diffusion equation and the fusion front position equation.

Techniques developed in the one-dimensional case have served as helpful guide-
lines for the more complex two-dimensional geometry. Similarly, comparisons of the
one- and two-dimensional burn-through times and temperature profiles have aided in
separating out the effects of radial heat conduction and geometry.

The finite difference formalation is convenient for treating a variety of power levels
and types of materials with widely varying thermal constants since one need only change
input parameters rather than alter the program.

Accuracies of 1% have been easily obtained in the one-dimensional burn-through
times as compared to an exact expression for total burn-through time in the limit of
ablation (1) and temperature profiles as compared with exact premelting solutions (2).
Good agreement has also been obtained between the one- and two-dimensional programs
in the appropriate limiting case of a flat slab.

FORMULATION OF EQUATIONS

Consider the one-dimensional heat diffusion equation

jDT! -a22 T
UT= . (1)a8 t -aX2

Let the temperature T have space and time coordinates i and j, respectively. Then the
conventional finite difference approximation for this equation is

A [T(i, j+) -T(i, j)] = - [T(i+1, j) - 2T(i, j) + T(i-1, j)] (2)
At ~~~~~AX2

In place of Eq. (2), a seven-point expansion is used to evaluate the second-order deriva-
tive giving an equation of the form
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t [T(i, j+1) -T(i, j)] = aj [T(i, j-1) -T(i, j)]
At

+ a [T(i-1, j-) - 2T(i, j) + T(i+1, j)]

+ aI T(i-1, j) - 2T(i, j) + T(i.+l, j)] (3)

where a,, a2, and aA are known functions of the thermal parameters of the material
(Appendix C). The boundary condition at the front surface is

KVT = aMHo (4)

and the standard finite difference approximation to Eq. (4) is

T(i, j) = T(i+l, j) + i A (5)
K

It should be emphasized that amHo is the power absorbed by the material and not the in-
cident power. Knowledge of the absorption coefficient am for the wavelength and material
considered is important (3,4).

Once the front surface is brought up to melting temperature, a second boundary con-
dition must be applied to the liquid/solid interface:

Fam = KVT -KVT (6)

where F is the latent heat of fusion of the material and Xm is the position of the fusion
interface. A simple two-point approximation to the gradient gives

Xm (j+1) = Xm (j) + KFt [T(i-1, j) - 2T(i, j) + T(i+1, j)] (7)
pFAX

In place of Eq. (7) a seven-point expansion has been substituted:

Xm (j+1) = Xm (j) + b; [T(i-1, j-1) -2T(i, j)

+ T(i+1, j-1)] + bi [T(i, j+1) -T(i, j-1)]

+ b3 [T(i-1, j) - 2T(i, j) + T(i+1, j)] . (8)

Here W b , and b; are known functions of the thermal constants of the material (Appendix

The condition at the back wall used here is that there is no heat flow, which corre-
sponds to an insulated slab; i. e.,

KVT = 0. (9)

Thus, the last two lattice points are given by

T(i, j) = T(i -1, j).

2
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TWO-DIMENSIONAL PROGRAM

The two-dimensional program is designed to treat a cone of arbitrary vertex angle
and of any material. The thickness and number of subdivisions are completely general.
In the two-dimensional program the temperature gradients are no longer directed along
the lattice rows as in the simplified one-dimensional program. The two-dimensional
heat conduction equation is now used, and the program sets up a lattice array for the
input cone angle such that lattice points fall on the front and back surface. This feature
greatly simplifies the computational complexity of the program.

The thermal gradients are set equal to zero along the top and bottom lattice rows
and at the back surface. Cosine attenuation of the incident power is used at all front
surface points except the vertex point, which receives direct irradiation. The thermal
gradient direction for the melt interface is directed along the lattice row behind the
vertex point and varies linearly until it becomes normal to the front surface at the top
and bottom rows. An outline of the two-dimensional program appears in Appendix B.

ONE -DIMENSIONAL RESULTS

The one-dimensional results are given in Figs. 1 through 7 in the form of tempera-
ture profiles.

TWO-DIMENSIONAL RESULTS

The top half of Fig. 8 shows a two-dimensional aluminum cone with a 60-degree
half angle. Burn-through occurs first at the region away from the tip of the cone, due to
the fact that the greater distance the melt must travel at the tip outweights and cosine
attenuation of the beam away from the tip. The burn-through at the tip does occur at
8.6 seconds. A comment should be made here that due to the formatting of the output
all temperatures are rounded off to the nearest whole degree. This does not reflect the
accuracy of the program.

The lower half of Fig. 8 shows the 60-degree half-angle cone at 6. 79 seconds just
after burn-through has occurred at the top and bottom. The cone is nearly isothermal
at this time.

Figure 9 shows a 60-degree half-angle aluminum cone with only the center five rows
irradiated to study the effects of radial heat conduction. As can be seen, the heating is
slowed down more than an order of magnitude by the nonirradiated portion of the cone.

An 85-degree half-angle aluminum cone is shown in Fig. 10 for comparison to the
one-dimensional program. Burn-through occurs in 5.7 seconds for the two-dimensional
program as compared with 5.8 seconds with the one-dimensional program.

ACKNOWLEDGMENT
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Fig. 1 - Temperature versus time at back surface
of a 0.953-cm-thick slab of aluminum 2024 ir-
radiated with 20,000 watts/cm 2 . The curves show
improved accuracy with increased subdivisions.
All of these runs were made with the standard
finite difference equation, using an absorption
coefficient of 0.02.
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Fig. 2 - Improved accuracy of Fig. 1 as a result of
introducing the sixth-order, space-time expansion
for temperature. Equal accuracy for aluminum
may be obtained with 25 subdivisions using the
sixth-order expansion as with 50 subdivisions with-
out the expansion.
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Fig. 3 - Temperature profiles at various
times after the onset of irradiation of a
0.953-cm-thick slab of aluminum 2024.
The irradiating power was 20,000 watts/
cm2, and the absorption coefficient used
was 0.02. The slab becomes nearly iso-
thermal after ablation begins.
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Fig. 4 - Temperature profiles in a 0.5-cm
slab of stainless steel at various times
after the onset of irradiation. The steep
thermal gradients which occur with stain-
less steel, as compared to the higher ther-
mal conductivity metal, aluminum, require
more subdivisions for comparable accuracy
with aluminum runs. Accuracies of 4% for
stainless steel have been obtained with 50
subdivisions. Even after melting has started
at the front surface, the back surface is es -
sentially at ambient. The irradiating power
was 20,000 watts/cm 2 , and the absorption
coefficient used was 0.2.
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10 20 30 40 50 60 70 80 90 100
PERCENT OF THICKNESS

Fig. 5 - Temperature profiles at two times
from onset of irradiation for a 0.5-cm slab
of 304 stainless steel. The irradiating power
was 20,000 watts/cm 2 , and the absorption
coefficient used was 0.2. A 16% liquid layer
retained model was used.
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0.44 0.66 0.88 1.10 1.32 1.54 1.76 1.98
TIME (SECONDS)

Fig. 6 - Temperature rise at the back sur-
face of a 0.5-cm slab of 304 stainless steel
for three thicknesses of liquid layer retained
(0%, 4%, and 16%). The different character
of these curves could be used in conjunction
with experimental measurement to deter-
mine a realistic liquid layer retained for a
given material and power level. The ir-
radiating power was 20,000 watts/cm2 , and
the absorption cofficient used was 0.2.
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Fig. 7 - Position of the melt
interface versus time from on-
set of irradiation for a 0.5-cm
slab of 304 stainless steel. The
irradiating power was 20,000
watts/cm 2 , and the absorption
coefficient used was 0.2.

1.50

3.114 103 92 82 T3 65 59 55 52 50 50
116 303 92 82 T3 65 59 55 52 50 50

322 307 94 83 74 66 60 55 52 51 51
1114 300 87 77 68 61 56 53 52 52
309 95 82 72 64 58 54 53 53
306 92 79 69 61 56 54 54
105 91 78 68 61 56 56
306 92 79 69 61 56 54 54
109 95 82 72 64 58 54 53 53
114 0oo 87 77 68 61 56 53 52 52
322 107 94 83 74 66 60 55 52 51 51

3516 103 92 82 7 65 59 55 52 50 50
n14 103 92 82 73 65 59 55 52 50 50

(a)

500
500 500 500

500 500 500 500 500
500 500 500 500 500

500 500 500 500 500
500 500 500

500 500

500
500

500 500
500 500

500
500 500
500 500

500 500
500

500

(b)

Fig. 8 - Temperature profiles in a two-
dimensional aluminum 2024 cone with a 60-
degree half angle at (a) 0.485 and (b) 6.79
seconds after onset of irradiation. The ir-
radiating power was 20,000 watts/cm 2 , and
the absorption coefficient used was 0.02.
The entire front surface was irradiated.
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Fig. 9 - Temperature profiles in a two-dimensional
aluminum 2024 cone with a 60-degree half angle at
(a) 0.004 and (b) 60.6 seconds after onset of irradia-
tion. The irradiating power was 20,00 watts/cm 2 ,
and the absorption coefficient used was 0.02. Only
the center five rows were irradiated.

Fig. 10 - Temperature profiles in a two-dimensional
aluminum 2024 cone with a 85-degree half angle at
(a) 2.43 seconds and (b) 5.34 seconds after onset of
irradiation. The irradiating power was 20,000
watts/cm2, and the absorption coefficient used was
0.02. The entire front surface was irradiated.
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Appendix A

ONE-DIMENSIONAL PROGRAM

1. Thermal properties of the material, thickness of the slab, initial temperature dis-
tribution, irradiating power level, number of subdivisions to be made, liquid layer re-
tained, and the print-out frequency are all read in.

2. A time step suitable for convergence of all expansions is calculated.

3. Evaluation of all expansion coefficient algebra is made outside the repetitive loop to
increase computer efficiency.

4. Assignment of initial temperature distribution is made.

5. A liquid layer matrix is calculated which serves to interpret appropriate equations
to be applied.

6. Application of heat conduction equation is made to all internal points.

7. Boundary conditions are applied to the front and back surfaces.

8. A test for the print-out frequency is made.

9. A test is made for resetting the subscripted variables if maximum size is exceeded.
This step allows minimum storage requirements for the program.

10. A test for melting at the front surface is made, and if no melting has occurred, the
program is recycled through step 6.

11. The fusion front is initialized at the front surface.

12. The heat conduction equation is applied to all interior points.

13. The exact position of the fusion front is evaluated.

14. The temperature at the nearest lattice point is fixed to the melting temperature.

15. The boundary conditions at the front and back surfaces are applied.

16. A test for the print-out frequency is made.

17. A test is made for the maximum array size for resetting the subscripted variables.

18. A test for burn-through is made, and if no burn-through occurs, the program is
cycled back through step 12.
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Appendix B

TWO-DIMENSIONAL PROGRAM

1. The thermal parameters of the material, thickness of material, angle of cone,
initial temperature distribution, irradiating power level, number of subdivisions to be
made across the thickness, the thickness of liquid layer retained, and the print-out
frequency are read in.

2. The lattice array such that the front and back surfaces coincide with lattice points
is set up.

3. A liquid matrix similar to that used in the one-dimensional program is set up.

4. The melt line gradient direction is set up for each row independently.

5. The irradiating power distribution cross section is set up.

6. The initial nose cone temperatures are assigned to lattice points.

7. If no melt has started, test each row independently to check for initial melting
temperature at the front surface.

8. The two-dimensional heat diffusion equation for all interior points is applied.

9. The boundary conditions of no thermal gradient at the top and bottom rows are
applied.

10. The position of the melt interface is calculated.

11. The boundary condition is applied to the front surface.

12. A test is made of the print-out frequency.

13. A test is made to check if burn-through has occurred.

14. A test for the maximum subscripting is made to the reset subscripts. Then a re-
cycle is made through step 7.
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Appendix C

TEMPERATURE EXPANSIONS

The expansion in space and time chosen for the temperature is

T(X, t) = ao + aX + a2 X2 + a3 X3 + a4X4 + a5X5

+ a6X6 + bot + b1Xt + b2 X2 t + b3X3 t

+ b4X4t + cot2 + c1t3 + d1Xt2 + d2 X2t2.

Substitution of Eq. (Cl) into the heat diffusion equation gives a relationship between
the coefficients. There remain the seven a coefficients as unknowns. These are solved
by choosing a suitable lattice of seven points:

_l------…To…--(+ At)

-+ T--- - Tg ---i TO -(0)
- T1- ----v To ---- T1 l - (-At)

(-AX) (0) (+8X)

The above lattice was chosen because it allows the expansion to be used for all interior
points of the lattice. If an expansion along the lattice row was chosen, simpler approxi-
mations would have to apply at the front and back of the lattice. On substituting Eq. (Cl)
into each of the above seven lattice points, seven equations are obtained which may be
solved for the a coefficients.

The results of the algebra are

DI -4C2At

D2 -240a 6 At 3

D3 _ 2AX 2 -4a 2 At

D4 2AX4 - 24AX2 a2 At + 24a 4 At2

D5 - 2AX6 - 60AX4 x2At - 240a6 At3 + 360AX2 a4 At2

D6 - 2AX2

D7 5 2AX 4

D8 - 2AX6

15
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Gi1 (D8D1 -D6D2) 24a4At 2

D4(D8D1 -D6D2) -D7(D5DI-D3D2)

G2 D3(D8DI -D6D2)24a4At2
D1D4(D8D- D6D2) -DiD7(D5Dl -D3D2)

G3 (D5Di -D3D2) 24Q4 At2

D4(D8DI -D6D2) -D7(D5Di -D3D2)

G4 (D5Di -D3D2)D624a 4 At 2

DI D4 (D8 Dl - D6 D2) - Dl D7 (D5 Dl - D3 D2)

Then we have for the temperature

To= 08+kG4 -G2 -(To -1T°g)

GI (T-' - 2T8 + T-')
(1 -G2 + G4)

G3(To -2T8 + To)

(1 -G2 + G4)



r'r

Appendix D

NOTATIONS

The notations for the thermal constants are

a2 thermal diffusivity (cm2/sec)

K thermal conductivity (cal/cm-sec-deg.C)

F latent heat of fusion (cal/g)

Ax spatial lattice subdivision

At time subdivision

am absorption coefficient

Ho incident flux (cal/cm 2 -sec)

p mass density

T(X, t) temperature at X and t
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