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ABSTRACT
An effective technique, employing the Principle of Least Squares,
which leads from the values of the crystal structure invariants to the
values of individual phases, has recently been obtained, In the present
report the details of the computer program which implements this
technique are described., An auxiliary program to identify the required
structure invariants has also been written and is contained herein,
PROBLEM STATUS
This is the final report on this problem., The problem was term-
inated as of June 30, 1970,
AUTHORIZATION
NRL Problem NO1-19
Project RR 002-07-41-5065

Manuscript submitted July 27, 1970.
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COMPUTER PROGRAM FOR THE LEAST-SQUARES DETERMINATION
OF THE PHASES OF THE CRYSTAL STRUCTURE FACTORS

1. INTRODUCTION

It is assumed that the unit cell of a crystal consists of N identical atoms. Denote by
? the position vector of the atom labeled j and by ¢ the phase of the normalized structure

faltctor E. Then the equation
S N
B = [Bql exe (ifg) = 3 exp (2mih - 1)) (1.1)
j=1

leads directly to
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It is clear from (1.2) that the crystal structure is determined by the complex normalized
structure factors E;. Since the position vectors 7, depend on the choice of origin, as
well as on the crystal structure, (1.1) does not imply that the normalized structure fac-
tors E;, are determined by the crystal structure alone. As it turns out, however, the
magnitudes |E; | of the normalized structure factors are in fact uniquely determined by

the crystal structure and are independent of the choice of origin. The values of the
phases ¢;, on the other hand, depend on the choice of origin as well as on the crystal
structure (1,21,

A finite number of magnitudes|Eﬁ|are obtainable from experiment, while the phases
¢; cannot be measured. Nevertheless, (1.2) is still useful in the determination of crys-
tal structures since the prior knowledge that the unit cell is composed of N identical
point atoms severely restricts the possible values of the phases ¢; . In fact, once the
origin and enantiomorph have been specified, the magnitudes |E;1i are sufficient to deter-
mine uniquely those phases ¢; with the property that the left side of (1.2), as a function
of #, is then zero everywhere except at N points where it has the value 1/N%, Owing to
the finite number of data available from experiment, (1.2) is actually nonvanishing in
N discrete regions, not points, and is only approximately zero elsewhere. In practice,
therefore, it is the maxima of (1.2) which yield the atomic positions.

Present addresses: Janet E. Fisher, Central NOMIS Office, Naval Ordnance Station, Indian Head,
Md. 20640; and Herbert A. Hauptman, Medical Foundation of Buffalo, 73 High Street, Buffalo, N.Y.
14203.
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2 HANCOCK, FISHER, AND HAUPTMAN

The problem of actually determining the values of the phases ¢; when only the mag-
n1tudes|E |are given is the so-called phase problem. The solution of this problem is
fac111tated by the introduction of certain linear combinations of the phases, the structure
invariants

Ph, t Fi, b0 (1.3

where

= 3

jont]
o

w
(=]

(1.4)

The structure invariants are important because they serve as the cohnecting link between
the magnitudes |[Eland the phases ¢. On the one hand, the magnitudes of the structure in-
variants, or, equivalently, the values of

cos (¢gl + qbgz + ¢f,3), (1.5)

where (1.4) holds, are uniquely determined by the magnitudes |E; |. Onthe other hand, once
the origin and enantiomorph have been specified, the values of the structure invariants
(1.5) determine uniquely the values of the individual phases #;. The problem then is to
calculate the values of the structure invariants (1.5) from the observed magnitudes of
the structure factors and then, assuming the values of the former to have been found, to
determine the values of the individual phases. Methods for solving the former problem
have been described elsewhere [3,4], and a computer program for calculating the values
of a special class of structure invariants (1.5) is now available (NRL Report 7157). The
present report is devoted to a description of a computer program for calculating the
values of the individual phases, given the values of the structure invariants (1.5), which
is based on the Principle of Least Squares.

2. THE BASIC SET OF PHASES

For definiteness it will be assumed that the space group is P2,. The same method,
with obvious modifications, is valid for the other noncentrosymmetric (or centrosymmet-
ric) space groups.

First, as many phases ¢,, ; ,4= 0 or 7 as possible are determined by means of 5, [5]:

% 2
Ey o0 5N ,<(_l)k (oY _1)>k (2.1)

Next, the values of a linearly independent pair of phases

4’&1 :¢h1 o4, ¢I<2 :¢h2 04

2

are arbitrarily specified (i.e., either 0 or »), and the value of a third phase

Pl T Pry 1 4

is also arbitrarily specified (between 0 and 27, e.g., 0), thus uniquely fixing the origin
[1]. It should be noted that the theory of invariants and seminvariants developed in the
latter reference permits alternative schemes for orlgm spec1flcat10n when these seem
desirable, e.g., when no |Eng 4| is large. The vectorsky, ko, k3 are chosen so that

|E¢ |, |E%,l, |Ef,l are large, and in such a way that many of the |Ej, iak; ly i,j=1, 2, 3, are
also large, i.e., so that the lEk |"intéract" strongly with each other. It is also des1rable
that the IEk | interact strongly with those |Eh|f0r which the values of the ¢ have been pre-
viously determined by =1 .

3
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Finally, owing to the space group symmetry, the value of the phase ¢,, ¢ determines
the values of the three additional phases #,51, ¢hw £, ¢hpg if k# O while, if k= 0, only
one additional phase, ¢; , 7, is known. (Similarly, the phase ¢, , o determines only
the one additional phase ;1 ()

-

A3TIICSYTINN

The basic set of phases consists of the origin-determining phases, several others
determined by means of =,, and the related phases whose values are determined by the
space-group symmetries. Thus the values of all phases in the basic set are known.

3. THE STRUCTURE INVARIANTS

The whole phase determination rests on the basic set of phases. Ordinarily one
attempts to find the values of only those phases ¢; whose corresponding magnitudes IE;}I
are large, say greater than unity. Such phases will be said to be permissible. The
identity of the structure invariants whose values are needed in order to obtain prelimi-
nary values of a limited set of permissible phases is then determined iteratively as
follows. ‘

Corresponding to each pair ¢i,4_1,_%of the basic set having the property that the
phase ¢f, is permissible, one constructs the associated structure invariant

bp b TP pik (3.1)
and the product
i—% B, B By i | = Ape (3.2)
For each such vector h, the sum
A

2 Uk
(which may consist of only*a single term), taken over all allowed vectors k, is computed.
These sums (one for each h) are arranged in decreasing order and the largest one se-
lected, thus defining a unique vector f and several (perhaps only one) structure invari-
ants

cos (g t pp + ¢ ¢ ) (3.3)

the values of which, for the purpose of the present report, are assumed to be known [3] .
Since the values of the ¢;, #_p_g, and the several cos (¢p +¢p+¢_p_;) are thus pre-
sumed to be known, the value of ¢ is actually overdetermined (in general); its evaluation
by least squares will be described later in Section 4. The new phase #¢ and its three (or
possibly only one) symmetry-related phases are added to the basic set of known phases
and the process repeated. During the second cycle, however, the three largest sums

S Aq

;e
are selected, so that three new phases are determined, rather than only one as in the
first eycle. During the third, fourth, fifth, ..., cycles, the numbers of new phases
determined are five, seven, nine,.... Thus the order in which the values of the phases
are to be obtained is determined, and the identity of the structure invariants
cos(¢p +dp + d_p_p) whose values are required, is also found. Clearly, the rate at which
new phases are acquired may be varied if deemed desirable.

The first structure invariant cos (¢ + ¢ + ¢_—; ) whose value is different from +1

leads to two possible values for ¢ +¢; t+¢_p ¢ differing only in sign. The sign of this
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invariant ¢ +¢; +¢_j_; may be arbitrarily specified, thus fixing the enantiomorph and
leading to a unique value for ¢;[1]. Equivalently, from the present point of view, there
exist two solutions ¢ of the least squares problem (Section 4) and these yield the same
minimum sum of squares. Either of these two values for ¢; is chosen arbitrarily and
the enantiomorph is thus fixed. The values of all the remaining phases are then uniquely
determined.

4, APPROXIMATE EVALUATION OF INITIAL PHASES BY MEANS
OF LEAST SQUARES

Suppose now that the structure invariants (3.3) called for by the iterative process
described in Section 3 have been computed, as has been assumed for the present purpose.
Thus, for each fixed vector h whose corresponding phase ¢; is to be determined, the
values of several structure invariants

cos (g oy to_j_) =y (4.1)

are presumed to be known. The values of the several phases¢; , - are also assumed
to be known in accordance with Section 3. It is natural to suppose further that the larger
the number n of contributors to the average from which c; is computed [3] and the larger
the value of |E;E; Eg +k |, the more accurate the computed value of c; will be. Hence a
weight w; is defined by means of

wp = IE}*1 E:E; i |vH (4.2)
The phase ¢ is then determined by minimizing, in accordance with the Principle of
Least Squares,

> wp(cos (85 * ¢5 * @ 5g) cf)’
.- (4.3)

Vi

M

which, after a straightforward but lengthy calculation, finally reduces to

P 1 1 . . 4 4
o = -ECZ cos 2¢y, -2 S, sin2¢p — 2C cospp + 2 8; singyp + ¢ (4.4)

where

C, = S = <cos2(¢f( + ¢’%—ﬁ>§ , (4.5)
k

éw;{ sin2(bp *+ b5 1)

S, = S = <sin2(q’>ﬁ + ¢_ﬁ_ﬁ>k s (4.6)
k

Swp e cos(ép v é g )
Cl = k = <l§ COS(¢§ +¢_ﬁ_ﬂ>ﬁ » (4.7)

S; = = éﬁ sin(éyg +¢__ﬁ_ﬁ>lz ’ (4.8)
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and

Zw

>

C:k

mw

1,
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R | 7 ~

so that the quantities c,, s,, C,, and c are all known. Then ¢; is uniquely deter-
mined by minimizing ¢ as given by (14 4). The chief aim in the present report is to de-
scribe the computer program which solves this least-squares problem. It may happen
occasionally, particularly in one of the early cycles of the iteration, that two distinct
values of ¢; lead to essentially the same minimum value for . In this case one may be
led to two or more solutions, and the incorrect ones will have to be rejected by inspec-
tion of the corresponding Fourier Series (1.2). Finally, the first structure invariant
cos (¢p *+ op + ¢ p ) whose value differs significantly from 1 yields two possible values
for ¢ + qbk + ¢_y i, differing only in sign, and therefore two possible values for ¢;.
Choosing either of these two values for ¢; is equivalent to choosing one of the two pos-
sible signs for ¢ *+ ¢ * ¢_; 1, and therefore to selecting one of the two possible en-
antiomorphs. Once this is done, the remaining phases are then uniquely determined.

It has been found in practice that it is feasible to determine the values of several dozen
phases by this process. The more efficient tangent formula [Eq. 5. 62, Ref. 6]

S 1B Byg | sin (o * ¢50)

k

- 4.10

ten o S| Eg Eqp [ cos (6 + #5p) (4.10)
k

may th~n be used in order to evaluate the remaining permissible phases.

5. THE COMPUTER PROGRAMS

The two Fortran computer programs, written for the CDC-3800 computer, described
in this report are: (a) Buildup, which establishes both the order of phase determinations
and the identity of the needed structure invariants (3. 3), and (b) L.S Phases, which as-
sumes that the buildup has been ascertained and the cosine invariants have been identi-
fied and computed, and then proceeds to use these cosines for actual phase determina-
tions. These two programs are intended to implement the procedures described in
Sections 3 and 4, respectively.

Buildup was initially written to explore the possibility of ""building up' from a given
set of initial phases to the full set of permissible phases. This is attempted in a cycle-
by-cycle process in which the vectors for which phases are assumed to be known at the
start of each cycle are allowed to interact with each other in the manner described in
Section 3. For convenience, vectors (h,k,1) are stored within the computer memory in
canonical form only; for the present space group P2; this form is defined as that in
which h and k are nonnegative, and 4 is also nonnegative if h is 0. It is to be recognized
throughout that each such stored vector actually represents four (or two) vectors related
through symmetry transformations.

In the interactive process, each vector k, taken in canonical form, is paired in turn
with all symmetry-related forms of itself and of each other vector currently in the basic
set—the second vector of the pair being the vector -h-k of Section 3. The interactions
may be carried out completely by pairing each vector in the computer-stored list of base
vectors with the several forms of each vector which does not precede it in the stored
list. For each pairing, the third vector h, formed by taking the negative sum of the
first two, is put into canonical form. If th1s third vector is to be found in the E deck,

<— s c.)> (4.9)

¥
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6 HANCOCK, FISHER, AND HAUPTMAN

i.e., if it represents a permissible phase, the trio of matching vectors is termed a
contributor to the phase ¢;.

Contributors are tabulated within the computer by third vector h taken in canonical
form; information tabulated includes the sum of A values and the number of contributors.
When the interaction of all vectors input to the cycle is complete, the tabulated informa-
tion corresponding to all vectors not already in the basic set is examined. After re-
jecting those which do not have a prespecified minimum number of contributors and
minimum sum of A values, the remaining vectors are examined, and the quota of pickups
for the present cycle is sought from among those with the largest A,. Of course, if
either the quota or the two minimum requirements are relatively large, it may not be
possible to meet the full quota for every cycle, especially at the outset. Even if not, the
prespecified quotas for the succeeding cycles are not increased.

For the sake of efficiency, the procedure actually followed for the interactions after
the first cycle is to use information brought forward concerning interactions through,
and including, the previous cycle, and to limit new interactions to those between pickups
in the immediately previous cycle and all current members of the basic set.

Buildup now offers several options adapting it specifically to use as a preliminary
to phase determination by cosine invariants:

(a) Contributors may be rejected if the corresponding cosine invariants cannot be
reliably computed. ‘For the present space group P2; this means vector triples of the
form

hk 4 h k4 -2h 0 =24
with k # o.

(b) A printout may be output to list the matching vector triples, the three [E[values,
and the A value.

(c) The information indicated under (b) may be punched on cards for use as input
to a program to compute the cosine invariants.

(d) The vectors in the 6riginal basic set and those added, in the order of pickup,
may be punched, together with their |E| values, for use as input to L.S Phases—or for other
purposes such as application of the tangent formula.

(e) An E deck may be punched, consisting of the same information, in the same
order, as that output by the immediately previous option, but in the E deck format. This
deck is ordinarily a greatly abridged version of the original E deck, assumed to represent
all permissible phases.

In practice it may be desirable to use Buildup for a preliminary run in order to get

a feel for the number of invariants needed; this is feasible since Buildup runs quickly.
The input would be set to select the option of disallowing certain contributors; of the

optional outputs, probably only the E deck output would be selected. As many cycles may
be run as conceivably needed. After examining the printout, one decides how many
phases to compute (how many cycles to include) and reruns Buildup set for this number.
For the rerun the newly punched E deck would be used instead of the original one, after
omitting any unneeded h.k,?,|E| items. Use of an E deck limited to those vectors which are
in the final basic set ensures that only those invariants usable in the phase-determining
sequel are output by Buildup. The omission of the unneeded h.k,4 ,|E| items from the E
deck is easily accomplished since the items are punched in the order of pickup, and any
unneeded ones would therefore be at the end of the deck. In the new Buildup run, all
optional outputs would ordinarily be requested, except a new E deck.
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The computer input and output for Buildup will be described later in Section 7. Ap-
pendix A gives a listing of the Fortran program for Buildup, and Appendix B gives in~
formation on a very brief sample run. The example chosen is hypothetical, without
physical significance, and is intended to be illustrative and tutorial only.

The second program described in this report is LS Phases, which uses the Principle
of Least Squares actually to determine phases, in the order prescribed by Buildup. The
basic equations are (4. 4) through (4. 9), with w; as defined by (4.2). Equation (4. 4) was
slightly modified, to the following form, adjudged somewhat more convenient for com-
puter use:

® = singp (=C, singy — 8, cospp + 251) — 2Cy cosgyp, + (c + 0.5C,). (5.1)

As a preliminary to minimizing ¢ it is necessary to calculate the coefficients C,;, S;,
C,, Sy, and c. To this end the vectors in the basic set as brought forward into the cycle
are allowed to interact with each other in a manner similar to that for Program Buildup,
and the sums required for the calculation of the coefficients are accumulated as the
interaction proceeds. This serves as prologue to all phase calculations for the cycle;
note that the calculations include not only the phases of the new pickups but also the re-
calculation (""refinement') of phases for which approximate values are assumed known

at the start of the cycle..

Despite the strong similarity, the present interactive process and that for Buildup
have several points of difference. In the present program the entire set of vectors in
the basic set at the start of each cycle must be allowed to interact with itself rather
than utilizing the results of those interactions which have occurred in previous cycles;
this is because the latest phase information as brought forward from the immediately
previous cycle is used, as the interaction proceeds, to accumulate the sums for the
coefficients in (5. 1). Also, in LS Phases runs, prior knowledge, furnished by a running
of Buildup, of just which vectors will be in the basic set at the end of the cycle means
that, as the interaction proceeds, the program can retain information on these vectors
only, rather than on all vectors in the E deck.

Consistent with the fact that only the canonical forms of vectors are retained in the
computer memory, only those phases corresponding to canonical-form vectors are
stored. This indicates the following process: When a vector triple h, k, ~h -k is
identified as a contributor to the phase ¢;, a symmetry transformation is applied to
h to put it into canonical form (either of two such transformations may be equally ef-
fective if his not three dimensional), and the same transformation is applied to k and
—-h—k. Thus the stored phases ¢; and ¢_;_; must be transformed accordingly before
contributing to the accumulating sums for the coefficients.

Once the interactions for the cycle are complete and all sums required for the co-
efficients are accumulated in the computer storage, the actual solution to the problem of
minimizing ¢ is handled by a subroutine, Rev 2 (including Entry Srch). At the outset,

a table of sines and cosines is constructed for ¢; between 0 and 27 inclusive (actually

0 and 6. 32), at intervals of 0. 01. For each phase determination, the coefficients
appearing in (5. 1) are furnished to Rev 2, which brackets the one (or two) minimizing
¢ between successive entries in the sine-cosine table and finally uses parabolic inter-
polation. Corresponding to each minimizing ¢;, the subroutine returns the pair ¢, @,
where ¢y, is taken to be in the range —# to n. There should never be more than two
solutions to the minimizing problem. If three are found, the message “3PHI” is printed,
followed by the three ¢, ® pairs, and a normal return to the main program is taken.

AITITSCCYTIOND



8 ' HANCOCK, FISHER, AND HAUPTMAN

If there is a double solution, the program selects one; in the usual case of unequal
®, the selected solution is the one yielding the smaller ¢. If the other choice is desired
for a particular cycle and a particular vector, this may be accomplished by inserting
one Fortran statement for each such exception immediately following statement number
959 in the main program LS Phases. For this purpose, note that cycles are indexed in
the program by N, and vectors byL. Suppose as an example that a first running of LS
Phases indicates a multiple solution in which the alternative choice for ¢y is preferred;
and suppose that this occurs in cycle 5 and that the vector in question is the twelfth one
in the input E deck. Then the Fortran statement would be

IF(N .EQ. 5 .AND. L .EQ. 12) MULT SOLN = 2

As many such statements as desired may be included for the same or different cycles
and vectors. The exceptional choice of phase is made only for the specific cycle(s) and
vector(s) covered by the special statement(s); after each such execution, the program
automatically resets MULT SOLN to 1.

The need for the exceptional choice seldom occurs more than once or twice in an
entire run, if at all, and usually only in an early cycle.

The input required for LS Phases will be specified in detail later. An essential
part of this input is, of course, the cosine invariants. The calculation of these invari-
ants, not covered here, may be based on matching triples obtained by letting all vectors
corresponding to permissible phases interact with each other and rejecting all triples
whose A values are adjudged too small; or it may be based solely on the matching triples
output from Buildup. If one wishes to limit the triples output from Buildup to those
whose cosine invariants are actually to be used by LS Phases, it is essential that the
E deck input to Buildup include only vectors in the final basic set.

Another item of input concerns an option which the user of LS Phases has of re-
questing that any particular phase(s) be "forced" to prespecified value(s). By this is
meant that the value for the phase to be carried forward from the cycle for subsequent
phase calculations is set equal to the prespecified forcing value, although the actually
computed one will be printed and will also be used in the calculation of figures of merit
(to be described). The procedure for requesting such forcing will be detailed in Section
8. Usually, at least the three origin-determining phases will be forced to their original
values.

If for any reason the user wishes to output, at the conclusion of the run, the ®;
which would have been carried forward to subsequent cycles, he will find these phases
stored in the array PHI in consecutive locations starting in the first, and the correspond-
ing h k4 values stored in the same order in the arrays JB1, JB 2, and JB 3 respectively.
The phases stored in PHI include the result of any forcing.

As already noted, in each cycle not only are the phases for new pickups computed,
but also the phases brought forward into the cycle are recomputed ("'refined') on the
basis of phase information brought forward. It is usually desirable to include several
refinement cycles at the end of the LS Phases run, i.e., after all pickups are complete,
in which only previously approximated phases are computed. Also as many refinement
cycles as desired may be sandwiched in between the pickup cycles. In the case that one
or more refinement cycles are added at the end, it is important in the running of Pro-
gram Buildup that one such cycle be included as the final cycle of the run, since other-
wise some contributors, and hence some needed invariants, would not be identified. For
refinement cycles the number of new pickups is, of course, indicated as 0 in the input.

Since the quantity ¢ as defined by (4. 3) is minimized as a function of ¢;, and since
it gives a weighted average of the squared deviations from the invariants ci, its square
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root may be taken as a sort of rms value of the residuals in the least-squares process,
and its relative smallness may be taken as indicative of the reliability of the ¢ determi-
nation. The value of [® is accordingly included as part of the computer output for each
¢; . Furthermore, an overall cycle Figure of Merit is obtained by taking the square
root of the weighted average of all the ®'s obtained for the cycle, wherein the weight

for each ¢ is the associated SA; as defined by (3. 2) and following.

A3TITCCYIOND

A second Figure of Merit for each cycle is obtained on the basis of the ho £ phases
calculated during the cycle. Since such phases for the space group P2, are known to be
either 0 or =, it is meaningful to consider the squared deviation of the least-squares
result ¢; from the nearer of 0 or =; alternatively for the case of any h 0 £ which is
forced to a prespecified value, consider the squared deviation from such value. Calcu-
late the square root of the weighted average of all such squared deviations for the cycle
to obtain a second Figure of Merit; the weights used for the averaging are again the
$A; quantities. The result is output for each cycle, together with the number ofh04's
contributing.

At the conclusion of the cycle-by-cycle printout of phases, a "summary print'" is
output to present in a single table the results of the phase calculations. Each line of the
table contains the h k £ indices for some one of the phases, followed by the ¢, » output
cycle by cycle, starting with the last cycle and working backward through the cycle in
which the phase was first calculated, or until the input value ("'Cycle 0" value) is reached.
The maximum total number of phases printed per line is 25, and the user may reduce
this by changing the dimensioning as explained later. If the number of cycles, including
"Cycle 0", exceeds the dimensioning, one or more of the earlier cycles (1, 2, 3,...)
will be omitted from the print, but the input phases will always be included.

The computer input and output for LS Phases will be described in Section 8. Ap-
pendices C and D contain a listing of the Fortran program and information on a very brief
sample run; this run is a follow-up on the sample run used for Program Buildup. The
example chosen is hypothetical, without physical significance, and is intended to be il-
lustrative and tutorial only.

6. CAPACITY AND ARRAY DIMENSIONS

Programs Buildup and LS Phases were written for the CDC-3800 computer and as-
sume two memory banks of 32K each. In each program a BANK statement is used to
control partially the storage allocations. These statements may be modified as ex-
pedient, or omitted for other computers.

Program Buildup is currently dimensioned to allow up to 1500 reflections in the
E deck, 100 cycles, and 9000 unique matching vector triples, order not considered, for
the buildup and for subsequent use in the computation of the cosine invariants. The pro-
gram contains an array JSUB which is currently dimensioned at (12,29,18). This di-
mensioning restricts the maximum value of the index h to 11, and of k to 28; for the
index £ it restricts the difference between the extreme positive and extreme negative
values, i.e., the sum of the magnitudes of the two extremes, to 17.

Each of the above limitations may be changed, subject only to the availability of
storage, as follows:

(a) To change the maximum number of reflections allowed, in Common Block /11/
change each 1500 in the dimensioning to the new value.

(b) To change the maximum number of cycles allowed, in Common Block /22/ change
100 to the new value.
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(c) To change the maximum number of unique vector triples allowed, in Common
Block /44/ change each 9000 to the new value. (The program has a built-in safeguard
which prevents overflow in the case of the Common Block /44/ arrays. The excess
invariants, however, are not output in the invariants print and punch options. In uses
of Buildup in which the invariants are not to be output, e.g., when merely exploring
the buildup or establishing the buildup for use with the tangent formula, storage may be
saved if need be by drastically reducing the dimensioning in Common Block /44/.)

(d) To change the bounds on the indices h, k, and £, in Common Block /33/ the
dimensions of the three-dimensional array JSUB may be changed subject to the conditions
that

1. The first dimension, currently set at 12, must be at least as large as one
more than the maximum value of h,

2. The second dimension, currently set at 29, must be at least as large as
one more than the maximum value ofk,

3. The third dimension, currently set at 18, must be at least as large as one
more than the difference between the extreme positive and the extreme negative values
of £.

LS Phases is currently dimensioned to allow up to 300 reflections in the E deck, 100
cycles, and 9000 cosine invariants for use in the phase determinations. The program
contains an array JsuB (12,29, 18), which imposes the same restrictions on the index
ranges as the like-named array in Buildup, and an array SMRY PRNT (300, 25), which
limits to 25 the number of columns in the body of the table summarizing the phases as
computed cycle by cycle. Twenty-five is an upper bound set by the 136-character line
of the line printers at the NRL computing facility. This dimensioning of 25 columns may
be reduced to as low as 1 if need be to save storage, while perhaps sacrificing some
columns of print.

In judging the adequacy of the allowance for 300 reflections, bear in mind that those
for which phases are to be determined are assumed to have been identified by a prior
use of Buildup, which has also output an E deck including only such reflections. Usually,
only a relatively small number of phases, e.g., not more than 300, will be sought by the
least-squares technique.

The above limitations may be changed, subject only to the availability of storage, as
follows:

(a) To change the maximum number of reflections allowed, in Common Blocks
/111/ and /222/ change each 300 to the new value.

(b) To change the maximum number of cycles allowed, change the dimensioning of
the NROUT TBL in the DIMENSION statement from 100 to the desired value.

(c) To change the maximum number of invariants to be used in the phase determi-
nations, in Common Block /333/ change each 9000 to the new value. Note that the
maximum number applies only to the number used and not to the number read, since no
invariant is retained in the computer memory unless it is usable, i.e., unless the as-
sociated matching vector triple contains only vectors involved in the phase determina-
tions.

. (d) To change the bounds on the indices h, k, and 4, in Common Block /444/ the
dimensions of the three-dimensional array JSUB may be changed subject to the same
conditions as those itemized above for the JSUB array in Buildup.
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7. PROGRAM BUILDUP INPUT AND OUTPUT

Data Input to Program Buildup

1. Control card

Columns

1-5
6-10
11-15
16-20

21-25

26-30

31-35

36-40

41-45

46-50

51-55

56-60

61-65

66-75

FORMAT(131I5, F10)

NR E, the number of cards in the E deck.

MILLR 1, an upper bound on the first Miller index h.
MILLR 2, an upper bound on the second index k.
MILLR 3 LO, a lower bound on the third index £.

MILLR 3 HI, an upper bound on the third index 4. .
Suggestion—Verify the adequacy of the dimensioning for the JSUB array
in Common Block /33/:

First dimension > MILLR1+ 1

Second dimension > MILLR 2+ 1

Third dimension > MILLR 3 HI —MILLR 3LO + 1.

NR BV, the number of base vectors initially (i. e., the number whose
phases are assumed known).

NR QDS, the number of quadruples; these will be described below.
Since there is one quadruple for each cycle, NR QDS is also the number
of cycles.

MAX NR INV, the maximum number of invariants which storage alloca~
tions permit. This entry is the same as the dimensioning for the
JSER and A VALS arrays in Common Block /44/ (presently set at 9000).

K 1, used to indicate whether certain contributors, whose cosine in-
variants cannot be reliably computed, are to be disallowed. KK 1 = 1,
they will be disallowed; if K 1= 0, they will not.

K 2, the invariants print indicator. If K 2= 1, the matching triples
whose cosine invariants will be needed are printed; if X 2=0, they
will not be printed.

K 3, the invariants punch indicator. If K 3= 1, information similar to
that for the K 2 print option (above) will be output onto punched cards.

K 4, the base vectors punch indicator. If K 4= 1, the vectors in the
original basic set and those added, in the order of pickup, are punched,
together with their [E| values, for use with the program LS Phases.

K 5, the E-deck punch indicator. K K 5= 1, anE deck is punched,
consisting only of those vectors in the basic set at the end of the final
cycle (the same set as the one punched in the x4 option, but in the
E-deck format).

EEE FCTR,- the factor by which the product of the three E magnitudes
must be multiplied to produce A.

gITITCSYTIOND
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2. E Deck FORMAT( 5( 313, F7.4))

Includes all h, k, £, |E| values (five sets per card) which are in the original basic
set or are available for pickup.

3. Original base vectors FORMAT (315)

One base vector per card (one h k 4 triple)

4. Quadruples FORMAT (415)

One card for each cycle that is contemplated; on each card are specified four items:

a. Cycle number. This will be printed to identify the cycle. Cycles may be num-
bered 1,2,3,. .., or to suit the user.

b. Number of pickups to be sought in the cycle.

¢. Minimum number of contributors which a vector must have before being con-
sidered for pickup.

d. Minimum SA; for pickups.

Output from Program Buildup
For each cycle, results are output as follows:

'A. A two- or three-line summary giving
Cycle number (CY ).

The number of old base vectors, i.e., vectors in the basic set at the start of the cycle
(OLD BV_ ).

The number of new base vectors, i.e., vectors picked up during the cycle (NEWBV_ ).

The number of newly found contributors whose three vectors are all in the E deck
(NEWINE_ ).

The corresponding cumulative number (CUMINE_ ).

The number of contributors to the old base vectors (CTRBOLD BV_ ).
The number of contributors to the new base vectors (CTRBNEW BV ).
The sum of the two previous numbers (CTRBBOTH ).

The cumulative number of unique cosine invariants, order not considered, which will be
needed. This is omitted unless at least one of the "invariant options' is indicated,
i.e., unless at least one of the indicators K1, K 2, or K 3 has been set to 1. I the
number of invariants exceeds the maximum number permitted by the dimensioning, i.e.,
exceeds the input item MAX NR INV, this maximum number is printed, followed by
“PLUS’’. (CUM NR OF COSINE INVARIANTS_ ).

B. The body‘of the printout for the cycle, including one line of printout for each vector
in the basic set at the end of the cycle; new pickups are flagged by two asterisks. Listed
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are h, k, £, |E], number of the cycle in which picked up (0 denotes original basic set),
average A, i.e., 3A;/(number of contributors), number of contributors, and sA.

Optional outputs, each of which may be independently chosen, include:

A. A printout of the distinct matching vector triples, i.e., vector triples with distinct
canonical forms, order not considered, together with the three |E| values and A. This
listing is ordered on decreasing A, and the successive triples are numbered sequentially
in the final columns of print.

B. A deck of punched cards, FORMAT(914, 4F8.4, F9.5), giving hy, k;, £;, hy, ky, £, hy,
k3,13, ]E1], |Eo|, [E3l, [E;EoE3|, andAj; one card per triple. The information in this deck
is that needed by programs to determine the cosine invariants.

C. A deck of punched cards, FORMAT (315, F10.4), giving h, k,£, and [E| for the vectors
in the basic set at the end of the computation, i.e., original base vectors plus pickups;
one vector per card. This deck is for use as input to the LS Phases program, after
available phase information is added in a manner to be described.

D. AnE deck, FORMAT(5313, F7.4)), giving h, k, 4, and |E|, five sets per card, for the
vectors in the basic set at the end of the computation. This deck is intended primarily
as a replacement for the presumably more inclusive original E deck, in the event that it
is decided to rerun the program to punch the invariants needed; since the new E deck
would contain only the vectors in the final basic set, no unneeded invariants would be
punched. The vectors and |E| values are listed in the order in which they are added to
the basic set.

8. PROGRAM LS PHASES INPUT AND OUTPUT

Data Input to Program LS Phases

1. Control card FORMAT (715, F10)
Columns
1-5 NR CY TOT, the number of cycles to be run.
6-10 NR VORIG, the number of vectors in the original basic set.
11-15 MILLR 1, an upper bound on the first Miller index h.
16-20 MILLR 2, an upper bound on the second index k.
21-25 MILLR 3 LO, a lower bound on the third index, <.
26-30 MILLR 3 HI, an upper bound on the third index, 4.

Suggestion—Verify the adequacy of the dimensioning for the JSUB array
in Common Block /444/:

First dimension >MILLR1+ 1

Second dimension > MILLR 2+ 1

Third dimension >MILLR 3HI —MILLR 3LO + L.

31-35 N COL SMRY, the number of columns for which the SMRY PRNT array in
Common Block /222/ is actually dimensioned, i.e., the second sub-
script in the dimensioning. Must not exceed 25.

e

1IN0

e
&
&

ER|
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36-45 EEE FCTR, the factor by which the product of the three E magnitudes
must be multiplied to produce A.

2. Number out table FORMAT(1615)

For each cycle in turn, a number is specified to indicate how many vectors will be
in the basic set at the end of the cycle, as previously determined by Program
Buildup. Punched 16 per card.

3. Vectors, E magnitudes, and phase information FORMAT(315, F10.4, 2F15)

These are listed in the order in which the vectors are added to the basic set. The
following information is listed for each vector in the final basic set:

a. h k 4, |[E|.

b. Forcing information. If the phase ¢; as computed by the program is always to
be set (forced) to a specified value, enter that value, in radians and on the range —»
to ». If the phase ¢; is not to be so forced, enter 9.

c. K hk 4 is in the original basic set, enter the input phase ¢;, in radians and on
the range —7 to 7. Otherwise leave blank. Note that this deck is an optional output
(the X 4 option) from Program Buildup, except that the forcing information and the
input phases must be added.

4. Cosine invariants FORMAT(3(313, 1X), 24X, F9.5, F6, F8.4)

The three matching vectors are entered, one after the other, followed by A, the
number of contributors to the average upon which the cosine computation is based,
and the cosine itself. The invaviants deck must be followed by a cavd containing only
a 9 punch in col. 1.

Output from Program LS Phases
A. A preliminary output lists the input h, k, 4, [El, ¢, and forcing information. This out-

put is included mainly to show the two last-named items, as a matter of record and for
checking purposes.

B. Following is a cycle-by-cycle printout which lists for each phase the indices h k 4,
the E magnitude, .the number of contributors to the phase determination, >A;, average A,
i.e., 5A; /(number of contributors), and ¢ and [¢. In the case of two solutions,

the ¢ not selected and the corresponding V¢ are listed at the end of the line. Any new
additions to the basic set are flagged by two asterisks. The final items in the cycle
printout are the cycle Figure of Merit and the h 0 4 Figure of Merit, the latter followed
by the number of h 0 £ phases computed in the cycle and hence serving as contributors
to the Figure of Merit. :

C. A "summary print'" is output, following the cycle-by-cycle printout of phases, to
present in a single table the results of the phase calculations. This is described in some
detail near the end of Section 5.

D. The last output item reports on the cosine invariants. The total number read and
the number actually used in the computations are printed. This printout is followed by a
listing of the vector triples (each vector in canonical form) whose cosine invariants
could have been used in the calculations but which were missing from the input. The list
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will ordinarily be limited to those few triples whose corresponding cosines cannot be
reliably computed for the present space group; here it is of some interest in that it indi-
cates the number of such triples. It has, however, also proved useful in detecting un-
intentional omissions from the invariants deck.
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PROGRAM BUILDHUP

BANK s (O)Y o /44/
COMMON/11/LGEN( 1500+3) +EGEN(15C0)+LBSC(1500+3)+EBSC(1500)
X LBIG(1500+3)¢BIG SG A(IS00)YeSUM A(1500)s KNT(1500)
COMMON/22/JQDS (10044

COMMON/33/JSUB(12+294.18)

COMMON/44/JSER(9000)s A VALS(9000)

DIMENSION JVI(443)sJVVI443)+JVC(3)eJVVC(3)eJS(3)
FORMAT(1315+F10)

FORMAT(S(3134F7e4))

FORMAT(315)

FORMAT (415)

READ DATA AND INITIALIZE=~-

(1) READ THE CONTROL CARDes COUMPUTZ UPPER BOUNDS ON THE NUMGER OF
DISTINCT VALUES FOR EACH OF THE THREE MILLER INDICES. THESE wiLL
GIVE THE RANGES ON THE SUBSCRIPTS 70 BE USED FOR THE JSuB ARRAY.
COMPUTE ALSO JADDs WHICH WILL BE ADDED TO THE THIRD INDEX TO
ENSURE A POSITIVE RESULT FOR SUBSCRIPTING.

2) READ THE GENERAL E DECKs GIVING He Ks Lo AND THE MAGNITUDLE OF
Ee USING EACH Hs Ko L AS THE BASIS FOR SUBSCRIPTINGs STURE IN
JSUB ARRAY THE SUBSCRIPT INDICATING WHERE THE HeKsL+AND E VALULS
ARE TO BE FOUND,

(3) READ THE INPUT BASIC VECTORS INTO LBSCe SUPPLY THE CORRE-~
SPONDING E VALUES TO EBSCe

(4) READ THE QUADRUPLES GIVING FOR EACH CYCLE THE PICKUP QUOTAS
AND CRITERIA

(S) INITIALIZEs INCLUDING SOME FLAGGING IN THE KNT ARRAYe NUOTE
THAT THE KNT ARRAYWILL BE USED FOR STORING THL COUNTS ON THE NR OF
CONTRIBUTORSs BUT ALSO FLAGS WILL BE USED IN THIS ARRAY TO DENOTE
OLD BASE VECTORS AND CURRENT ADLDITIONS TO THE BASIC SETs WITH NR
OF CYCLE WHEN PICKEDe. I1 WILL INDEX THE CYCLE NRe

READ 150eNR Es MILLR1s MILLR2s MILLR3 LOs MILLR3 HIes NR BVeNR QDS
X MAX NR INVe Kle K2¢ K3s K4+ KS5e EEE FCTR

N1 = MILLR1 + 1
N2 = MILLRZ2 + 1
N3 = MILLR3 H! - MILLR3 LO + 1

JADD = ~MILLR3 LO + 1

READ 160s ((LGEN(IsJ)e J=1¢3)e EGEN(I}s I=1¢ NR E)
DO 185 I=14 NR E

SUM A(l)Yy = KNT(I} = O

DO 186 I1=1s NI

DO 186 J=14 N2

DO 186 K=1ls N3

JSUB(T1esJeKYy = O

DO 190 I=1s NR E

NX1 = LGEN(I+1) + 1
NX2 = LGEN(Is2) + 1
NX3 = LGEN(T1+3) + JADD

JSUB(NX1 +NX2+NX3) = 1

READ 170« ((LBSC(IeJd)s J=143)e I=1+ NR BV)

READ 1804 ((JADS(1sJ)sJ=144)s I=14¢ NR QDS)

JCUMNR = O

JBSO = 1 00 000 000 000OB $JBSN = 1 000 000B

MSK1 = 7777 000 000B S$MSK2 = 777 7778

DO 200 I=1+ NR BV

JTS = JSUB(LBSC(141)141+LBSC(1+2)41+LBSC(14+3)+JADD)
EBSC(I1)=EGEN(JTS)

KNT({JTS)=JB8SO

100
200
300
400
500
600
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
200¢
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5600
5700
5800
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11 = 1
JHI = 1

NR INV = O

N CY CUR = JODS(Ils1)

NRPK = JADS(1142)

MINKNT = JQDS(1143)

XMINSIG = JADS(1144)

NTBIGE = NNEWBV = NCOLDBV = NCNEWBV = O
INV OVFLO = SH

DO 220 I = 1sNR E

BIGSGA(1)=0

ALLOW THE BASIC SET TO INTERACT WITH ITSELF (LOOP EXTENDS THROUGH
STATEMENT 490)e THIS 1S DONEe FOR THE FIRST CYCLEs BY LETTING
EACH VECTOR INTERACT WITH THE FOUR (OR TwO) SYMMETRY-RELATED FORMS
OF EACH VECTOR THAT DOES NOT PRECEDE IT IN THe LIST OF BASE
VECTORSs TO PRODUCE IN EACH CASE A THIRD VECTORe IF THe CANONICAL
FORM OF THE LATTER IS IN THE E DECK THE VECTOR TRIPLE IS5 A CON-
TRIBUTOR TO THE THIRD VECTORs wHICH IS EITHER ALREADY IN THb
BASIC SET OR IS A POTENTIAL PICKUPe HENCE THE LOCATIONS RESERVED
FOR STATISTICS ON THIS THIRD VECTOR IN THE KNT AND SUM A ARRAYS
ARE INCREASED BY UNITY AND A RESPECTIVELY. (NOTE THAT IF THE
THIRD VECTOR IS NOT THREE-~DIMENSIONALs THEN THERE MAY BE TwO
EQUALLY EFFECTIVE SYMMETRY TRANSFORMATIONS wWHICH Wil PUT IT INTO
CANONICAL FORM,.)

FOR CYCLES AFTER THE FIRST CYCLE THE PROCEVURE 1S SIMILAR eXCEPT
THAT ONLY THE PICKUPS DURING THE IMMEDIATELY PREVIOUS CYCLE INTER=-
ACT WITH THE BASIC SET--SINCE THESE INTERACTIONS YIELD THE ONLY
CONTRIBUTORS NOT ALREADY DISCOVERED AND TABULATEDe '

DO 490 I=1+.NRBV

IF(I «GTe JHI) JHI = 1
DO 490 J=JHI «NRBV

JV1I = LBSC(Is1)

JV2 = LBSC(I+2)

JV3 = LBSC(1+3)

JV(1e1l) = £BSC(Is1)

JV(1e2) = LBSC(Js2)

JV(1+3) = LBSC(Je3)

JVI2e1)=JV(4e1)==UV(1s1)

JVI(3s1)=UVIi1sl)

JVI{44.2)=0V(1+2)

JVI2+2)2IV(342)==JV(14+2)

JV(3+3)=JV(1+3)

JVI(2e3)1=UV(443)==JV(1+3)

JVV(141)=JVVI(3e1)==JVI=JVI(ls1l)

JVVI(241)=0VVI4e1)==UVI+IVI1a1)

JVVI(142)=JdVVI(442)==JV2=JV(14+2)

JVV(242)=JVV(342)=2~JV2+IV(1+2)

JVVI(143)=JVV(3e¢3)==JVv3-JV(1:3)

JUV(243)2JVV(443)==JV3+IV(143)

IF(JV2 «EQe O oORs JV(142) oEGe O «OR.
JV1 oEQe O «ANDe JV3 oEQe O +ORs
JV(1s1l) ¢EQe O «ANDe JV(143) «EQe 0) 230s 240

NV = 2
GO TO 250
NV = 4

DO 490 K = 1ls NV
IF(JVVI(Ke1)) 290+ 260
IF(JVV(K+2) oLTe 0O) 270 280
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IF(JVVI(Ke3) oLTe 0) 3404+ 360
IF(JVV(Ke3) oLTe 0) 380+ 320
IF(JVVI(Ksl) oLTs 0) 300s 310
IF(JVVIKe2) oLTe 0O 340+ 380
IF(JVV(Ke2) oL Te 0O) 360+ 320
JTR = 1

JVC1=Juvil

JvCz=uve

JVC3=UV3

DO 330 KDX=143

JVCIKDX) =JVIKKDX)
JVVCIKDX) =JVV (K+KDX)

GO TO 400
JTR = 2

JVCl=-uvl
JvCa=<Jva
JVC3=-UV3

DO 350 KDX=143
JVCIKDX)==JVIKKDX)
JVVC(KDX) ==JVV (K 4KDX)
GO TO 400

JTR = 3

JVC1=Uvl

JVC2=-Jv2

JVC3=uV3

DO 370 KDX=13+2
SVC(KDX) =JV (KsKDX)
JVVC(KDX) =JVV (K KDX)
JVC(2)==UV(Ke2)
JVVC(2)==JVV (K. 2)

GO TO 400
JTR = 4

JVC1l=-JVv1
JVCa=uvz
JVC3==-UV3

DO 390 KDX=14342

JVCIKDX) ==JV(KsKDX )

JVVCIKDX)==JVVI(KsKDX)

JVC(2)y=UVI(Ke2)

JVVC(2)=UVVIK2)

CONTINUE

NX1=JVVC(1)+1

NX2=JVVC(2)+1

NX3=JvVvC(3)+JADD

IF(NX3 olEe O 2sORe NX1 oGTe N1 o¢ORe NX2 oGTe N2 sURe NX3 o+GTe N3)
x GO TO 490

IF(JSUB(NX1 eNX24NX3) ¢LEW 0) GO TO 490

IF(K1 oNEs 1) GO TO 410

IF(JV2 «EQe O oANDs JVI(Ke2) «EQes O +ANDe JVVIK42) +EQe 0) GO TO410
IF(JUV] oEQe JVIKs 1) «ANDe JV2 +EQe —=JVIKe2) oANDe
X JV3 4EQe JVIKe3Y) GO TO 490

IF(JV1 «EQe JVVIKe1) «ANDe JVZ2 oEUe =JVVIKe2) oAND,
X JV3 +EQe JVVI(KWL3)) GO TO 490

IF(JUVIKsl) oEQe JVVIKe1) ¢ANDe JVIKe2) oEGQGe —JVVIKIZ2) ANDe
X JVI(Ks3) 4EQe JVVIK3)) GO TO 490

EEE = EGEN(JSUB(NX1+NX2eNX3)) * EBSC(1) % EBSC(J)

A = EEE FCTR * FEE

IF NEITHER A COUNT NOR AN OUTPUT OF INVARIANTS IS CALLED FOR.
GO TO 460, OTHERWISE CONSTRUCT A COMPOSITE NUMBER TO REPRESENT
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THE PRESENT VECTOR TRIPLEe THIS NUMBER WILL CONTAIN THE THREE
SUBSCRIPTS DENOTING THE LUCATIUNS OF THE (CANUNICAL FURMS OF THe)
THREE MATCHING VECTORS—-THE THREE SUBSCRIPTS TU APPLAR 1IN URUER OF
INCREASING SIZE FOR UNIQUENESS. IF THIS COMPUSITE NUMbER Is NOT
ALREADY IN THE JUSER ARRAYs INCREASE THE COUNT ON INVARIANTSs ANU
STORE THE COMPOSITE AND A—-EXCEPT DO NOT STURE IF JSER 1S ALREADY
FILLEDs INSTEADs SET INV OVFLO SO THAT HEREAFTER THt CUMULATIVL
NUMBER OF INVARIANTS PRINTED wlLL BE INDICATEL A5 XXX PLUSe

IF(K]1 oNEe 1 ¢ANDe K2 sNEe 1 oeANDe K3 oNEe 1) GO TOU 460
JS(1) = JSUB(JVI+14JV2+14JV3+JADD)
JS(2) = JSUBIJIV 111 41eJVIL1a2)1+1eJV1e3)+JADD)

JS(3)=JSUB(JVVC (1) +1+JVVC (21414 JVVYC(3)+JADD)
DO 430 IX=1+2

LO=1X+1
DO 430 JUX=L0+3
IF(JSEIX) «LTe JSCIXD)) 420 430

JTS=JS(1X)

JS(IX)=JS (JIX)

JSUX)=JTS

CONT INUE

JS COMP=100000000B*JS(1)+10000B%JS{2)+JS(3)

DO 440 L=1s NR INV

IF(JS COMP (EG. JSER(L)) GO TO 460

CONT INUE

NR INV = NR INV + 1

IF(NR INV oLEs MAX NR INV) GO TO 450

NR INV = NR INV - 1

INV OVFLO = SH PLUS

GO TO 460

JSER(NR INV) = JS COMP

A VALS(NR INV) = A

NT BIG E = NT 8IG E + 1

SUMA(JSUBINX L sNX2eNX3)) = SUMA (JSUB (NX1eNX2eNX3)) + A

KNT(JSUB (NX1+NX24NX3)) = KNT(JSUBINX1sNX2eNX3)) + 1

IF (JVVC(2) +EQe O) 470s 490

IF(JTR +EQe 1 +ORe JTR oEQes 4) 480+ 490

IF (UVC2eEQeDeOReJVC 1 ¢EQReJIVC (1) s AND e —JVC2eEWeJVC (2) « AND
JVC3.EQ,JVC(3)) GO TN 490

Jvce=-uveca

JVC(2y==uve(2)

JTR=100

GO TO 400

CONTINUE

OF THE PROSPECTIVE PICKUPSe ELIMINATE THOSE WHICH DO NOT SATISFY
THE SPECIFIED CRITERIA FOR NUMBER OF CONTRIBUTORS (MIN KNT) AND
SIGMA A (XMIN SIG)e OF THE SURVIVORS TAKE THE QUUTA OF Niw PICK-
UPS FROM THOSE WITH LARGEST SUM OF A 1TINSOFAR AL THERE ARE LNUUGLH
(OTHERWISE THE QUOTA FOR THI> CYCLE 1S5 NOT FULLY ™MET) e

JCUMNR = JCUMNR + NTBIGE

DO 560 I=1+ NI

DO 560 J=1eN2

DO 560 K=14N3

JTMP = KNT(JSUB(1sJeK))

IF(JTMP <L Te JBSO) 500+ 510

TMP = SUMA(JSUB(T4JeK))

IF(JTMP «GEe MINKNT oANDe TMP oGEs XMINSIG)
JTMP = JUTMP +ANDe MSK2

NCOLDBV=NCOLDBV + JTMP

=
N -
@]
C -
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19900
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520

530
540

550

560

570

CHHR¥
580

590

CH*R¥*
600

610
620
630

640
650

HANCOCK, FISHER, AND HAUPTMAN

GO ToO 560

SMALL = 1E9

NSMALL = 1

DO 540 L=1+NRPK

IF(BIGSGA(L) «LTe SMALL) 530, 540
SMALL = BIGSGA(L)

NSMALL =L

CONT INUE

IF(TMP oGTe SMALL) 550« S60
BIGSGA(NSMALL)Y = TMP

LBIGI(NSMALL«1)=1

LBIG(NSMALL +2)=J

LBIGINSMALL +3) = K

CONTINUE

DO 570 L=1+NRPK

JF(BIGSGA(L) +EQe 0) GO TO 580
NNEWBV =NNEWBV + 1

ADD THE NEW PICKUPS TO THE BASIC SET,
JLO = NRBV

DO 590 I=1+NNEWBYV

JLO = JLO + 1

NX 1 LBIG(Is1)

NX2 LBIG(1+2)

NX3 LBIG(I+3)

LBSC(JLOW1} NX1-1

LBSC(JLOW2) Nx2-1

LBSC(JLOW3) NX3-JADD

EBSC(JLO) = EGEN(JSUB(NX1+NX2sNX3))
JTMP = KNT(JSUB(NX1 +NX2eNX3))

NCNEWBY = NCNEWBV + JTMP
KNT(JSUB(NX1+sNX24NX3)) = JTMP 4UBSN % N CY CUR

nwn

PRINT THE RESULTS FOR THE CURRENT CYCLE.

FORMAT ( IX¥CY*1443X*¥0OLD BV¥[S5+3X¥NEW BV¥14¢3Xs¥NEW IN E¥I623Xs
X *CUM IN E¥17)

FORMAT(6X+%#CTRB OLD BV¥#I6+6X s ¥CTRE NEW BV*1 67X+ #CTREB BUTH%17)
FORMAT (6X+¥CUM NR OF COSINE INVARIANTS* 164A5)

FORMAT ( /SX* INDICES E MAG. cYy AVG A CTRBS SsUM A¥%)
NCTOT = NCOLDBV + NCNEWBV .

PRINT 600y N CY CURe NR BVs N NEW Bvse N T BIG Es JCUM NR
PRINT 610+ NCOLDBVsNCNEWBV+NCTOT

IF(K1 o¢EQe 1 oORe K2 «EQs 1 «ORs K3 +EQe 1) PRINT 620s NR INVs
X INV OVFLO

PRINT 630

FORMAT (1X+314+F Qa4 0 ISsFBe24164FBe29 3H *%)
FORMAT(1Xs3141F 9644 15+FB42+164F842)

DO 680 K=1s N3

DO &80 I=1+ N1

DO 680 J=1s N2

JTS = JSUB(1sJeK)

JTMP=KNT (JTS)

IF(JTMP JLE. JBSN) GO TO 680

JTS1 = JTMP 4ANDe MSK2

JTS3 = JUTMP +ANDs MSKI1

JTS3 = JTS3 7/ JBSN
JHI = -1

JHZ2 = U-1

JH3 = K=JUADD

23500
23600
23700
23800
23900
24000
24100
24200
24300
24400
24500
24600
24700
<4800
24900
5000
25100
25200
25300
25400
25500
25600
25700
25800
25900
26000
26100
26200
26300
26400
<6500
26600
26700
26800
26900
27000
27100
27200
27200
27300
27400
27600
27700
27800
27900
28000
28100
28200
28300
28400
28500
28600
28700
28800
£8%00
29000
29100
29200
29300
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670

680

CH*N%

690

700

705

CH**%%

e NesNeNeNs!

720

730
740
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TMP = SUMA(JTS)

TS2 = TMP / JTSI

IF(JTMP +GEes JBSO) 660s 670

PRINT 650 ¢JH1 4 JH2+ JH31EGEN(JTS) ¢ JTS3e TS24 JTS1 e TMP
GO TO 680

PRINT 640¢JH1 4 JH24 JHI3sEGEN(JTS) ¢TSI+ TS2+JTS1 s TMP
KNT(JTS) = JTMP 4+ JBSO

CONTINUE

GO TO THE NEXT CYCLE IF APPROPRIATE,
JHI = NRBV + 1

NR BV = NR BV 4+ N NEW BV

IF(N NEW BV ¢GTe O «ORe NR PK «EQe 0) GO TO 700
FORMAT (# NO NEW BASE VECTORS*)

PRINT 690

GO TO 710

IF(I] <EQe NRQDS) GO TO 710

IT =11 4+ 1

PRINT 705

FORMAT(///7/7)

GO TO 210

IF MATCHING VECTOR TRIPLES ARE TO BE OUTPUTs ORDER THE A VALS AND
JSER ARRAYS ON Ae UNSCRAMBLE EACH ENTRY IN JSER TO YIELD THE SuB=-
SCRIPT FOR EACH OF THE THREE VECTORS. BY APPLYING SYMMETRY TRANS=—
FORMATIONS ADJUST THE SIGNS OF THE VECTOR INDICES TO YIELD THREE
VECTORS ADDING TO 0Os OUTPUT THESE MATCHING TRIPLES BY PRINTER
AND/OR PUNCH TOGETHER WITH E AND A DATA,

IF(K2 oNEe 1 ¢ANDe K3 oNEe 1) GO TO 840

IF(K2 «EQe 1) PRINT 720

FORMAT(1H1+11Xs¥MATCHING VECTOR TRIPLES WHOSE COSINE INVARIANTS WI
XLL BE NEEDED*//4X*¥VECTOR 1%¥6X¥VECTOR 2%¥6X*VECTOR 3%*6X*E 1¥5X*E 2%
XSX¥E 3*BX*A¥ EX*COUNTH)

NR INV M = NR INV - 1

DO 740 I=19 NR INV M

1 PL =1 + 1

DO 730 J=1 PLs NR INV

IF (A VALS(1) «GEe A VALS(J)) GO TO 730

TS = A VALS(I)

JTS = JSER(ID)

A VALS(I) = A VALS(J)

JSER(1) = JSER(J)

A VALS(J) = TS

JSER(J) = JUTS

CONTINUE

CONTINUVE

DO 830 I=1+ NR INV

JS 1 = JSER(I) ~/ 100000000B
JS 2 = JSER(1) , 10000B = JS 1 # 100008B
JS 3 = JUSER(1) oANDe 7777B

V141UV (391 )1 =LGEN(JIS241)
JVI(241)1=JV(441)= =LGEN(JIS241) +1 =1
JVI(142)=JV(442)=L.GEN(JIS2+2)
JV(242)=JV(342)= =LGEN(JS242) +1 -1
JV(143)=JV(3:3)=LGEN(JS2+3)
JV(2+3)2UV(443)= =LGEN(JS243) +1 -1
DO 780 J=1+4

JS(1) = =LGEN(JS1e1) = JV(Jel) +1 =1
JS(2) = =LGEN(JS142) =~ JV(Je2) +1 -1

23
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32500
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JS(3) = -LGEN(JS14¢3) = JV(Js3) +1 -1 35300
JUVC(1) = US(1) 35400
JVVC(2) = 1ABS(JS(2)) 35500
JVVCI(3)Y = JS(3) 35600
IF(JS(1)) 7504 760+ 770 35700

750 JVYVC(1) = =JVvVvC(1) 35800
JVVC(3) = =JVVC(3) + 1 -~ 1 35900

GO TO 770 36000

760 JVVC(3) = 1ABS(JVVC(3)) . 36100
770 IF(JUVVC(1) eNEe LGEN(JS3e1l) «0ORe JVVC(2) eNEs LGEN(JUS3e¢2) «ORe 36200
X JVVC(3) oNEe LGEN(JS343)) GO TO 780 36300

J USE = U ' 36400

GO TO 790 36500

780 CONT INUE 36600
790 El = EGEN(JS1) 36700
E2 = EGEN(JUS2) 36800

E3 = EGEN(JS3) ‘ ) 36900
EEE=E1*E2%E3 37000

A PRNT=EEE FCTR¥EEE 37100

IF(K2 «NEe 1) GO TO 810 37200

PRINT 800+ (LGEN(JS1+IP)sIP=143) s {JIV(JUSESIP)sIP=143) 37300

X (JS(IP)s IP=103)+E1eE2¢sE3¢A PRNT 1 37400

BOO0  FORMAT(1X+3(314+2X)s3FBad1F10e4418) . 37500
810 IF(K3 «NE. 1) GO TO 830 37600
PUNCH 820+ (LGEN(JUS1+IP)IsIP=143)e(JVI(JU USE«IP)2IP=143)0 37700

X (JSCIP)sIP=143)+E1+E2+E3+EEE+A PRNT 37800

820 FORMAT(O1444F8e4¢F9e5) 37900
830 CONTINUE 38000
38100

C*¥%% OUTPUT THE FINAL BASIC VECTORS WITH E VALUES IF CALLED FOR--IN A 38200
C FORMAT SUITABLE FOR LS PHASES INPUTe 38300
840 IF(K4 «NEs 1) GO TO 860 38400
PUNCH 850+ ((LBSC(Is+J)s J=1¢3)+EBSC(I)s I=1ls NR BV) 38500

850 FORMAT(3154F10.4) 38600
’ 38700

CH#¥%% OUTPUT AN E DECK CONTAINING ONLY THE FINAL BASIC VECTORS WITH 38800
c E VALUES IF CALLED FOR. 38900
860 IF(KS «NEe 1) GO TO 870 39000
PUNCH 160+((LBSC(TeJ)es J=1e31+EBSC(I)s I=1e NR BV) 39100

870 END 39200
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1. Printout of Input Data Cards for the Example

Listed are the control card, two cards giving the E deck of nine h,k,4,|E| entries,
five cards giving the input base vectors, and three cards giving the "quadruples.'" Note
that no pickups are scheduled for Cycle 3, which will be a refinement cycle. Note also
that the minimum number of contributors which a vector must have before being con-
sidered for pickup and the minimum sA; for pickups are set to 0 for each cycle (leaving
them blank would have had the same effect); thus the quota of pickups for each cycle is
certain of being met as long as there are enough new phases with even a single con-

tributor.

9 7 1 -9 1 S 3 9000 1 1 1 1 1 0e2146
0 1 1 20013 1 O =9 28268 2 0 0 Se3961 2 1 <1 344692 3 0 =9 29307
4 0 0 240433 4 1 =1 246041 & 1 =1 166771 7 O ~4 2.0657

W= JdPdPWNON
OW= 000 =0
lo]

o
[o Ne Mol
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2. Computer Output Print for the Example

Note that of the five input vectors,

27

three had no contributors in the first cycle; by

Cycle 3, only 7 0 4 had no contributors. The column headed ‘“‘CY” gives the number of
the cycle in which each of the vectors was added to the basic set; Cy 0 refers to the input.

cy 4 OLD Bv 5 NEW By i NEW [N B é
CTRB QLD BV 2 CTRB NEW BV i
CUM NR @F COSINE INVARIANTS 8
INDICES E MAG, cyY AVG A CTRBS SyM a
3 0 =9 2,9307 0 0,00 0 6,00
7 0 =4 2,0657 0 0,00 0 0,00
2 1 -1 3,4692 0 0,00 0 0,00
4 1 =1 2,6041 i 10,46 i 10,46 wu
2 0 0 5,3961 0 12,77 i 12,77
4 0 0 2,0433 0 12,77 i 12,77
cY e eLn 8v 6 NEW BY 3 NEW IN E 5
CTRB OLD BV 6 CYRB NEW BY 5
CUM NR @F C@SINE INVARIANTS ?
INDICES E MAG, cy AVG A CTRBS SyM™m A
3 0 =9 2,9307 0 0,00 0 0,00
7 0 =4 2,0657 0 0,00 0 0,00
2 1 1 3,4692 0 10,46 i 10,46
4 1 = 2,6041 b 10,46 i 10,46
[ 1 = 1,6771 2 3,80 e 7,61 o»
2 0 0 5,3963 0 11,23 .3 33,69
4 0 0 2,0433 0 12,77 1 12,77
0 1 1 2,0013 2 5,16 2 10,33 »x
cY 3 oLD Bv ° NEW By 0 NEW JN E 14
CTRB QLD BV 25 CYRB NEW BY 0
CUM NR GF COSINE INVARIANTS 7 ,
INDICES E MAG, cy AVG A CTRBS S8ym A
1 0 =9 2,82¢68 2 9,59 1 9,59
3 0 9 2,9307 0 9,59 i 9,59
7 0 =4 2,0687 0 0,00 0 0,00
2 1 -4 3,4692 0 7,02 3 21,05
4 1 =1 216041 1 5.93 3 17|80
6 1 =1 1,6771 2 3,80 e 764
2 ] 0 5,396% 0 8,68 8 69,48
4 0 0 2,0433 0 4,49 5 22,44
0 1 1 2,0013 2 5,16 2 10,33

MATCHING VECTOR TRIPLES WHBSE COSINE INVARIANTS

VECTER 1
2
®

DN O N
D200

0
0
9
i
o
1
4

VECTOR 2
2 0 0
2 1 8
2 0 0
w2 0 ]
4 1
4 0 0
Y ) 0 0

.
oh
L]

2
ub
b

4

VECTOR §
4 0

el

8
of
=1
sl
o4

]
P A T -

E 1
5,3061
35,3964
2,8268
2,001%
5,3961
3, 4692
2,0013

B2
97,3964
3,4692
5.39614
$.3961
2.6041
2,0433
2.,0433

CUM IN E 6
CTRR RGTH 3
Cum iN E 11
CTRR BOTH 11
cuM iN E 25
CTRS BOTH 25
WILL BE NEEDED
E S A
2,0‘33 12,7680
2,6041 10,4616
2.9307 9.5038
3,4892 2,0300
1,6771 85,0874
1,6771 2,5%12
2,6041 2,2082

COUNY

N ARG

AATITCCYTIOND
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3. Listing of the Punched Cards as Output by the Computer for the Example

(all optional)

HANCOCK, FISHER, AND HAUPTMAN

The first seven cards comprise the invariants deck; each card gives a matching
vector triple, the three |E| values, the product of the three |E|'s, and the A value. This
deck may serve as input to the cosine-determining program.

The nine cards with four quantities each give h, k, 4,|E| for the vectors in the basic

set at the end of the run.

combined E and phases deck for input to LS Phases.

This deck, when phase information is added, will serve as a

The final two cards comprise an E deck containing only the final set of base vectors
in the order in which added to the set and in a format suitable for use in rerunning
Buildup to punch only those invariants needed for LS Phases.

0
-1
-9
0
~4
-1
1
~9
~1
.0 543961
1 -1 2.6041

OMNMMNO—=MMN
== 0O =000
1
-0
4
BHPNNNN

= OPJdPLONND
“ O = OO0~ 0

o

2
4

2
0

0
-1
o]
o)
-1
o]
o]
53961
344692
249307
240433
240657
2460461
20013
28268
16771

OO0O=00=0

-3
-4
-3

2
-6
-6

a4

o]
-1

0
-1
-1
-1
-1

- s e O O

1 =1 3e¢4692 3 0

1 1 240013

1

0

543961
563961
248268
240013
563961
364692
240013

543961
364692
543961
543961
266041
20433
240433

240433 59.4966
206041 48,7491
29307 44,7040
364692 3744646
166771 235666
16771 11.8883
26041 10.6488

12476797
1046157
9459348
803991
5405739
2455123
2428524

~9 249307 4 0O O 20433 7 0 =4 20657
-9 2.8268 6

1

=1 146771
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PROGRAM LS PHASES
BANK s (O)e/111/6 7222/ /744474 LS PHASES
COMMON/111/JB1(300)+JB2(300) +JB3(300)+E(300)+PAR TBL(300)
X PHI FXD(300)s PHI(300)e SGA(300)e NR CTRB(300)s SG WK(300)
X S1(300)y S2(300)s C1(300)s C2(300)s C(300)
COMMON/222/ SMRY PRNT(300+25)
COMMON/333/ JSER(9000)s CK ARA(9000)s WK ARA(90Q00)
COMMON/ 444/ JSUB(12+429418)
DIMENSION NR OUT TBL(100)eJV TRIP(Y)e JY(443)9UVVI443) eNDX(3) s
X JS(3)s JUVC(3)s JVVCI3)eRTS(342)s NR CY PT(25)s MSNG SER(100)
200 FORMAT (7154 F10)
205 FORMAT(1615)
210 FORMAT (3154F10e442F15)
215 FORMAT(3(31341X)+24XEFQ45+F6+F844)

BEGIN THE READ OF DATA AND INITIAL 1 ZE~=

(1) COMPUTE UPPER BOUNDS ON THE NUMBER OF DISTINCT VALUES FOR BACH
OF THE THREE MILLER INDICESe THESE WILL GIVE RANGES ON THE SuUB-
SCRIPTS TO BE USED FOR THE JSUBXARRAYe COMPUTE AL.SO JADDe. WHICH
WILL BE ADDED TO THE THIRD INDEX TO ENSURE A POSITIVE RESULT FOR
SUBSCRIPTING.

(2) FOR EACH VECTOR IN THE FINA{L BASIC SETs USE H K L AS THE
BASIS FOR SUBSCRIPTING TO STORE IN JSUB ARRAY THE SUBSCRIPT INDI-
CATING WHERE THE DATA ON THIS VECTOR wlLL BE FOUNL IN THE VARIOUS
ARRAYS IN COMMON BLOCKS /111/ AND /2227,

READ 200+ NR CY TOTse NR V ORIGs MILLR 1s MILLR2s MILLR3 LO,
X MILLR3 Hles N COL SMRYs EEE FCTR

N1 = MILLR] + 1

NZ2 = MILLR2 + 1

N3 = MILLR3 HI - MILLR3 LO + 1

JADD = ~MILLR3 LO + 1

READ 205+ (NR OUT TBL(I)e I=1e¢ NR CY TOT)

NR VvV FIN = NR OUT TBL(NR CY TOT)

READ 210+ (JB1(1)eJUB2(1)sJB3(I)E(]I)ePHI FXD(Ide PHI(I)sI = 14
X NR V FIN) .

DO 250 I=1+ NI

DO 250 Jzlae N2

DO 250 K=14 N3
250 JSUB(1eJeK) = O

DO 255 .1=1s NR V FIN

255 JSUB(JBI(TI)I+14JB2( 1) +1+JB3(1)+JADD) = 1

(el ]
%
*
*
*

NOOCOOOOOO

>
o

READ INVARIANTS TO COMPLETE DATA INPUTe AFTER THE READ OF EACH
CARDs+ VERIFY THAT EACH OF THE THREE VECTORS IS IN THE E DECKeIF 50
CONSTRUCT A COMPOSITE NUMBER TO REPRESENT THE PRESENT VECTOR
TRIPLEs THIS NUMBER WILL CONTAIN THE THREE SUBSCRIPTS DENOTING
THE LOCATIONS OF THE (CANONICAL FORMS OF THE) THREE MATCHING
VECTORS-=THE THREE SUBSCRIPTS TO APPEAR IN ORDER OF INCREASING
SIZE FOR UNIQUENESSe STORE THE COMPOSITE NUMBER IN JUSERe STORE 1IN
CK ARA THE COSINE C SUB Ke STORE IN WK ARA THE WEIGHT w SuUb K
ASSOCIATED WITH THE COSINE VALUE=--THE PRODUCT OF A AND THE SGUARE
ROOT OF THE NUMBER OF CONTRIBUTORS.
I = NR CK RD = O
260 READ 2159 (JVTRIP(K)+sK=149) ¢ WK ARA TSe XNs CK ARA TS

IF(JV TRIP(1) «GE4 900) GO TO 275

NR CK RD = NR CK RD + 1

DO 264 K=z=1+3

DO 261 L=1+3
261 NDX(L) = JV TRIP(3*¥K-(3~L))

(g
*
*
*
*

s NeNeNeNeNaNeNsXs!

100
200
300
400
500
600
700
800
Y00

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

2200

2300

‘2400

2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5600
5700
5800
5900



262

263
2635
X

264

265

266

268

275

CHE*H%

280

C*®%H*

310

320
330

IF(NDX(2) oLTe 0}

IF(NDX (1))

NRL REPORT 7167

NDX(2) = =NDX(2)
2624 2634 2635

NDX(1) = =NDX(1)
NDX(3) = =NDX(3)

GO TO 2635

NDX(3) = IABS(NDX(3))

IF(NDX(1) ¢GTe MILLR]1 oORe NDX(2) ¢GTe MILLRZ2
GO TO 260

MILLR3 LO
JS(K) = JsuB

IF(JS(K) «EQe 0)

CONT INUE

DO 266 Ix=1
LO = IX+1

DO 266 JIX=L
IF(JUS(IUX) oL
JTS = JSiIX)
JSEIX)Yy = JS(
JS(JX)y= JTS
CONTINUE

JS COMP = 10
DO 268 M=14
IF(JS COMP
CONTINUE

1 =1 + 1
JSER(I)Y = JUS
WK ARA(1) =
CK ARA(1) =
IF(CK ARA(I)
IF(CK ARA(I)
GO TO 260

NR CK = 1

ORDER JSER,

1 UP = NR CK
Do 280 I=1,
JLO = I+1

DO 280 J=J

IF(JSER(1)
JTS = JUSER(1

eORe NDX(3) «GTe MILLR3 HI)
(NDX(1)+1e NDX(2)+1s NDX(3)+JADD)
GO TO 260

2

03 ‘
Te JSUIX))Y 265+ 266

JX)

0000000B*¥JS(1)+10000B*US(2)+JS5(3)
1

EQe JSER(M)) GO TO 260
cOoMpP
WK ARA TS # SQRT(XN)
CK ARA TS
eGTe 1e0) CK ARA(1I) = 140
eLTe —~1e60) CK ARA(I) = =140

CK ARAs AND WK ARA ON JSFRe
-1
1uP

LOs NR CK
LEe JSER(J))
)

GO TU 280

TSC = CK ARA(I)
TSW = wK ARA(I)
JSER(1) = JUSER(D)

CK ARA(I) = CK ARA(J)
WK ARA(T)Y = WK ARA(J)
JSER(J) = JUTS

CK ARA(J)Y = TSC

WK ARA(J) = TSw
CONTINUE

FOR EACH VECTOR IN THE E DECK CHECK THE PARITY OF Ke
FOR EVEN PARITY STORE Qe
FOR SYMMETRY TRANSFORMATIONS REGUIRING THE AULLITIUN OF Pl

PARITY STORE

PHASE IF K I
DO 330 =1
IF(JB2(I)s2%
PAR TBL(1) =
GO TO 330

PAR TRL(TI) =
CONTINUE

Pl IN PAR TBLe

S ODDs)

NR V FIN

2 eNEe JB2(1)) 310« 320
3614159 2654

o]

ol Te

FOR QLD
(USEDL LATER
TO THL
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FILL THE SMRY PRNT ARRAY WITH 99900000
NR COL. USD = MINO(NR CY TOT+1e« N COL SMRY)
DO 338 I=1s NR V FIN

DO 335 J=1s NR COL USD

SMRY PRNT(1+J) = ©9900000.

STORE INPUT BASE VECTORS IN SMRY PRNTe PRINT INPUT H K L & AND
PHASE INFOe CALL REV 2 TO SET UP ITS TRIG TABILE FOR LATER USE BY
REV 2 (ENTRY SRCH) IN FINDING VALUE(S) OF PHI WHICH MINIMIZE
CAPITAL PHI,

FORMAT (2X +* INDICES E MAG. INPUT PHI FORCING INFO¥*)
FORMAT(313s FOeds Flleds F159)

FORMAT(313s F3ets 11Xs F1549)

DO 355 I=19 NR V ORIG

SMRY PRNT(1s NR COL USD) = 100.0%PHI(I)

PRINT 340

DO 356 K=14 N3

DO 356 I=1+ N1

DO 356 J=1s N2

JP = JSUB(T4J4K)

IF(JP «FQe 0) GO TO 356

IF(JP «LEs NR Vv ORIG) 3555+ 3556

PRINT 345+JB1(JP) +JB2(JP) +JBI(JUPIIE(JIP)IPHI(JP) s PHI FXU(JIP)
GO TO 356

PRINT 350 JB1(JP) s JUB2(JP) « JBI(JIP)I+E(JIP) +PHI FXD(IP)
CONTINUE

NR MSNG = O

NR V IN = NR V ORIG

CALL REVZ2

DO 360 I=1s NI

DO 360 J=1. N2

DO 360 K=1s N3

JSUB(TeJeK)y = O

EXCEPT FOR FINAL OUTPUTSs RMNDR OF PROGRAM 1S N-LOOP FOR CYCLES
(THROUGH STATEMENT NR 978).

DO 978 N=1e« NR CY TOT

NR v OUT = NR OUT TBL((N)

DO 370 1=1+ NR V OUT

JSUB(JBL(1)+1+JB2(1)+1e JB3(I)+JADD) = 1

NR CTRB(I) = SG WK(I)=S1(1)=8S2(1)=C1(1)=C2(1)=C(I1)=5GA(I[)=0

ENTER 1 AND J LOOPSs WHEREIN I AND J REPRESENT 2 INTERACTING VCTRS
LET EACH VECTOR IN THE LIST OF BASE VECTORS INTERACT wlTH THE FOUR
(OR TwWO) SYMMETRY-RELATED FORMS OF EACH VECTOR THAT DOES NOT PRE-
CEDE IT IN THE LISTs TO PRODUCE IN EACH CASE A THIRD VECTORe IF

THE LATTER 1S IN THE E DECK THE VECTOR TRIPLE IS A CONTRIGUTOR TO
THE THIRD VECTOR--WHICH BY [ITS PRESENCE IN THE E DECK 1S GUARAN-

TEED TO BE ALREADY IN THE DBASIC SET OR A FUTURE PICKUPs THEN LO-

.CATIONS RESERVED FOR STATISTICS ON THIS THIRD VECTOR ARE UPDATED.

STATISTICS INCLUDE SUMS ACCUMULATING FOR USE IN COMPUTING
CONSTANTS IN THE DEFINITION OF CAPITAL PHI.

DO 952 I=1s NR V IN

DO 952 J=1s NR V IN

JV1 = JBLI(1)

Jva JB2(1)

JV3 = JB3(1)

JVIils1y = UB1(J)
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JV1e2) = UB2(J)Y
JVI(1+3) = JUB3(J)
JVI(3+1)=JV(1s1)
JVI(2:1)=JdV(4e1)==UV(1s1)

JV442)=dV(142)
JVI(242)=2JV(342)==JV(14+2)
JV(243)=JVI443)==JV{1+3)
JVV141)=JVVI3e1)==JV]1~-JV(lel)
JV(3+43)=UV(1+¢3)
JVV(241)=JVV 401 )==JVI+JIVI(1e1)
JVVI142)=JVVI(442)==U0V2~JV(14+2)
JVVI(242)=JVVI342)==JV2+JVI(14+2)
JVVI143)=JVVI343)==JV3-JVI(143)
JVVI2e3)=JVVI443)==JV3+IVIi1+3)
IF(Jv2 OEOO O eORe JVI(1e2) .EO. O «ORe

JV1 «EQe O oANDe JV3 oEQe O «ORo
JV1e1l) «EQe 0O ¢ANDe JV(143) oFEQe 0) 9104912
NV =2
GO TO 914
NV = 4
ENTER K LOOP FOR 4(0OR 2) VARIANTS OF J-TH VECTUOR.

DO 952 K = 1lasNV
IF(JVVIKa1)) 9224916
IF(JVVI(Ke2) oL Te 0) 9184920
IF(JVVI(K43) oLTe 0O) 930932
IF(JVV(Ke3) oLTe 0) 936+928
IF(JVVIKsl) oL Te C) 9244 926
IF(JVV(Ke2) oLTe 0) 930+936
IF(JVV(Ke2) oLTe 0) 9324928
JTR = 1

PHI 1 = PHI(I)

PHI J = PHI(J)

JvCi=uvi1

JVC2=UVv2

JVC3=Jv3

DO 929 KDX=1+3
JVCIKDX ) =JV(KsKDX)
JVVCIKDX ) =JVV (KsKDX)

GO TO 938

JTR=2

PHT T = —-PHIC(I)
PHI J = =PHI(J)
JVCl1==JVi

Jvces-uv2
JVC3=-Jv3

DO 931 KDx=143
JVCKDX) == UV (K1 KDX)
JVVC (KDX) ==JVV (K sKDX)
GO0 TO 938

JTR=3
PHI 1
PHI J
JVC1=UV1

JvCe=-uv2

JvC3=uv3

DO 934 KDX=1,342
JVC (KDX) =JV (K 4KDX)
JVVC(KDX ) =JVV (K +KDX)

-PHI(I) + PAR TBL(I)
~PHI(J) + PAR TBL (J)
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JVC(2)==IV(Kes2)

JVYVC(2)=~JVV(Ke2)

GO TO 938

JTR=4

PHI 1 = PHI(1) + PAR TBL(I)

PHI J = PHI(J) + PAR TBL(J)

JVCl==~JVv1

JvC2az=Jdv2

JVC3==-JV3

DO 937 KDX=14342

JVCIKDX) ==JV(KsKDX)

JVVC(IKDX)==JVV(K+KDX) .

JVC(2)=JVIKe2)

JVVC(2)=JVV (K2}

CONT INVE

NX1=JvVvC(1)+1

NX2=JVVC(2)+1

NX3=JVVC(3)+JADD R

IF(NX3 oLEe O osORe NX1 oGTe N1 oeORe NX2 ¢GTe N2 sORe NX3 oGTe N3)
GO TO 952

COMPUTE THE COMPOSITE NUMBER REPRESENTING THE PRESENT VECTOR

TRIPLE . SEARCH FOR IT IN THE JSER LIST OF SUCH COMPOSITES BY SUC-

CESSIVE HALVING OF THE LISTe IF NOT FOUND THE CORRESPONDING

COSINE INVARIANT 1S MISSING. '

JS(1) = JUSH = JSUBINX1 +NX2+NX3)
IF(JS +EQe 0O) GO TO 952

JS2) = 1

JS(3y = U

DO 9382 IX = 142

LO = IX + 1

DO 9382 JX = LOs 3

IF(JS(IX) oL.Te JS(IX)) 9381+ 9382
JTS = JSUIX)

JSOIX) = JS(JIX)
JSUX)y = JTS
CONT INUE

JS COMP = 1000000008 * JS(1) + 10000B¥#JS(2) + JS(3)
IF(JS COMP 4LTe JSER(1) eORe JS COMP oGTe JSER(NR CK)) GO TO 941
LO suB = 1

JUP SUB = NR CK

DO 9405 11=1420

MID suB = (LO suB + JUP suUB) 7 2

IF(JS COMP ~ JUSER(MID SUB)) 939 9409+ 9395
JUP SuB = MID sSuB -~ 1

IF(LO SUB «LEe JUP SUB) 9405s 941

LO suUB = MID SuB + 1

IF(LO SUB «LEs JUP SUB) 9405 941

CK = CK ARA(MID suB)

wK = wK ARA(MID suB)

GO TO 942

CONT INUE

IF(NR MSNG +EQe 100) GO TO 952

DO 9411 I1SP=1+ NR MSNG

IF(JS COMP (EQs MSNG SER(ISP))Y GO TO 952
CONTINUE

NR MSNG = NR MSNG + 1

MSNG SER(NR MSNG) = JS COMP

GO TO 952

IF(K «EQe 1) GO TO 945
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IF(K «FQe 2) GO TO 943
IF(K «EQe 3) GO TO 944
ARG = PHI I + PHI J + PAR TBLI(J)

GO TO 946

943 ARG = PHI I - PHI J
GO TO 946

944 ARG = PHI 1 = PHI J + PAR TBL(J)
GO TO 946

945 ARG = PHI 1 + PHI J
946 SIN ARG = SINF(ARG)
COS ARG = COSF(ARG)
NR CTRB(JS H) = NR CTRB(JSH) + 1
SG WK(JS H) = SG WKI(JS H) + WK
S1(JSH)=S1(JSH) +WK*CK*S INARG
S2(JSH) =S2( JSH) +WK* 24 0% S INARG*COS ARG
C1{JSH)=C1(JISH) +WK*CKXCOSARG
C2(JSH)I=C2  (JSH)+WK*(]140-2,0%SINARG®S INARG)
C(JSH) =C (JSH)I +WK* (0 e S+CK*CK)
SGA(JSH) =SGA( JSH)+EEE FCTR*E (1) #E(J)*E (JSH)
IF(JVVC(2) «EQe 0O) 9504952
950 IF(JTR oEQe 1 «ORe JTR oEle 4) 9514952
951 IF (UVC2eEQeOsOReJIVC ] eEUWeIVC (1) e ANDs=JVC2eEUeJVC (2) e AND e
X  JVC3.EQeJVC(3)) GO TO 952
IF(JTR «NE, 1) GO TO 9514
JTR =
PHI I
PHI J
GO TO
9514 JTR =
PHI 1 ~PHI(I)
PHI J —PHI(J)
GO TO 942
952 CONTINUF
c END K LOOP, END I AND J LOOPS.

w

-PHI (1} + PAR TBL(I)
-PHI(J) + PAR TBL(W)

42

LV ARV I

it

Cx¥#% NOW READY TO DO ALL THE PHI COMPUTATIONS FOR THE CURRENT CYCLESe
954 PRINT 9564+ N
956 FORMAT(///7% CYCLE#*13/5Xs
X*¥INDICES E MAGe CTRBS SUM A AVG A¥a4X.
X2 (*¥PH1 RMS OF RESIDUALS *))
958 FORMAT (3Xs3134F9e4¢15+:FBa24FBe3¢2(FIe442X0eF12e100¢3X})
9582 FORMAT(1Xe2H¥%43134F 904 415¢F8e2¢FB8e342(FQatts2XeF1261043X))
CY MERIT = SUM SG A = HZL MERIT = NR HZL = S HZL SGA = 0
DO 972 K=1+N3
DO 972 I=1sN1
DO 972 J=1sN2
L = JSUB(T1eJeK)
IF(L «EQs 0O) GO TO 972
SUM SG A = SUM SG A + SG A(L)
IF(NR CTRB(L) «FQGs O) 9584+ 9588
9584 A AV = 0O
RTS(1+41) = 99000,
RMS1 = 100,60
GO TO 969
9588 A AV = SG A(L) / NR CTRB(L)
CALL SRCH (S1(L)/SCGWK(L)+S2(L)/SGWK(L)+CLlIL)I/SGWK (L)«
X C2(L) /SGWKI(L)sC(L)/SGWKI(L) sKNTeRTS)
959 MULT SOLN = 1
Cx¥%% IF THERE IS A MULTIPLE SOLUTION TO THE MINIMIZING PROLLEM (lebe
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TwO PHI VALUES PRODUCING MINIMA OF CAPITAL PHI) THE PROGRAM WILL
SELECT ONE--NORMALLY THE ONE YIELDING THE SMALLER CAP PHI IN THE
USUAL CASE OF UNEQUAL CAP PHIe IF THE OTHER CHOICE IS DESIRED FOR
A PARTICULAR CYCLE "(INDEX N) AND A PARTICULAR VECTOR (INDEX L)
INSERT FORTRAN STATEMENT HERE AS EXPLAINED IN REPORT.

IF(KNT «EGe 1) GO TO 966

IF(MULT SOLN oEQe 1) 960+ 962

TS1 = RTS(142)

TS2 = RTS(2+42)

GO TO 964

TSI = RTS(242)

TS2 = RTS(1.2)

IF(TS1 «LTe TS2) GO TO 966

IF(TS1 «EQe TS2 «ANDe MULT SOLN 4EWs 2) GO TO 966

TSl = RTS(1+1)

TS2 = RTS(1+2)

RTS(1s1) = RTS(241)
RTS(1+42) = RTS(242)
RTS(2+.1) = TS1
RTS(2+2) = TS2

PHI(L)Y = RTS(14+1)

IF(PHI FXD(L) «GTe S540) GO TO 9662

PHI(L) = PHI FXD(L)

IF(JB2(L) «NEe O} GO TO 9666

TS = ABSF(RTS(141) = PHI(L))

IF(TS oGTe 3.141592654) TS = 6.283185307 - TS

GO TO 9665

IF(JB2(L) «NEe 0) GO TO 9666

TS = ABSF(RTS(141))

IF(TS «GEe 14570796327) TS = 3,141592654 - TS

HZL MERIT = HZL MERIT + SGA(L)*TS*TS

S HZL SGA = S HZL SGA + SGA(L)

NR HZL = NR HZL 4+ 1

IF(KNT «EGe 1) GO TO 968

IF(RTS(142) oL.Te O oANDe RTS(142) «GTe —040000000%5) RTS(1+2)=0

IF(RTS(242) oLTe O o¢ANDs RTS(242) ¢GTe =0600000005) RTS(2+2)=0

RMS1 = SQRT (RTS(1+2)) ‘

RMS2 SQRT (RTS(242))

IF(L «GTe NR V IN) GO TO 967

PRINT 958+ JB1(L)aJB2(L) «JB3(L) +E(L)+NRCTRB(L) +SGA(L) sAAV S
RTS(141) RMS14sRTS(2+1) ¢RMS2

GO TO 970

PRINT 9582s JB1(L) +JB2(L)+JB3(L)IIE(L) sNRCTRB(L) +SGA(L) s AAV
RTS(1s1)s RMS1sRTS(241)4sRMS2

GO TO 970

IF(RTS(142) oLTe O ¢ANDe RTS(142) oGTe ~0e00000005) RTS(1+2)=0

RMS1=SQRTF(RTS(1+2))

IF(L «GTe NR V IN) 9689+ 969

PRINT 9582¢ JB1(L)+JB2(L) +JB3(L)sE(L) s NRCTRB(L) +SGA(L) s AAV Y

13

RTS(141)0 RMS 1

GO TO 970

PRINT 958+ JB1(L) ¢ JB2(L) ¢ JB3 (L) +EL(L)sNRCTRBI(L)sSGA(L)sAAV,
RTS(1e1) RMS 1

CYy MERIT = CY MERIT 4+ SGA(L)I*¥RTS(1+2)
JTS = NR Cy TOT 4+ 1 - N

IF(JTS «GTe NR COL USD =~ 1) GO TO 972
SMRY PRNT(LeJTS) = 1000 % RTS(1e1)
CONT INUE

CY MERIT = SQRT (CYMERIT/SUM SG A)
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HZL MERIT = SQRT (HZL MERIT/S HZL SGA)

o974 CONTINUE

976 FORMAT(1HOs ¥CYCLE FI1G OF MERIT*F96)
PRINT 976+ CY MERIT

977 FORMAT (1 Xs#HOL FIG OF MERIT ¥4 FOeb* (¥]2% HUL CONTRIBUTORS) %)
PRINT 977+ HZL MERITs NR HZL

978 NR V IN = NR V OUT

CH¥¥¥ PRINT A SUMMARY OF PHASES COMPUTEDe
Q79 FORMAT (1H1 ¢ 54X ¢ #SUMMARY OF COMPUTED PHASES¥*/11Xe
X*COLUMN HEADINGS GIVE CYCLE NUMBER (CYCLE 0 DLNOTLS INPUT)s AND
XBULAR ENTRIES GIVE PHI (RADIANS) MULTIPLIED BY 100%/)
9795 FORMAT(10Xe25(3Xe12))
9796 FORMAT(1HO)
98C FORMAT (1Xel12¢21342Xe25F5)
PRINT 979
NR CY PT(1) = NR CY TOT
DO 981 I=2¢ NR COL USD
981 NR CY PT(I) = NR CY PT(I-1) -1
NR CY PT(NR COL UsSD) = 0O
PRINT 9795s (NR CY PT(I)s I=1s NR COL USD)
PRINT 9796
DO 986 K=1s N3
DO 986 I=1« NI
DO 986 J=1s N2
L = JSUB(1sJsK)
IF(L «EQe 0) GO TO 986
N = 0
DO 982 M=1es NR COL USD
IF(SMRY PRNT(L+M) «GEe F00000004s) GO TO 984
82 N = N + 1
984 PRINT 980+ JB1 (L) +JB2(L) +JBI3(L) ¢« (SMRY PRNT(LWNPT)+NPT=] s/N)
o986 CONTINUF

CH*¥% PRINT SUMMARY RE INVARIANTS—~=-NUMBER OF COSINE INVARIANTS READS

C NUMBER USABLE AND USEDs AND A LIST OF ANY MISSING—-THE LATTER
C SPECIFIED BY GIVING CANONICAL FORMS OF THE THREE MATCHING VECTORS
C AND VALUE OF A.

988 FORMAT (1Xs///7/+17% COSINES WERE READX*/1Xe16
X * COSINES ENTERED INTO THE COMPUTAT ION¥*)
PRINT 988+ NR CK RDes NR CK
IF(NR MSNG «EQe 0) GO TO 998
DO 990 I=1s NR MSNG
IF(1 «EQe 1) PRINT 989
989 FORMAT (1HO*¥COSINES CORRESPONDING TO THESE VECTOR TRIPLES (FOLLOWE
XD BY A VALUES) WERE MISSING FROM THE INPUTH#/18Xe¥(IF MORE THAN 100
X ARE MISSINGe ONLY THE FIRST 100 ARE PRINTED)¥*)

JS(1y = MSNG SER(1) ~/ 1000000008
JS(2) = MSNG SER(1) «ANDe 777700008
JS(2y = JsS(2) / 1D000R

JS(3) = MSNG SER(1) eANDe 77778

A PRNT = EEE FCTR # E(JS(1))*E(JS(2))*¥E(JS(3))
0895 FORMAT(3(313+5X)FIe6) :

PRINT 98954JB1(JS(1))eJB2(JS(1))eJB3(JS(1))eIB1(JIS(2))¢JB2(JS(2))

X JB3(JS(2))+JB1(JSI3)) +IB2(JS(3))+JIB3(JIS(3))s A PRNT
990 CONT INUE
298" END

SUBROUTINE REV 2(514524C14C2+CNSTIKNTIRTS)
CH#*%¥ ASSUME A SINGLE PRELIMINARY CALL HAS BEEN MADE TO REV 2 TO SET UP

37

41400
41500
41600
41700
41800
41900
42000
42100
42200
42300
42400
42500
42600
42700
42800
42900
43000
43100
43200
43300
43400
43500
43600
43700
43800
43900
44000
44100
44200
44300
44400
44500
44600
44700
44800
44900
45000
45100
45200
45300
45400
45500
45600
45700
45800
45900
46000
46100
46200
46300
46400
46500
46600
46700
46800
46900
47000
47100
47200

L niey
=
-

=
e =13
Lokl
4t
fomn

o
re
L]



38

O0O0O0000

900

910

915
o918

920
9z2

925
930

Q4cC

045

950

955
260

265
Q66

HANCOCK, FISHER, AND HAUPTMAN

A SINE AND COSINE TABLE ON THE RANGE O TO 2%Ple THEN CALLS TO
ENTRY SRCH WILL FIND VALUE(S) OF PHI wWHICH MINIMIZE CAPITAL PHI--
FIRST By BRACKETING THE MINIMA AND THEN BY PARABOLIC INTERPOLATION
SUBROUTINE SRCH SHOULD NEVER FIND MORE THAN TwWO PHI VALUES. IF IT
FINDS THREEs THE MESSAGE 3 PHI IS OUTPUT FOLLOWED BY THE THREE
PHI+ CAPITAL PHI PAIRSe A NORMAL EXIT IS THEN TAKENe

DIMENSION RTS(342) e TRG(2+633) s VAL(3)

EVAL (CN)=SCN*S# (RAXS+RB*C+RC) + RD*C + RE

DO 900 J=1+633

TRG(14J) = SINF((J=1)%0e01)

TRG(2¢J) = COSF((J=1)%0e01)

RE TURN

ENTRY SRCH

KNT = 0O

RTS(1+1) = RTS(2+1) = RTS(3s1) = 5060
RA==C2$RB=~S2BRC=2¢0*S1SRD=-2. O*¥C1BRE=CNST+0+5¥C2

NO 9Us =142

S = TRG(1+1)

C = TRG(2+1)

VAL(14+1) = EVAL(1,0)

IF(VAL(3) «GTe VAL(2)) 910+ 915

ASSIGN 920 TO LSw

GO TO 918

ASSIGN 925 TO LSsw

DO 965 K=34633

VAL (1) VAL (2)

VAL (2) VAL ( 3)

S=TRG(14K)

C=TRG(2+K)

VAL (3) = EVAL(1.0)

GO TO LSWs(9204925)

IF (VAL(3) «GTe VAL(2)) 9651922

ASSIGN 925 TO LSw

GO TO 965

IF (VAL(3) +GEe VAL(2)) 930+ 965

ASSIGN 920 TO LSW

A = (VAL(1) + VAL(3) —2.0%VAL(2))¥%¥0e5
B = (VAL(3) ~ VAL(1)) ¥ 0.5
R = =B / (2.0%A)

ANGL = (K-2 + R) ¥ 0401

IF(ANGL oGTe 36141592654) ANGL = ANGL~6.283185307
KNTP = KNT + 1

DO 945 J=1+KNTP

IF(ABS(ANGL = RTS(J)) oLTe Ol ) 9654945
CONTINUE

KNT = KNT+1

RTS(KNTe«1) = ANGL

S = SINF{ANGL)

C = COSF (ANGL) ‘
RTS(KNT.2) = EVAL(1e0)

IF(KNT «GTe 2) 955s 965

PRINT 9604+ ((RTS(MeN)eN=1+42)eM=14+3)
FORMAT (1H o+ %3 PHI# 6F1246)

GO TO 966

CONTINUE

CONTINUE

END

47300
47400
47500
47600
47700
47800
47900
48000
48100
48200
48300
48400
48500
48600
48700
48800
48900
49000
49100
49200
49300

‘49400

49500
49600
49700
49800
49900
50000
50100
50200
50300
50400
50500
50600
50700
50800
50900
51000
51100
51200
51300
51400
51500
51600
51700
51800
51900
52000
52100
52200
52300
52400
52500
52600
52700
52800
52900
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HANCOCK, FISHER, AND HAUPTMAN

1. Printout of the Input Data Cards for the Example

The first card listed is the control card, and the second card gives the "number out"

for each cycle, i.e., the number of vectors in the basic set at the end of the cycle.

The next nine cards comprise the E deck as output by the Buildup example, except
that the forcing information and input phases have been added. Each input ¢ is 0, except

$200 3

the only ones to be forced are the three taken as origin determining.

The final deck, with six cards, is the invariants deck, followed by a card with a 9
punch in the first column to signal the end of the deck. The Buildup example had called
for seven invariants, but one has been omitted from this deck, for illustrative purposes.

3 5 7
6 =3 9
2 o) 0
2 1 =1
3 0 -9
4 0 0
7 0 -4
4 1 -1
o) 1 1
1 o -9
6 1 -t

2 o o =2

1 0 -9 2

0o 1 1 =2

2 0 0 &

2 1 -1 &

0 1 1 =-a

Q0= 00~

' i
O Ow OO »~

1 -9

S5e3961
344692
269307
240433
240657
2+6041
240013
248268
166771
-4 =1 1
-3 0 9
2 -1 -1
-6 =1 1
-6 -1 1
4 -1 -1

25

02146

9 3141592654

0 0

0 0

Q o]

0 o]

=

9

9

9
10446160
9459350
8403990
5405740
255120
228520

9149
3717
10195
7613
7581
8663

10000
0e8424
09629
10000
10000
10000
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2. Computer Output for the Example

Asterisks in the summary of computed phases (see next page) indicate that ¢,
in the input basic set, cannot yet be recomputed because it has no contributors. By
Cycle 3, only ¢ ,07 1S in this category.

The print of missing cosines exhibits the fact that one is missing; this particular
invariant could have been computed, but was omitted for illustration.

INDICES E MAG, INPUT PHI1
1 0 =9 2,8268
3 0 9 2,9307 @,0000
7 0 =4 2,0687 0.0000
2 1 =1 3,4692 90,0000
4 1«4 2,6048
6 1 et 41,6774
2 0 0o %,3944 F.1416
4 0 o 2,0433 0.0000
0 1 12,0013
CYCLE 1
INDICES E MAG. CTRBS
3 0 «9 2,9307 0
7 0 =4 2,06%7 0
2 41 e 3,4692 0
s 4 4 e 2,6044 1
2 0 0 5,3964 0
6 06 02,0433 0
CYCLE FIG ©F MER]T 0,000000
MEL FIG ©F MER]? 0.,000000
CYCLE 2
INDIGES E MAG, CTRBS
e 1 0 =9 2,8248 1
3 0«9 2,0307 0
7 0 a4 2,0657 0
2 1 e 3,4692 1
4 1 ey 2,6041 1
se 6 4 w1 1,677% 2
2 0 0 5,3964 2
4 0 p 2,0433 0
s 0 ¢ 12,0013 2
CYCLE FI!G oF MER]T 0,008763
HWEL F1G @F MER]TY 0,359039
CYCLE 3
INDICES E MAG, CTRBS
1 0 ¥ 2,8248 i
3 0«9 2,9307 1
7 0 «4 2,0687 0
2 1 . 3,4692 3
4 4 e 2,60414 3
6 4 et 1,6774 2
2 0 0 5,391 7
4 0 0 2,0433 4
0 4 1 2,0013 2

CYCLE FIG OF MERIT 0,007451

HeL FlG or

MER]T

SUM
0,
0.
0,

10,
0,
0,

FORCING INFO
9,000000000
0.000000000
0.,000000000
0.,000000000
9,000000000
9,000000000
9.000000000
9,000000000
9,000001000

A AVG A
00 0,000es
00 0,000
00 0,000e»
46 10,462
60 0,000ee
00 0,000se

PH}
rheenss
LAY T
LI LT EEY
»3,1404
(2 A XY E T
(22X XY Y]

{ 0 HOL CONTRIBUTORS)

SUM & AVG A
9.99 9,593
0,00 0,000es
0,00 0,0N0as

10,46 10,462

10,46 10,462
7.6 3,804

20,92 10,462
0,00 00,0008

10,33 5,163

PH1
2.9726
“sebase
“rssnun
0,001
=3,1404
0.0018
3,404
LT
0,2433

( 2 HO[ CONTRIBUTY®ORS)

SUM A AVG A
9,5 9,593
9,59 9,593
0,00 0,0008»

21,08 7,048

17,89 5,935
7,61 3,804

56,74 8,102
9,87 2,448

10,33 5,163

PH1
2,374
1,1360

(A2 221}
=0,0306
«3,0874
0,0017
31416
0,0000
0,2428

0,433845 ( 4 KHEL CONTRIBUTORS)

RMS ©F RESIDUALS

aesessatnsen
sesRsseinEnn
I T Y YT |
0.0000000000
SRR REAS RGN
LIS ITTI ]

RMS @F RESIDUALS

0.0000332358
SHNEBIBBISE
(22X 3221 Y 3T
0,0000053048
0.0000000009
0.0000076294
0,0000053948
Shbdsoudsaan

0,0849321314

RMS @F RESIDUALS

0.0000396435
0,000029548%
TR T PTYY
0.0003799028
0,005564945¢
0,0000076294
0.0043477588
0.02040018902
0.,0148173684

PHl RMS 6F RESIDUALS

PH1
=2,8726

w0,242%

PN
»2,3738
=0,0012

=0,2433

RMS ©F RESIDUALS

0,0000414382

0,0151635%613

RMS er RESIDUALS

0,0000414382
0,0000373762

0,0152791383

e
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CESINES CORRESPONDING T@ TWESE VECTAR TRIPLES (FOLLBWED BY A VALUES) WERE MISSING FREM THE INPUT

2

OO OOO

0

=9
L1
wd
=1
L}
=1

COLUMN HEADINGS GIVE CYCLE NUMBER (CYELE 0 DENDTES INPUT), AND TABULAR ENTRIES GIVE PHI (RADIANS) MULTIPLIED BY 3po

M é 1

27  2%7
{1deseengegue
SHSKEREIREIPI P
3 Osepes
w306 »314 314

0 0
344 aJidenyes
Devesegnyay

24 24

6 COSINES WERE READ
6 COSINES ENTERED INTO THE COMPUTATION

0

0

314
0

SUMMARY QF COMPUTED PMWASES

(IF MBRE THAN 4100 ARE MISSING, ONLY THE FIRST 400 ARE PRINTED)

2 ¢ 0

4

0

0

12,747969
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