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ABSTRACT

A method for computing the presence function for an incompletely

specified multiple-output Boolean function has been derived. This method,

which is a generalization of Ghazala's algorithm for computing the presence

function for a completely specified single-output Boolean function, does not

require the use of a table of combinations (unless the function is originally

specified by a table of combinations) and does riot involve the construction

of a basic cell matrix. Thus the use of this method in computer programs

which determine minimal (or at least irredundant) covers for incompletely

specified Boolean functions may in some cases result in a saving of execution

time and memory space required.
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AN EXTENSION OF GHAZALA'S METHOD TO
INCOMPLETELY SPECIFIED MULTIPLE-OUTPUT FUNCTIONS

NOTATION

Symbols from Boolean Algebra and Set Theory

V
lub

A
glb

E/T

{Xl, X2i - . .> Xn} 

(xIC }

C
C

Boolean "or"
Iterated Boolean "or"
Boolean "or" of the members of a set ("least upper bound")
Boolean "and" (also indicated by the concatenation of expressions)
Iterated Boolean "and"
Boolean "and" of the members of a set ("greatest lower bound")
Boolean "not" (e.g., a' means "not a")
Boolean implication
Boolean "ratio" of the expression E to the term T (E/T is equivalent to E evaluated with

T set equal to l; see Ref. I )
The set of objects x1 ,x 2 , . .Xn

The set of objects x such that condition C is satisfied
The empty set
"(which) is a subset of"
"(which) is a member of"
"(which) is not a member of"
Set "difference" (A - B = {x IxEA and x B}J)

Meta-Language Symbols

V
5:
9
.

"implies"
"if and only if"
"is identically equal to"
"for every"
"such that"
"there exists (a)"
"end of proof'

AN APPROACH USING QUINE'S DISPENSABILITY TEST AS ITS BASIS

Once the prime implicants of a Boolean function have been found, the implication relations among them maybe used to find all of the irredundant covers for that function (1, 2). It is desirable that the method used to find
the implication relations not require a prime-implicant table, because the use of a prime implicant table requires
that the function be expanded into canonical form. Chazala has presented such a method for the completely speci-
fied case (1). The extension of his method to the incompletely specified case requires an extension of Quine's test
for dispensability (3):

Definitions: Let f be an incompletely specified Boolean function of n Boolean variables xnyXnx xl-
Let f'max be a Boolean function such that fmax(xn, xn-1 , -. ., xl ) = I if and only if (xn, Xn-1, .-. , xi) is either a
"I" vertex or a don't care vertex of f, and let { 02, . - ., p} be the set of all prime implicants of fa,. Let fd4be a Boolean function such that fdc(xn, xn1 1, . . ., xl) = I if and only if (xn, Xn, -..., x) is a don't care vertex of
f, and let {A1, A2 , . .,A} be the set of all prime implicants of fd,. Let A C {01, 02, . . ., Ape such that A covers
all of the "1 " vertices of f, let Voi be the disjunction of those and only those Os that are in A, and let B = A - [OilA

I



2 JOHN R. MILLER

for a given O '2 A. Then Oi is said to be dispensable with respect to A if and only if B covers all the "I"' vertices of

f. Let Vop be the disjunction of those and only those O which are in B.
B

Theorem (a generalization of Quine's dispensability theorem): Oi C A is dispensable with respect to A if and

only if

0j -V0itAl +A2 t+Aq,where B =A-{@,
B

proof: Suppose @j- V@ +Al A2 + .+Aq then(usingg-h-h=g+ht
B

V Oi + A + A2 + + 'q V Oi + Oi + Ai + A-Z +* + Lq =V 01 t- Al + 62 + -+ 4q.

But A covers all of the "I - vertices of f, whereas {EA, A2, . - covers none of them. Thus the above equation

implies that B covers all the "1" vertices of f. This completes the sufficiency part of the proof.

Now suppose that B covers all the "I"- vertices of f (i.e., suppose Oj is dispensable). Then

V 0ii t Al Z\2 +t * - -Aq =f,,ax SVoi + Al + A2 + --- + 4q V Oi + 0j - Ai + A2 + + Lq-

Thus(from h = g + h - g - h),

i -Voi + Al t A2 + + A. -
B

The application of this theorem to the finding of implication relations among the prime implicants makes use

of a ratio chart like that of Ghazala (1) except that q additional columns, corresponding to Al, A2 , . A . q are

added. Just as in Ghazala's method for the completely specified case, "presence factors" ul, 02. -. . ap are de-

fined corresponding to 41, @2,2 . ., @p respectively. The presence factor c1 is I if Oi is present in a given cover

and is 0 otherwise. In addition, new quantities 6t, 2,. . ., r3q, which might be called "pseudo presence factors,"

are defined corresponding respectively to A1. A2 , - ... , Aq. The pseudo presence factors are handled exactly as the

presence factors are in deriving implication relations from rows of the ratio chart. For example, sttppose that in row

iof the ratio chart, the only irreduLndant disjunctions of ratios which are equal to I are .- + -s and .t .

Then the implication relation obtained from this row of the ratio chart would be

This relation states that if Oi is absent from a given cover, then either both @k and l.. must be present or 0

must be present. Note that @9 does not cover all of the "1" vertices of fmax covered by 0j, but those which it

fails to cover correspond to don't care conditions covered by A3.

When the implication relations have been found, all the 5i's (i = 1, 2. q) should be set equai to 1, ard alt

terms which subsume other terms should be deleted. The resulting implication relations may be treated by one of

Gaines' exact or approximate procedures for finding a minimal sum of products (2), or they may be treated by

Ghazala's "presence function" method for finding all irredundant sums of products (i).

For a simple example, consider a function f of three variables a, b, and c specified such that the prime im-

plicants of f 0,x are
=ab,

2 = ac,

03 = be',

4 = b'c

I



NRL REPORT 7028

and the prime implicants of fd, are

A = ab,

A2 = a'b'c.

As an aid to visualization, the Karnaugh map is drawn:

b

1 0 j don't care | 0 | ja{0 1 don't care |don't care=

The ratio chart is as follows:

@1 02 03 04 A1 A2

ab ac bc' b'c ab a'b'c

01 ab c c' 0 1 0

92 ac b 0 b' b 0

03 bc' a 0 0 a 0

04 b'c 0 a 0 0 a

The chart yields the following implication relations:

(7 (2Uf3 + 51,

0 U1Uf4 + 04651,

T3 -0,

04 a2-026-

Setting all 5S's equal to I gives

02 4,

a3 0

I04 U 02

Using g - h g' + h = I yields

°sl + zI,
a2 + 04 = 1,

a3 +0 = 1,

04 +2 = 1,

all of which must be satisfied simultaneously (1). Thus

=(al + I )(02 + 4 +0)(0}4 + a2 ) = 203 + 34

3
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4

This indicates that there are two irredundant covers for f:

f= 2 +03 =ac+bcb',

f= 3 + 04 = bc + b'c.

Note that @;, which consists entirely of don't cares, does not appear.

A second example shows the application of this method to a more complicated situation and also illustrates

that an irredundanit cover is not necessarily minimal. Let f, a function of the four variables a, b, c, and d, be

specified such that the prime implicants of fmax are

'ti = ab,

02 = ab,

@3 = ac,

@4 = ad,

and the prime implicants of fdc are

A, =abc',

A2 = ab'c',

A3 = abisd,

As an aid to visualization, the Karnaugh map is drawn:

05 =b c,

@6 =bd,

= c'd

A4 = e d,

A = becd.

d

The ratio chart is as follows:

@1 @2 @3 @4 (S @6 @7 Ar I

ab aVb' ac ad b'c b'd c'd abc'

0 c d 0 0 c~d c'

0 0 I c d c'd 0

b 0 d b. b'd 03 0

b 0 c . b5c b: c b

0 a5 a adt d 0 0:

O a' ac a c . c' 0

ab a'b' 0 a 0 b5 ab

A2 A 3

a'b' a'b'dV

A 4

c'd

A3

bt cd

@2

03

@4

@5

06

(P7

ab

a V

ac

ad

be

b'd
c'd
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The following implication relations are obtained (if this were programmed for a computer, Ghazala's "cracking"
method could be used (1)):

o; 0f361,

2 S62 + U653 + 06626s + 0s5364 t s0763,
03 C °>05 + 05 04 65 + at 16 65,

U,4 64 -56 + 03 07 + 03 64 + 01 05 07 + 01 0S64 + 3 06 65,

075 a°203 + 0665 + 030663 + 020465,

06 0204 + 0507 + 0564 + 040552 ± 020307 + 020364,

-7 e64

Setting all Si's equal to 1, deleting terms which subsume other terms, and constructing the presence function gives

I=(cl + 03)(02 +05 to06)(3 +0aS + 0504 + 0106)

a(04 + 03 + U1 as + 10a6)(05 + 6 + 20a3 + a2 04)

(U6 + (0S + U203 + a204)(7 + 1)

=01 a +0106 + a203 +a30S + 0306 +010204

Therefore, the six irredundant covers are

f= 0 +05 =ab+b'c,

fo= 1 +06 =ab+b'd,

f -02 + 03 = ab' + ac,

fl=3 + OS = ac + b'c,

f =3 + 06 = ac + b'd,

f'@s +@2 +04 =ab+a'b'+ad.

The last of these is not minimal.

In general, the minimal covers form a subset of the irredundant covers. Thus this method yields all minimalcovers plus possibly some additional nonminimal irredundant covers.

AN APPROACH USING PETRICK'S ALGORITHM AS ITS BASIS

Outline of the Approach

This section will approach the covering problem from a different viewpoint than the preceding section. Insteadof starting with a generalization of Quine's test for dispensability, this section will take as its starting point a cover-ing problem defined in terms of a generalized basic cell matrix. First, a matrix A, which can be any matrix whoseelements are taken from the set {0, 1}, will be defined together with a function f, and a function f2 . Lemma I tofollow will show that fl, which is computed by Petrick's (4, 5) method (expansion by columns) is identical to f2,which is computed by expansion by rows. This result does not require that A be a basic cell matrix. Then, how-ever, A will be specialized to be a generalized basic cell matrix. A generalized basic cell matrix is less restricted thana conventional basic cell matrix in that the terms associated with the columns are not required to be vertices butmay be cells consisting of several vertices. With A reinterpreted in this manner, fs will be shown to be the presencefunction computed by Petrick's algorithm. Next a modified generalized basic cell matrix W, which contains A as a

5s



6

submatrix, will be defined, and Lemma 4 will show that a function gs can be defined on W such that g1 tIwith cer-

tain arguments set equal to 1) equals f-1. This g1 is the Petrick algorithm expansion for W. Then a function g2 wilt

be defined on Wf, and the plroof of Lemma 5 will show that g1 = g2. Finally, a modified ratio chart will be defined

together with a function h2 which the modified ratio chart generates. The proofs of Lemma 7 and Lemma S wilt

show that h2 (with certain of its arguments put equal to 1) is equal to g2 (if the corresponding arguments of gZ are

set equal to }).

Putting all these results together, one obtains the following Given any generalized basic cell matrix, it is pos-

sible to construct a modified ratio chart such that the presence function generated by a modification of Ghazala's

algorithm is identical to the presence function generated by the application of Petrick's algorithm to the original

basic cell matrix.

Notation

If S = {Ss, . . * sn}, then glb(S) means s S2 s and lub (S) means s, + 82 + + s5. If the glh and ltb

are taken over some index set I, then the symbols and V are used respectively. The symbotA melns

A and the symbol V means V
iEE ,..rn i F tt2_..

Let A be any r by n matrix consisting of elements aiiI where aij = I or ai9 = 0 (l < i < m, I j < n), and let

=h {kll •k nand,forsomei O <inl), itDO a ,

GAi = {klak; = l, i <k < r}

f(01, 2, --) =n gA (i ai, 
S ={U tojtU0, 2. ., 0f}.

Y(S) = set of all subsets of a given set 5,

Hi = {glb(X)IX eT(S) and, for j = 1, 2, . .

ieGA* 3ok EX k CGAJ}

f2(ot , >2s ---- :(n) =Al u13(Hi).

It should be noted that f, is an expansion by columns and f2 is an expansion by rows.

The Approach

Lemma 1: f1 = f 2

Proof
(Part I) Suppose fI = 0, then 3j such that GA1 is nonvoid and

V oi= ^0.
iG;Aj

M
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This implies that if i E GA3, then vi = O. Since GAj = #4 then 3 Q, I < C < m, 3: Q E GAj. Then H2 = {O}, for,
by the definition of H., every "X" must contain a rk such that k E GAj, and this means that every "X" must con-
tain at least one element which is zero. Therefore glb(X) = 0 V X. Thus lub (HQ) = 0 which - f2 = 0. Therefore

f= =0 f2 = 0.

(Part II) Suppose f1 = 1, then forj = 1, 2,.. ., n

i E GAj

Thus for =1 2 , . . ., n 3E GAj 3: oQ = 1. Then for every i (i = 1, 2,..., m) it is possible to construct an "X"
(See the definition of Hi) such that glb(X) = 1. The construction proceeds as follows: Start with X = A. Then for
j = I, 2, . . ., n add a, to X, where 2 E GAj, such that a, = I (it having been shown that such an £ exists for every
j). This construction automatically satisfies the requirement that i E GAj - 3 Uk E X D: k E GAj Then since X
consists entirely of a's which are 1, glb(X) = I.

Thus lob (Hi) = I for i = 1, 2 . . ., m, and this implies f2 = I. Therefore

fl = 1 = f2 = 1.

So, from Part I and Part 1I, f1 = f2 . M

Let A be an m by n generalized basic cell matrix with terms 01i 02, . . associated with each row in the
order given and with terms U1 , ZI2, . . Un associated with each column in the order given. The elements of A
are defined as follows:

(aij = I) - (Lij -* ), a0j = 0 otherwise.

The terms must conform to the following restriction: V i C {1, 2, ., m} and V j E { 1, 2, . . ., n} exactly one of
the following two statements must be true:

E Hi-¼~,

Lvi ' ,i+

With A defined in this manner, define flfor,, 02,. . ., an) exactly as before. This f4 is the presence function
generated by Petrick's algorithm (4, 5).

Let W be a "generalized" basic cell matrix, defined as follows:

W(C -- D

W is a p by q matrix with elements wij, where p = m + r and q = n + s and where wij = or 1. A is an m by n
submatrix with elements a 0j, B is an m by s submatrix with elements b1j, C is an r by n submatrix with elements
cj , and D is an r by s submatrix with elements d1j.

7



JOHN R. MILLER8

The rows of W are associated with terms 't, 02. -, A1i, Al, A2 ,. ., A 4 in the order given. The columns of W

are associated with terms U1, LU2, * . ., 73n, VI, V2 . V, in the order given. These terms mILst conforml to the

following restrictions:

RI: Z1 +Z32 + + n+VJ z+±Vs=QI+ + + + V, *2 + 02

R2: VI + V2+ + VmA 1+ A2+ -+ A,,

R3: I(U + t2 -+ 0 * (VI * 2 + + V2± n 0,

R4: let x E (71 32, 7. Z . Un, VI, V2, . -,

Y (01 (Sbl02, - -sn Om, Al, A2. Ar}.

Then exactly one of the following two statements must be true for given x and y:

x Y I

x y .

(I.e., either y covers all of the vertices of x, or it covers none of them. In the usual case,

where each column term is a minterm, this is a trivial restriction.)

The wi1 are defined as follows: Let x be the term corresponding to the jth column of W and y be the term

corresponding to the ith row of W. Then

(Wii= I}(x y),

w0 = 0 otherwise.

Define

91(p, MVn+ , VP)r{A (VVjg!(>] 0 5 3gn- Sm p *[E Ff e Gn Wj

where

F. ={ k I < k 6 p and, for some iw~k =4

Gwj={kIl < k q and Wki= I).

Lemma 2: AU elements of srbm7atrix Care zero.

Proof. Suppose c14 = I for some i, (il Ci < r, 1 C3 Cn). Then

Uj - Ai-LUj ' Ai' = Uj

But restrictions R2 and R3 require

MI3 i + 732 + + 73n) (Al + A2 + + Ar) 0,

which is inconsistent with the above, since Uj = I would imply that this product = I. Therefore there would be a

contradiction. a

Lemma 3: Every column in submatrix D containy at least one "I

Proof: Suppose there is a 1 (1 C<j < s) such that di1 = 0 for i = 1, 2, . . ., r. Then from restriction R4

V 7->A, V -#A .. .V -4A'
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or equivalently

Yj ;A- *AI -2 . {A,= + A2 + * + r)'-

But this says that

V. I - Al + A2 + *+ A, = °,

contradicting R2. U

Lemma 4:

9101, a2, -*191 * 0° 1, - -13=. ° s° a ).

Proof: FW can be partitioned into two sets FA and FAk where FA is defined as before and where
FA = {klk E FW but k i FA}. Then

gl(VPt, *P*, Vm, Pel, pP) LEA VGWj L1 [J \i 3 )3

But from Lemma 2, if v; = oi (i = 1, 2, . . ., m), then

A =4A (V IG = fl(l, 02, . .,
jEEA W; ;FA iCGAj

and from Lemma 3, if Pi = 1 (m + I 6 i < p), then

A( VvI: = 1.
jEFj iEGX . J

So,

91(0-l) (12 ua, -,1 1l)=f1 (UlU 2 ,. ... Ior) *l I (fo,,a 2 ,.* ,am). -

Let T = 2, 2 . p} and let Y(T) be the power set of T (the set of all subsets of T). Define

Ji '{YLYEY(T)andforji = 1,2,. . qiEGW -3PkE Y:kEG
Ki {glb(Y)lY E 3i},

p

92{ (PI P2 * - * mn Vi+l, P.Vp) \lub (K).

Lemma 5:

91 (P., V2, . *., Vp) = g 2(V1 , V2 , . . .- ,p)

hoof. The proof follows directly from Lemma I with g1 substituted for fl, g2 for f2, p for m, vi for ai, Gwj for
GAj, and Ki for Hi. U

9
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10

Define

[¢sj, I Ci <m,

r-<l < n^

V(in I C C <q

Q(Z) = tAifi e ,

= ZIZ E 5T(T) and Oi - tub EQ(Z)l}

Lemma 6l i = Li.

(Part 1) Let y t. Then yEBT). Suppose 0i = 1. Then by restriction RI or R2, 3 j( C q) D }=.

This j cannot be such that wi1 = 0, for if it were, restriction R4 together with 0f = I would require that 0= or

Th= . Terefore 4 must be such that i C Gw-. But, from the definition of hi, this requires that y contain a Pk such

that k e Gwef i.e. such that wk i -. Thus Q(y) must contain a 0k such that O - fk. But since 01 = t, then A

must equal I. So, tub Ž(y)1I = I . Hence, = I requires that hub IQ(Y) = I. Thus j3 - lob [QEYfl. Thea

Y -Li. Therefore

y cl- Si =C Lt

(Part fiI Now let z E Li. Then za Cf' (T). Further, Pi -lub [Q()1-. Suppose that for some 4, wi = I, that

is, i C Gwp. Then Ui -> 3,. Hence, by the transitivity of the implication relation, O -' lob [Q(z)l. Then QWz} must

contain a 13k such that O -. flk, for if no such k C Q(z) existed, then restriction R4 would require that

R-e the complement of every member of Q(z), that is, that 0i - the conjunction of the complements of the

members of Q(z), or in other words (using de Morgan's law) that Cj -4 (iub IQ(z)1 V) which would be a contradic-

tion. Thus, since ji o k G Q(z), then Pk C Z and wk5 = I, i.e., k E Gw. Thus, z C Li and

i C Gwj - 3 AVk Z 3: k Gwj. Therefore

Combining this result with the result of Part I yields

:li = Li. a

Let Ghazala's ratio chart be constructed for the terms i3, I < i < p. Ghazala has shown (It) that the presence

function which this ratio chart yields is

P

hltvl, V22 . . P) =Alub ({glb(Z) [Z E Lij})

Lenima 7:

hI V2i V.yp = g9(PV2I, .P . ,V).

proof: The proof follows directly from Ij = L1 (Lemma 6). n

U
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Define

m

h 2 (zV, V2 , .. ., Vp) = A lub ((glb(Z)IZ e LiD

This is the presence function generated by a "modified" ratio chart, constructed as follows: Start with a conven-
tional ratio chart for Pi = Oi, 1 < i < m. Then without adding any more rows, add columns corresponding to
fli = Ai-m, m + l C i C p = m + r.

Lemma 8:

hl~vi, P2, - *>Vin1 , , 1) = 112(Pl, P2, . P. , Im 1, II . . ., )

Proof.

h j, V2, vP) = lub ({glb(Z)IZELi})j L) A lub ({glb(Z)IZ eLi}

= h2 (P1 , V2, . .., Vp) lub ({glb(Z)IZ E Li)

Since Pij P il for every i, then {Pi} E Li for every i. Thus if %M+, = im+2 - = = 1, then
lub ({glb(Z)IZCLj}) = I for i m + I, m + 2,. .p. This means that

p

iA lub ({glb(Z)JZ E L}) 1.

Therefore,

biIvt, V2, *M, m , .,}= h2{vl, P2, . . ,V,1 71 h2(VlI V2, . .P., 11 1,I...,1 ) 0

Theorem:

fl(VI, P 2, - - M) = h2(VI, V2, . P . M, 1 , 1 ... I)

Proof-

ftl, V2, - PM) = gl( V2, ., V.l,I,... I ) (Lemma 4)

= g2 (Pl, V2 , . . ., P, I, 1,1,..., 1) (Lemma 5)

= hIMI V2, - .. , Vm, ,1,..., 1) (Lemma 7)

= h2(V1, P2, - v MI, 1 I) (Lemma 8). o

This theorem says that given any generalized basic cell matrix constructed for terms Oi, I C i C m, a modified
ratio chart which will yield a presence function identical to that produced by the application of Petrick's algorithm
to the given basic cell matrix can be constructed, where Pi is interpreted to be the presence factor corresponding
to 4i.

I1I
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This modified ratio chart is constructed as follows: Start with a conventional ratio chart for 0. I < C < CM.

Then add r columns corresponding to AI, A2 , , Ar such that the following conditions (based on restrictions

RI through R4) hold:

Cl: Ut + Z2 + + M +Al + A2 + -'~ (AL-f + (2 + ' O +m,
C'2: (Ul + Z52 + '+ ZUr) -01A + A2 + or+r 

Note that one need not concern oneself with the terms VI, V2Y . , since, given the terms A 1 ,A2 ,. .

one can always find a set of VI, V2, . - ., Vf such that restrictions R2 and R4 are satisfied. (R4 is automatically

satisfied if each of V1 , V27 . ., V is a single vertex, provided that R4 is also satisfied by the original generalized

basic cell matrix. The original basic cell matrix will automatically satisfy R4 if each of the U, U77. . ., ?U, is

a single vertex.)

Application to an Incompletely Specified Nlultiple-Output Problem

Bartee's (5) method involves setting up a multiple-output table of combinations. For each row in which the

output section of the row is not all zeros, an "e" term is formed by writing each input variable primed or Inprinted

depending on whether a 0 or I respectively appears in the corresponding position in the row and by writing a

primed output variable if a zero appears in the corresponding row position or omitting the output variable entirety

if a I or I (don't care) appears. Each row may also yield "c" terms (the "care" vertices) constructed as follows:

Choose a particular I in the output section of the row and leaving that I as it is, change all other entries in the out-

put section of the row to 0. Then write each input and output variable either primed or unprimed depending on

whether the corresponding row entry is 0 or I respectively. This is done once for each I in the output section of

the row. Rows which contain no I in their output sections generate no c terms.

If a basic cell matrix is used to find the cover, the e and c terms (and the O's generated by iterated consenlsus on

the E's) are the only terms needed. But if a modified ratio chart is used, then an additional term called a "d" term

is constructed for each row not having all zeros in its output section as follows: Take the gib of the set consisting

of the e term for that row and the complements of all c ternms generated by that row. (If the row generates no c

terms, then d is identical to the e for that row.) The d terms may be used directly as the A's or their number may

be reduced and their length shortened by iterated consensus. It should be noted that d terms will always he gen-

erated in nontrivial multiple output problems, even if the problem is completely specified. Thus thle d terms cannot

be regarded strictly as conventional "don't care" terms.

To conclude with an examples let Mx, y) and p(x, y) be specified as follows:

Xy Xj1

00 10
01 I I
10 1I3
it 01

The multiple-output prime implicants are

01 = YVY 

2 =x y,

0 S= yX $

04 = xX',

45 = xy,

41 = x 'P.
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An acceptable set of A's is

A1 = h 8',

A2 = XYA:

A3 = X'Y

A4 = Xy')p.

The modified ratio chart is as follows:

04 45 06 A1 A2 A3 A4

Let ui be the presence factor for Oi and bi be the presence factor for 4. Then

h2(ulu72, 03,04, os, 6, 6 1 , 52,83, 64) = (Ul +506 +0562) - (02 +0663)

* 03 + 0204 + 040663 + 46163) '(04 + 0305)
* (a 5 + Ul t4 64 ) ' {°6 + 1l a2 + 02 62 )-

Therefore

h 2 (or, 02, o 3 , 04, 05, U6, 1, 1,1 1I)=oIG2a4 + 2a305 + 020405 + 10 406 + 0305 06 + 4a506.

For purposes of comparison, the basic cell matrix is constructed. The c terms are

Uvi = x'y\,'.

U2 = xy'Ap',

U3 = xy'Xp,

U34 = xyX'p.

The basic cell matrix is therefore

Zi1 Z32 53 Z54

@1 /0 1 0 0

02 1 0 0 0

A= 3 0 0 0 1

04 0 0 1 I

*b5 0 I I 0

416 \ 0 0 0

01 02 03

01

42

03

@4

O5

06

1 0 0 x x X' X X' 0 0

0 1 X' 0 0 p1 ArMI 0 p 0

0 X' I x 0 x'p' pr 0 x;A 0

y'p' 0 y I y' 0 v' 0 0 0

Pr 0 0 A' 1 0 XO .. 0 0 P

Y yXA' 0 0 1 J yr 0 0

1 3
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So,

= 1I204 +U-20305 + G0405 + 010406 + 305U6 t+ 4 50 6

=h 2 ur1, 02, 0[3, 4, U5,ab, t1, 11).

A TECHNIQUE FOR COMPUTING THE INCOMPLETELY SPECIFIED MULTIPLE-OUTPUT FUNCTION

WITHOUT RECOURSE TO A TABLE OF COMBINATIONS

Since the main virtue of the method using the modified ratio chart is that it does not require a canonical

expansion, the calculation of e and d terms from a table of combinations largely offsets any advantage one might

hope to obtain by using the modified ratio chart method, especially if the incompletely specified multiple-outpttl

problem is initially stated in the form of several incompletely specified Boolean functions which separately have

already been partially or completely "digested" by the use of iterated consensus or some other means of deriving

prime implicants.

The modified ratio chart method depends directly on the O1's and A's, not on the C's and d's; so one- would like

a technique for going from the separate partially digested incompletely specified Boolean functions to the multiple-

output O's and A's without having to pass through an intermediate step involving the construction of a multiple-

output table of combinations. The following is such a technique.

Construct

Gs7.(Xt, X2,, * .. ,Xe fl f2. - - A [Fni na(x1, x,)+h(a) ....

and

G2djX1rx2. -XnfljIf 2, > yr \/ [Fj TOxi.. * xnjf; ** . . . fjj

+ V' /(\A[F(max(x I, Xn) + hlai)1) (fI ... (ai)1

where not exactly
ore a is blank.

where the Fjlx, - -., xf), i = i .. .,m, are the m separate incompletely specified Boolean functions (of the vari-

ables x1,. - ., Xj which are being treated together as a multiple output problem. Fliax covers those and only those

vertices of Fj which are either 1 's or don't cares. Fi16c covers those and only those vertices of Fj which are don't

cares. The f;, i = 1, . . ., m, are the formal symbols used in Bartee's method to stand for the F., i = l, r.n, m,re-

spectively.

The symbol a, i = 1..., m, represents either a blank or a prime ('). The function h(aj) is a two-valued futnc.-

tion defined as follows-

f, ai = blank,
hlai) =

h,1a = prime.

V meansthe iterated disjun-.tl .vi >>performed over all possible combinations of blanks and primes among tte a's.

a,,-.,4m
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C2(Xt .- .?- Xn, f , . . ., fi') is the incompletely specified multiple-output function. That is, the prime impli-
cants of G2.. are the 4's, which are the multiple-output prime implicants, and any set of terms whose lub yields
G2dC constitutes an acceptable set of A's.

Instead of defining G2 by specifying G2max and G2 d6 , one could define G2 by specifying G2... and G2,lm7
where G2min is that function whichcovers those and only those vertices of G2 which are l's.

The incompletely specified multiple-output function which Bartee's method yields is defined as follows:

imax(xi, X2, - -xn, f1, f2,{, fn) = (Fil',hQ)] fj. ( I X1.n..

G1n,,jn(xI, X2 . X1 , fl1 , f2 , ... f,,) = V
1

1
.[~,[iiAI (Fj111,,[h'(fl1), . ~h'Q)]

.01 .. i. n**xn flf2 . fi-lfifi+l .. fm)J-

In the next subsection it will be proved that G1 and G2 are identical and that G2dc is what it was previously
stated to be. Following the next subsection an example of the application of the technique to an incompletely
specified multiple-output problem will be given.

Proofs Concerning GI, G2, and G2dc

Lemma 1:

G2ma, = 0° C1 = 0.

Proof:

G2max = [( \A [Fi(xj, .. ) + h(aj)]) aflI . .. f;m)J =0

V (a1 ,., am).

In particular,

Ail.1,m[Fi(x1. x.) + h(¢j ) (ffl f)J =0

where X -,,n are such that (f, ... ft) = I Then

3 k, I < k < m, B:r [Fk(X1, . eXn) + hGOk] = °.

This * Fk(xI,. . ., xn) = 0 and h(j = 0.

15
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Now suppose flt, .. , are such that x1 - Xn = 0. Then the term of G0 max containing xj ** x, isO

and therefore need not be considered further from the standpoint of this lemma. The terms of GI which should be

considered are those for which P1i- , / are such that xi xl = I.

If xi -. x,, = 1, then

[h'ci), - . -' h'(f9J = (XI,.. x a,),

because

x= 0 0% = prime -= h'(0) = 0

and

Xi= I -fl= blank"-h'(03)= 1.

In a term of G It ax for which x1 - - x, = I consider the factor Fkmam[h'(l) - . h'GtPa) + fk. From the im-

mediately preceding argument,

Fkmajli!3 (9) -. , -i'q3,,)] = Fkmax(x1, .- . Xj.

But it has already been shown that Fkmax(x1, . .x x,,) 0. Moreover, it has been shown that h(&k) = 0, and this

Gfk =0.

Therefore, every term Of Gr1ma which is not rendered = 0 by x. ... x, is rendered = 0 by

FkxliE(h1), . . h'(ll jJ + fL. Therefore

G2max =O Glx = =0

Lemma II:

G2max I = Glmax = 1.

Proof

[( [1 LFjlnax(xl I . sX0 + Wig (f ... )| = t 

This f Qft - - ftm) I and -f . . xn}+h(.iI) = I

{prime, f1
0,

But (fl ... fm I =l1n, - = 1

blank, f = i,

i-1-1 P - 1
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Therefore

A (Fi..(xi x -x ) + fi) =.

Now let (Pi, p,) be such that

{prime, xj = 0,
Pi 

blank, xj = 1.

Pi P½
Then x1 ... Xn = I and h'(pj) = xj. Therefore

Fimaxjh'(P1), * . '1 h'(pj] = Fim.(xl, x,).

But it was shown that

A\[FimaXx(' 1 , X.) + fi] = 1

therefore it follows that

Ai",'m(Fimax[h'(Pl) . h'(pn)] t f-) = I

So, there is at least one term in Gjma which = 1, namely,

Li-(Am(Fimax['(P,) .*h'(Pn)] + fi')(xi .. Xn 

Therefore G2m. = I - Glm = 1.-

Lemma III:

G2 max Glmax,

Proof- The proof follows directly from Lemmas I and II. -

Define

m

G2nij{Xl,*, Xn, **, fm) =\V[Fjmin(xl, . . ., xnl f2f fI'Ifjfj¶*j f.-if']
j-1

Now

G2dC(xl X2 ... xn, fl, f2 , fm)G2mx(X1, X2,* Xn. flf f2 ,i *,fm)

*GC2mij~X1, X2, . Y ,,X fl 7 f2, * Wm

17
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- \/ [( At tFt (. .. x) t h(al) (4" -* *m

(.v I FjtnX)l, f )Xn2 fj'-1ffi3l I .. ft- I G
1'l...,m

a1 0m~~~~~~~~~~~a

Jj1 ,F~min(XI, - - 'J xn~fjf2 - . tj1 17ffr -'- t = \/lv~zm [( ,e\i[Fjma xi,, x,,) + h(a)J) ( . . f. (HA

* [F *'+1 (x - x)fj - Ifjf1 -

A [Fimaxxi, - Xn) + h(dl)I'

(El, ... > la.. J

=, [F,.itaiyn(xi, *x.) + C, + f2 + ± tji fli t

+" + ,-l± + fm)

=V~ (AŽhj,,. x x,)hb

/\ ( . - x,,)+ h'(al )+ --. '(i1
+ h(a1) + h'(ap-,) -i + h1'(am,] (4"-fu)

V [ A .A (Fi..,,(xl,. * Sxn)F'mnij,( s t aXn,a1 , ,m i=)2 ii>r (F xt ..., x,)j,,± .. i, x..,),

+ F-l,,,,, ,..x., xj)[h'(a,) + -+ h'(aj,1) + h(a1) +bh'(ap1)

+ - * + i'(a,)J + h-aj}Fmxj,. . ., x,, + h(ai)h'(aj)

t - - + hT11(a) + h(a1) + hF(a14 l) + - - + h'({m)J)(fi *..

v.a{..} +V

where exactly where not
wit a is blank exactly one

a is blank

j

18
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= l m(i1=A A [Fi.nax(1. n )F* * xFji. .. Xn)
where exactly
one a is blank

+ Fiimax(Xi, * Xn3h(aj) + h(ai)Fjn,,!n(xi . Xn)

± hI(aidh(aj)] (f' ... fm ))

al,...,a ri=t....n jJ. m
where not
exactly one
a is blank

+ Fiinax(xi,.. * Xn) + h(ai)Fjhin(xl, - . .) Xn) + h(aD) (fr * *fjm)

= V ' (A A [Fimax(Xl- xn)Fjl(xl Xn)
a1 . am \i-l,...,mn j1,..,in znxxm
where exactly
one a is blank

+ Fima *(xi, * Xn)h(aj) + h(aO)Fjmil(xi,.. ., Xn)

+ h(ai)h(aj)] (fI -* fm ))

+ V ( A [Fi ax, **xn) + h(ai)] (f1 ' ..* frnj
al,,.,a\ iml,...,m
where not
exactly one
a is blank

Lemma IV:

V (A A [Fii.a,_(xi. xn,)Fjuinn(xi Xn)al,...,a ll..m=,.m
where exactly
one a is blank

+ Fiminsxl. x .)h(aj) + h(ai)F(minxl,.. . Xn) + h(a1)h(aj)] (f ... fm)

V [Fjdx,(Xl. * . xn,)ft f*fjfjl ... fm]-

19
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Proof:

JOHN R. MILLER

(Part I) Suppose

V m..ar(A->,. A [,,.mFimz1Y,(X1S-t* X.)FjtnijX13- Xn)

where exactly
one a is blank

+ Fima'xx, - . ., x,)h(a) + i1(au)Fijlxl . ., x,,) + h(aiwh(as) (f ' fv?-))

Then E an integer k, I < k < mn, 3:

A Arx)'.(i P

] ,..,,n Liinax(XIy - .,xn)Fimi,,Xr, - , x,,)

+ Fi,,(xi, -- x,,)h(a1) + h(a0Fi4ij .- , Xn) + h(aj)h(a1 (f' - f') =I

and ak = blank, all other a's= prime.

But this implies that the expression in brackets must = I V i, j, where i = 1, . m and j = . nm. In Par-

ticular, the expression in brackets must = I for i = = k. Furthermore, fj -fk-lh4+t - - - t = I.

Thus

i =[FkmaX(5u-~ t >x,)F',,±,,(xl,. .,xn)Fkn,,x(Xl. x x)h(ak) +h(k)Fk'. Xi, . Xe

+ h(akj)h(ak}) (fl .' f'*-lfkfkC+x ... fn)

=Fkrn,,(Xl, . -, Xn)Fk',,xi( x,.. ., xn)+F Xl - .k , x.) '0

+ 0 *Fkmj,(x 1, . . , X) + O (fJ -... fk -lfkfk+! - - -

= [F1 .,~x 1x, - ., xn)Fkminixx, - x0)J(fi k- - lfkl{+l -f m}

= Fkdc(X1) - - x,) (f I ' 'f .fk.ft+l ' ' - F

Since k is an integer such that I < k < m, this = V [F1 xt ,..*, x)f -I .. fi$l 'f fi- I - = tI

Thus

a1,.. amE i=l,..in M

where exactly

one a is blank

+ F iaixlt -.., xn}h(ai) + h(aj)Fj,(XI .. , Xn) + h(aih(ai )l (' ' fmsj) = I

t V d[rp(X] , - ,X,)fl - ff- - fj

This completes Part I of the proof.
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(Part II) Suppose

V~l m[Fjd(X ,)fj xi. fjfj+, - . |= I

Then 3 an integer k, I < k < in, 3-

t = FkdCjx,, Xn)f'i fk-lfkfkl ' fm

= Fkm,,(X1, . X .s Xn)Fk,,in(Xi,.*I, xn)(fl .. - fk-lfkfk+l ... f)

Since k is an integer such that I1 < k m, this -

\/ (A A Fjrna.x(xI, - - n x)Fji(x, X i , xn)
al,...,ain \i-l..., JI.>
where exactly

one a is blank

+ Fi(naxX .1 I Xn)h(aj) + h(ai)Fj'r 5ni(xi, *, xn) + h(ai)h(aj)] (f4 . . - fin)) = 1-

The preceding statement may be seen to be true as follows: First note that

I - Fkmax(xl *.., xn)Fkn~i{Xl, (x e. xn)fl - - fk-ifk f+l m

= Fkma{,,jX**, xn) = F1{15j5 (Xl,* * , xn) = f; fk--fkfk+l ... f1 = 1.

Then consider the term such that ak blank, all other a's prime. One factor in this term is

fl fin = f *... fk-lfkfk+ fm = 1. The remaining factors may be partitioned into four cases. T.

is i = j = k, in which case

Fimax(Xi .... , xn)Fjmii5 (xl, xn) Fknax(x, . Xn)Fki mjn(XI. Xn) = 1.

So, the factor belonging to this case equals I. The second case is i = k, j * k. In this case, aj = prime, so hoaj) = I.
Then

Fimax(xIl . . xn)ll(aj) = Fkinax(xl, . xn) - I = 1.

Thus all factors belonging to this case equal I . The third case is i v k, j = k. In this case, a1 = prime, so h(ai) = 1.
Then

hfai)Fj , {xl, . . ., xn) = I - Fk in(X ,-ll xn) = 1.

Thus all factors belonging to this case equal 1 . The fourth case is i * k, j v k. In this case, ai = aj = prime, so

h(ai) = h(aj) = I. Then h(ai)h(aj) = 1. Thus all factors belonging to this case equal 1. Since all factors belonging

to all cases equal l, then the term under consideration equals 1. Thus, the expression of which this term is a part
equals 1.

21
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Thus,

\/ tFi4c(1, . . ., X,)f - f -Ifjfilt - f,]= I

. V/ ( A , A [Fiia~x,(X. J xr,)Fjin(X 1 - xn,)

where exactly
one a is blank

+ Fi.,,(xI, * x,)h(aj) t h(ai)Fji,(Xl. a,,) + h(a1)h(aj)3 (f ... f j =

This completes Part fI of the proof.

The lemma then follows directly from Part I and Part 11. ,

so,

G2dXl, x2 . Xn, f 1, f 2, '1, f, = v/ [Fidc(xlJ Xn)f - ff-Ifie+;l Q

+ V a ai LAi [F imax(x I x *,) + h(ai4]) (f4 I G Iu .
where nof
exactly one
ais blank

Lemnma V:

G2rlnl -i,(xi, fl ,^>iJfn G IninlKI X * n, fl t -i 

Proof.-

(Part I) SUppOse Gtlmnx, - . ., X,,, f, - - fm)= 1I Then I9 an integer k, I < k < m, and a set a,;, _a.- -.

Fk [h (aa), ** hh(an)l (11 t a X , 2 '

But this means Xi . X,, = I, which - (h'(%), . . . h'(a,,)) = (xa -- , xn,)- So

Fk,,n(Xt (.,x I(xu ' Xf IfC2 - -Lfkfk+k-I . f. =

It follows that

Fkmi,(>Cl, .,xn)fl ' - -fk-lfkrk+l- -. fm, = ,

where k is an integer such that I < k < m. But this

In

V V [Fjm,(xj,. .. x,,)f * -* .ff jf+* *.. f]
= 62.i,,x I *, X.a5, * fmj)-

El

22
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So Glmin = I =- G2Gz = 1 '

This completes Part I of the proof.

(Part II) Let t;. n be such that

[prime, xi = 0,

=blank, xi = I-

Then x ... Xn = 1 and (xI, - - ., xn) [h1'GjD, - . ., htjn. Suppose G2,nh(X1, .* * x, fl, . ., fm) 1. Then
3 an integer k, I < k < m, 3:

I = Fkjx;, ., Xn)flj fk- lfkfktlk. f 

=Fk x~~~)(x8 . x~~~)r - .. fk kfk_{,- .. f=kFkin(Xl, B sX}X n )1 klifkl'*f

= Fkmi.[h'(t]). h'{)](XI ... ' x .)f ..' . fk-lfkfjk-* f. -

But this is one of the terms in Gj.,i, (xl,, x, Xn fl . .If,,). So

G2mi = I - G;min =1.

This completes Part 11 of the proof.

The lemma follows directly from Part I and Part II. a

Theorem: GI and G2 are identical
Proof: The proof follows from Lemmas III and V. w

Example of Application of the Technique

The remainder of this section is an example of the application of the technique for computing the incompletely
specified multiple-output function without recourse to a table of combinations.

Let the functions K, L, and M of the variables x, y, and z be specified as follows:

Kmax(x, y, z) = x'z + xy'z' + x'yz',

Kdc(X, Y, Z) = X'y +XYZ,

Linax(x, y, z) xy' + x'yz',

Ld,(X, Y, Z) = xy'Z + X'yz',

Minax(x, y, z)= xy'z + y z + x y + xyz,

Mdc(x, y, Z) = xy'z' + x'ytz + xyz + x yz'.

Let Kc, A, and M be the Bartee's method symbols used to represent K, L, and M respectively.

23
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The multiple-output funiction G2(x, y, Z, K, X, p) is constructed using the formulas developed previousty:

G 2.j(x, Y, ZKa, Xp)='X

+ Mmax(X, YZKX A

+ LAx, y, 7)K'XP'

+ Lmnaxfx, y, z)MmaxEx, Y, Z)f Ay

+ KS,(x, y, z)KA 

+ K,,(x, y, Z)Mnax(x, Y, z)KX'M

+ Klnaxix, Y, zLinmax(x, Y, Z)KIAy

+ Knax,(x, y, z)Lmnax.X, y, Z)MrajX, y, Z)Kxp,

G2d,(x, y, 7, K, X, P) = K'),1Il

+ Mdc(X, y, Z)KX ,

+ Ldr(x, y, Z)K
1 XfL

+ LiaX(x, y, z}M,,(X, Y. Z)y, A

+ Kat(x, y, z)KX 

+ Kmtad.x, y, Z)Mia.x, Y, Z)8h p

+ Kmax(x, Y, z)Lma Yx, y, z*ucX/

+ Kinmaxx, Y, z)Lmax(x, Y, Z)Mxniaxx y, z)K-dt

The prime implicants of Gb,, that is, the multiple-output prime implicants, are

41 = x'zX',

2 = xlyX',

413 = x yz,

F04 = Z'CF A

415 = xy K,

46 =cxy z

A cover for G2dc is provided by the terms

A1 = x'y'zX',

A2 = X YKX ,

A3 = x'yz',

A4 = XyZK'X',

A5 = xy'ZK'X,

A6 = xy'zFZ,

A7 = K VA"

AR = xy'zKX.

U
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The modified ratio chart is as follows:

41 02 03 04 Os 06 47 Al A2 A3 A4 A 5 . A6 A7 A8

1 y 0 K' O O Kp y, yK 0 0 0 0 KIAI' 0

a 1 zr ZKcI 0 0 KIIJA 0 K zt 0 0 0 KI/A 0

0 V 1 0 0 0 KYXU' 0 KX' I 0 0 0 K'Xp' 0

xF xWy 0 1 Xy' 0 Hr Xy' 0 0 xy 0 0 I 0

O O 0 zax I za XI' 0 0 0 0 ZX z'L VIA' 0

O o 0 0 K' I K'XtA' 0 0 0 0 0 p K'X'g' Kc

X Z Xy X yz Z xy Xy'Za 1 WXy'z 0 x'ya X yz 0 0 1 0

Let P(01, 02, °3, °4, 05, 06, 07, 61, 62, 63, 64, 65, 66, 67, 68) denote the presence function for G2(x, ywzK,h,p).
Then, from the modified ratio chart,

P({1, - -, U7, 61, *, 68) = ({l +0261 + 046162) t (02 + °rIf3 + ;163 +±03462 +o46283) ' (C3 + 3)

'(04 +0al054 +02056164) '(05 +4 0685) '66 *({°7 +87).

So

P({l, °2, o3, °4, o5, °6 , 7l, 1, 1, 1, 1, 1, 1, 1, I)= (ol + 02 + ±04) (0; + °2 + 04) -I

* (Uf4 + °1l °S + °2 °S ) ' (as + U4 06 } ' 06 * I

= °l °S 06 + °2 °50 6 + 04 06 .

As a check, the basic cell matrix is constructed. The c terms are

U1 = X'yZK'Xp, 

=32 Xy r ZKXtp,

Z33 = XyaZ'K'Xp,

74 = xy'Z'KX'P'.

Then the basic cell matrix is

Z 1 U2 3j Z34

01 / 1 0 0 0

02 1 0 0 0

03 0 0 0 0

04 1 1 0 0

Os 0 1 1 0

06 0 0 I 1

07 0 0 0 0

The presence function obtained by Petrick's algorithm is then

(ol + °2 + 04) ' (°4 + 05) ( {°S + 06) ' 6 = 1t 0506 + 02 C5 06 + 0406-

41

42

03

4
45

46

47

25



26 JOHN R. MILLER -

REFERENCES

I . M. J. Ghazala, "Irredundant Disjunctive and Conjunctive Forms of a Boolean Function," IBM Journal of Re-

search and Development 1, 171-176 (Apr. 1967)

2. R. S. Gaines, "Implication Techniques for Boolean Functions," Proceedings of the Fifth Annual Conference

on Switching Circuit Theory and Logical Design, October 1964, IEEE Publication S-164, pp. 174-182

3. W. V. Quine, "On Cores and Prime Implicants of Truth Functions;" American Mathematical Monthly 66,

755-760 (Nov. 1959)

4. S. R. Petrick, "A Direct Determination of the Irredundant Forms of a Bootean Function from the Set of Prime

Implicants," Air Force Cambridge Research Center Report AFCRC-TR-56- 1 0, Cambridge, Mass., 1956

5. T. C. Bartee, 1. R. Lebow, and i. S. Reed, "Theory and Design of Digital Machines," New York, McGraw-Hilt,

1962

I


