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ABSTRACT

A method for computing the presence function for an incompletely
specified multiple-output Boolean function has been derived. This method,
which is a generalization of Ghazala’s algorithm for computing ttie presence
function for a completely specified single-cutput Boolean function, does not
require the use of a table of combinations (unless the function is originally
specified by a table of combinations) and does not involve the construction
of a basic cell matrix. Thus the use of this method in ¢omputer programs
which determine minimal {(or at least irredundant} covers for incompletely
specified Boolean funclions may in some cases result in a saving of execution
time and memory space required.
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AN EXTENSION OF GHAZALA’S METHOD TO
INCOMPLETELY SPECIFIED MULTIPLE-OUTPUT FUNCTIONS

NOTATION

Symbols from Boolean Algebra and Set Theory

+ Boolean “or™

\Y [terated Boolean “or”

lub Boolean “or” of the members of a set (““least upper bound™)

. Boolean “and” (also indicated by the concatenation of expressions)

A [terated Boolean “and™

glb Boolean “and™ of the members of a set (“‘greatest lower bound™)

' Boolean “not” (e.g., a’ means “not a*)

- Boolean implication

E/T Boolean “ratio™ of the expression E to the term T (E/T is equivalent to E evaluated with
T set equal to 1;see Ref, 1) ‘

{x1, %2, ..., n}  The set of objects X, X3, . . ., Xq

{xIC } The set of objects x such that condition C is satisfied

¢ The empty set

C “(which} is a subset of”

G “(which) is a member of”

& “(which) is not a member of”

Set ““difference” ( A -B = {xIx€A and x¢ B})

Meta-Language Symbols

“implies™

“if and only if”

“is identically equal to”
“for every”

“such that”

“there exists (a)”

“end of proof”

ey

LTI o

AN APPROACH USING QUINE’S DISPENSABILITY TEST AS ITS BASIS

Once the prime implicants of a Boolean function have been found, the implication relations among them may
be used to find all of the irredundant covers for that function (1, 2). It is desirable that the method used to find
the implication relations not require a prime implicant table, because the use of a prime implicant table requires
that the function be expanded into canonical form. Ghazala has presented such a method for the completely speci-

fied case (1). The extension of his method to the incompletely specified case requires an extension of Quine’s test
for dispensability (3): '

Definitions: Let f be an incompletely specified Boolean function of n Boolean variables Xy, Xg - 1,.. . %;.
Let fy.¢x be a Boolean function such that finax (Xn s Xueis - - ., X1 ) = 1 if and only if (xn, Xpq, .. ., X1 ) is either a
“1” vertex or a don’t care vertex of f,and let {¢1, ¢, ..., ¢p} be the set of all prime implicants of fmax- Let £y,
be a Boolean function such that fac(Xn, Xn1, . .., X1) =1 if and only if (Xp, Xp-1. . - ., X1} is a don’t care vertex of
f, and let {Al VLTS Aq} be the set of all prime implicants of fy.. Let A - {¢a1 02,00, ¢p} such that A covers
all of the “1™ vertices of f, iet \ﬁ{qﬁi be the disjunction of those and only those pjthatarein A,andlet B=A - {¢j}
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for a given ¢; S A. Then ¢; is said to be dispensable with respect to A if and only if B covers all the *1°" vertices of
f. Let "é/qb; be the disfunction of those and only those ¢; which are inB.

Theorem (a generalization of Quine’s dispensability theoreml: ¢S AL dispensabile with respeet to A if and
only if

G =Voit L +Agt- -+ A, where B=A-{g}.

Proof: Suppose q&j-r\éqiﬁwﬁt + fiy + 00 s+ B then fusingg *h=h=g+h},
\§f¢i+gl + Ay ot g =‘;’¢s+¢?j+&; + Ay +---+Aq=‘?{¢i+,ﬁ, + 8y e E AL

But A covers all of the *“1” vertices of {, whereas {At LA, ., Aq} covers none of them. Thus the above equation
implies that B covers all the *'1  vertices of T, This completes the sufficiency part af the proof,

Now suppose that B covers all the “1* vartices of f (i.e., suppose & is dispensable). Then

\é‘fﬁﬁ‘&; +i\1+"‘*&q=fmax=>{¢;+ﬂ}+fﬁ2+“‘+-ﬁq=\é¢i+¢j+ﬁ1 +hg + 0t Ay

Thusffromh=g+h< g h),

¢j—*\é’¢7§+ﬂ.1 '!'Az'i'"-i-ﬁq, =

The application of this theotem to the finding of implication relatiots among the prime implicants makes use
of a ratio chart like that of Ghazala (1} except that g additiona! colwmns, corresponding to Ay, Az, . Ay are
added. Just as in Ghazala's method for the completely specified case, “presence factors™ gy, 0z, - . -, Op ate de~
fined corresponding to ¢, 97, . - $p respectivety. The presence factor gy is1if ¢; is present in a given cover
and is O ofherwise. In addition, new quantities 51, 8y,. .., 8q, which might be called Ypseudo preseace factors,”
are defined corresponding respectively to 4y, Bg, < . ., Aq. The pseudo presence factors are handled exactly as the
presence factors are in deriving implication relations fram rows of the ratio chart, For example, suppose that in row
i of the tatio chart, the only irredundant disiunctions of ratios which are equal to | are Z—k + %“3 and %— + % .

T T ¥ L

Then the implication relation obtained from this row of the ratio chart would be
1
G > o1, T 684

This relation states that if ¢ is absent from & given cover, then either both ¢y and ¢ must be present or ¢y
rust be presant. Note that ¢, does not cover all of the “1” vertices of fyay covered by o4 but those which it
fuils to cover correspond to don’t care conditions covered by 4.

When the implication relations have been found, all the 3;s(=1,2,.. ., q) should be set equai to 1, and alt
terms which subsume other terms should be deleted. The resulting implication relations may be treated by one of
Gaines’ exact or approximate procedures far finding 2 minimal sum of products (23, or they may be treated by
Ghazala’s “presence function”” method for finding alt irredundant sums of produets (1)

For a simple example, consider a function f of three variables a, b, and c specified such that the prime im-
plicants of gy a1

$1 = ab,
Bz = ac,
$3 = be',
¢4 =b'c
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and the prime implicants of fy. are

As an aid to visualization, the Karnaugh map is drawn:

b
A
0 don’t care 0 1
a{] 0 1 don’t care don’t care

Q4

The ratio chart is as follows:

$1 P2 b3 P4 By Dy

ab  ac bd’ Be ab  a'bc

¢y ab . c ¢’ 0 1 0
3] ac b . 0 b b 0
¢3  be a 0 . 0 a 0

¢4 b'c 0 a 0 . 0 a'

The chart yields the following implication relations:

¢
61 > 0303 + 4§y,
0,2 0104 T 040,
03 >0,

0;1 40252.

Setting all 8;’s equal to 1 gives

o1 =1,
U;Z 04,
o3 >0,

L
Ggq > 0.

Using g=>heg +h=1 yields

O'1+l =1,
o2 tay =1,
03 +0 =1,

04+top =1,

all of which must be satisfied simultaneously (1). Thus

L=(a, +1)02 +04)(03 + 0)(04 +0y) = 0203 + G304

. S
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This indicates that there are two irredundant covers for I:

f=¢, +d3 =ac+bd,
f=d¢s +¢5 = be' +b'e.
Note that ¢, which consisis entirely of don’t cares, does not appear.

A second example shows the application of this methed to a more complicated situation and also iltustrates
that an uredundant cover is not necessarily minimal. Let f.a function of the four variables a, b, ¢, and 4, be
specified such that the prime impticants of fiay are

¢y =ab, 95 =b'c,
$y =a't, #s =b'd,
¢y = ac, ¢y =c'd
¢4 = ad,

and the prime implicants of f{4. are

ﬂ} = Hhﬁr, 54 = Qld,

52 = a’b'c', As = b'Cd;.

ﬁ3 = ﬁrbfi}?,

As an aid to visualization, the Karnaugh map is drawn:

<
[ — g
domn’t care don’t care 1 don’t care
0 don’t care a Y o
don’t care don’t care 1 i
a
o don't care 1 don’t care
T
d

The ratio chart is as follows:

¢y ¢z @3 B s P+ &y it} by By DBy

ab a'b’ ac ad bc bd cd abe a'b'c’ a'b'd’ d bled
$; ab : 0 el d gtotcdy o & 9] gddl O
¢4y ¥ O} - 1038 ¢ d jcd| 0 ¢! d 1 dal ed
¢y ac (b I O d 1 bibvdi © ) 0 0 0 |l o'd
dg ad | b O [ ¢t el B L L 0 0 ¢ g
ds bel 0] & jajadl - d | O o 0 a'd" | 0 d
¢ bdj 0| a facla c U N a'c’ ] ¢ 4]
dry cdlabja® | 0 a o v . ab a'b' 0 [ 0
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The following implication relations are obtained (if this were programmed for a computer, Ghazala’s “‘cracking™
method could be used (1)):

o1 > 038y,

03 > 058y + 0683 + 058785 + 058384 + 050783,

03~ 0105 + 010485 + 03 0g 85,

04 > 0105 + 0307 + 0384 + 010507 + 010554 + 030451,

05 ~> 0303 + agds + 030683 + 0204 s,

06 > 0204 + 0507 + 0584 + 04055 + 020307 + 020384,

U:, - 04,
Setting all &;’s equal to 1, deleting terms which subsume other terms, and constructing the presence function gives

[={a) +o3)o; + a5 +0g)o3 + 0105 + 104 +0y06)
(04 + 03 + 0105 +0)06)05 +0g + 0303 +0304)
*(0g + 05 +oy03 +a204)(07 +1)

=0105 T 0105 T 0303 + 0305 + 0305 + 010304,

Therefore, the six irredundant covers are

f=¢) +0¢s =ab +b'c,
f=¢,+¢s  =ab+bld,
f=¢s+ds  =a'b +ac,
f=¢3 +¢s =ac +b'c,
f=¢3 + g =ac+b'd,

f=¢ +¢2 +d4 =ab+a'b’+ad.
The last of these is not minimal,

In general, the minimal covers form a subset of the irredundant covers. Thus this method yields all minimal
covers plus possibly some additional nonminimal irredundant covers,

AN APPROACH USING PETRICK’S ALGORITHM AS ITS BASIS

Outline of the Approach

This section will approach the covering probiem from a different viewpoint than the preceding section. Instead
ol starting with a generalization of Quine’s test for dispensability, this section will take as its starting point a cover-
ing problem defined in terms of a generalized basic cell matrix. First, a matrix A, which can be gny matrix whose
elements are taken from the set {0, 1}, will be defined together with a function f1 and a function f;. Lemma 1 to
follow will show that fy, which is computed by Petrick’s (4, 5) method (expansion by columns) is identical to f5,
which is computed by expansion by rows. This result does not require that A be a basic cell matrix. Then, how-
ever, A will be specialized to be a generalized basic cell matrix. A generalized basic cell matrix is less restricted than
a conventional basic cell matrix in that the terms associated with the columns are not required to be vertices but
may be cells consisting of several vertices. With A reinterpreted in this manner, f; will be shown to be the presence
function computed by Petrick’s algorithm. Next a modified generalized basic cell matrix W, which contains Aasa

-~ -




submatrix, will be defined, and Lemma 4 wilt show that a function g; can be defined on W such that g, twith cer-
tainm arguments set equal to 1) equals {;. This g is the Petrick algorithm expansion for W. Then a function g2 wilt
be defined on W, and the proof of Lemma 5 will show that g; = gy. Finally, a modified ratio chart will be defined
together with a function hy which the modified ratio chart generates. The proofs of Lemma 7 and Lemma 8 will
show that ho (with certain of its arguments put equal to 1) is equal to ga (if the corresponding argunments of gy are
set equal to 1)

Putting all these results fogether, one ahtains the following: Given any generalized basic cell mairix, it is pos-
sible to construct a modified ratio chart such that the presence function generated by a modification of Ghazalas
algorithm is identical to the presence function generated by the application of Petrick’s algorithm io the original
basic cell matrix.

Motation

If $={s1,82,--» 5o}, then gIb(S) meanss;” $2°"Sq and lub (§) means sy +83 ... ¥ 5q. If the ﬁg}ib and lub

are taken over some index set I, then the symbols /E\I and \é{ are used respectively. The symbol /\ means
m § {

i=1
AN and the symbol \/Z means _ .V
s

i€{1.2,.. ., m} €{n, 2. .m}
Let A be any m by n matrix consisting of elements ay;, where 2 = tora; =0(L <i<m, | <j<n),and et

Fa= {kil <k < nand, for some i (1 < m), dijg = }},

Gy = {klag =11 <k <m},

181,02, .. Tm) = /\ (v Gi>,

=F, iEGAj

5 = {f}; B £ U Gm}:
P(5) = set of all subsets of a given set §,
H; = {glb(X)kXEfP(S} and, fori=1,2,..., 10

1€ Gy = aakex;:kesﬁj},
m
fa{oy, 02, . - = Tn) = /—\3 fub(H; )

it should e noted that fy is an expansion by columns and {7 isan expansion by rows.

The Approach

Lemma 1: {; =13
Proof:
{Part 1) Suppose {; = 0, then 3} such that G A is nonveid and

Vﬂi=0.

EGAj
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This implies that if i &€ GAJ., then o; =0. Since GAj F ¢ thenJL, 1 €8<=m,> L E GAj. Then H, = {0}, for,
by the definition of H,, every “X” must contain a oy such that k € GA]., and this means that every *“X* must con-
tain at least one element which is zero. Therefore glb(X) = 0 ¥ X. Thus lub (Hy) = ¢ which = f3 = 0. Therefore

fij=0=f, =0,

(Part I1) Supposef; = 1,thenforj=1,2,...,n

i< GAJ
Thusfor j=1,2,...,n3 ¢ EGAJ. 2 oy = 1. Then forevery i{(i=1,2,..., m) it is possible to construct an *“X"
(See the definition of H;) such that glb(X) = . The construction proceeds as follows: Start with X = ®. Then for
i=12,...,n add o to X, where R € GAJ., such that o =1 (it having been shown that such an £ exists for every

). This construction automatically satisfies the requirement that i € GAj =doy EXDkE GAJ.. Then since X
consists entirely of ¢o’s which are 1, gIb(X) = 1.

Thus ub(H;)=1 for i=1,2,..., m, and this implies f; = 1. Therefore
fi=1=1f,=1.
So, from Part I and Part II, f; =f,. =
Let A be an m by n generalized basic cell matrix with terms 1, 92, .. . ¢, associated with each row in the
order given and with terms U, U, . . ., U, associated with each column in the order given. The elements of A
are defined as follows:

(aj; = 1) # (B > ¢;), ajj = 0 otherwise.

The terms must conform to the following restriction: v i< {1, 2, .. ., m} and V j€{1,2,.. .,n} exactly one of
the following two statements must be true:

U= ¢,

O g,

With A defined in this manner, define f 1001, 02, . .., 0,) exactly as before, This fy is the presence function
generated by Petrick’s algorithm (4, 3). ‘

Let W be a “generalized” basic cell matrix, defined as follows:

Wisa p by q matrix with elements wij, Where p=m +rand q=n+s and where wij=0orl. Aisan mbyn
submatrix with elements a;j, Bisan m by s submatrix with elements bjj, Cisan r by n submatrix with elements
cij, and D is an r by s submatrix with elements dy.
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The rows of W are associated with terms &, @2, . . ., ®m, 51, Aa, ... 4 in the order given. The columns of W
are associated with terms 0, &h, ..., U, V1. V2, ., ¥y in the order given. These terms must conform to thie
following restrictions:

RlI: B+ 8+t T, +V #Vy+-- -+ V=0 SRR

RzZ: V‘[+V2+--'+VSEA1 +A‘:}_+“‘+ﬂg,

R3: (B + 8y 7+ -+ Uy - (Vp +Va +- -+ V) =0,

Ré: fet xE{T:. B2 ..., Ba, ¥1. V2, .. Vi,

ye{¢}=¢2$’ --.“;&m} &15&2:' . wér}-
Then exactly one of the following two statements must be true for given x and y.

XY,
x>y

(I.e., either y covers afi of the vertices of x, of it covers aone of them. In the usual case,
where each column term is 2 minterm, thisisa trivial restriction.}

The wy are defined as follows: Let x be the term corresponding to the jth cotumn of W and y be the term
corresponding to the ith row of W. Then

{wy = )= (x~y)

wy =0 otherwise.

Define

E{F1. . o e Peds - - o0 Hp) T /\ (vv) R

JE Fy \i€Gw

wherg

F, ={kil <k<p and, for some i, Wik = 1},

Gy ={ kIt <k <q and wy = 1}.

Lemma 2: Af elements of submatrix € are zevo.
Proof; Suppose ¢; =1 for some ij(l<isr,1<jsun). Then

g_gj —)Aiﬁzjj i :ﬂj~
But restrictions R2 and R3 require
(T9 + Bz +- V) (B 82+ +A) =0,

which is inconsistent with the above, since 15; = | would imply that this product = 1. Therefore there would be a
contradiction. ®

Ltemma 3: Everv column in submalrix D contains at least one 17
Proof: Suppose thereisa j{l <}<s) such that dy =0 for i=1,2,... 1. Then from restriction R4
t

Vi Ay, Vb, Vo D
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or equivalently
Vi = Ay A = (A Ay +0 -+ A
But this says that
Vi=l=4A+A 4+ -+ A, =0,
contradicting R2. =
Lemma 4:
(01,00, .., 00, 1,1, ., )=1(01,09, ..., 00).

Proof: Fy can be partitioned into two sets F4 and F5 where F is defined as before and where -
Fi = {klk €F, butk ¢ Fa}. Then

JEF Gy JEFx 1SGyy
But from Lemma 2, if »;=03(i=1,2,..., m), then
_/\ v v = /\ v oi| =f1(01, 02, ..., 0n),
JEFa EGW} S Y ‘EGAj

and from Lemma 3,if ;=1 (m+1 <i < p), then

A (v) .

i€rx \iSGy,

So
g1(01, 04, .., 00, 1,1, ., )=1(0y,09,..., Om) * P =fi{0y,00,...,05) ® _

Let T={v1,»,,..., vp} andlet P(T) be the power set of T (the set of all subsets of ). Define

T ={YlYEP(Dand, forj=1,2,.. . q, 1€EGy =3I R EY 2k €Gyw,},
Ki ={glb(Y)Y €3;},

p
201, V21 - oy Dy Vit -+ 23) =/I\ lub (K;).
Lemma 5:

gl(Vlal’z:- ¢ -:Vp)ng(vlsVZa- - -:vp)-

Froof: The proof follows directly from Lemma 1 with g1 substituted for fy, g; for f,, p for m, ¥ for 6;, Gy. for
Gaj, and K; for 1. = ' !
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Define

(i'J;,E glé]’ﬂ,
Bi =

At Sisp,

lur=sisa,
Vj_n,ni‘léjéq,

0y = {B 2},

1, = {zlze¥(T)yandf;~iub VAL

Lemma B: ji = L'}.
Proaf:

(Part 1} Let y€J;. Then y £9(T). Suppose § = 1. Then by restriction R1 or R2, Jilsisq== i
This  cannot be such that w;; =0, for if it were, restriction R4 together with §; = i would require that G=ler
B =0 Therefore j mast be such that iE ij. But, from the definition of J;, this requires that y contain a ¥y such

that k&€ ij., ie., such that wy = 1. Thus Qfy} must contain a B such that ;= 8. But since g=1, then By
must equal 1. So, lub [Q¢y)] =1, Hence, 8 =1 requires that Iub [Q{y)l = 1. Thus & - lub FO{yy}. Then
vy € L;. Therefore

ye.ﬁﬁ'yELt.

{Part 1) Nowletz 1, Then zE P ¢T). Further, i~ tub [Q{z)}. Suppose that for some §, wi; = [, that
is, i€ ij. Then &; — . Hence, by the transitivity of the implication relation, gy~ lub 1Oz}, Then Q{z} must
contain a B such that 6~ By, for if no such By €EQlz) existed, then restriction R4 would require that
g; = the complement of every member of (J{z), that is, that §;—» the conjunction of the complements of the
members of Qfz), oz in other words (using de Morgan's flaw} that g~ (lub Q2] Y, which would be a contradic-
tion. Thus, since §; » g €Q(z), then ¥y cz and wg; = 1,ie., k ‘Eij- Thus, z € L; and
= ij =3y Ez:2KE ij. Therefore

zE Li =z ;i-
Combining this result with the result of Part 1 vields
ji = Li‘ =

Let Ghazala’s ratio chart be constructed for the terms B, 1<i<p. Chazala has shown {1) that the presence
function which this ratio chart yields is

P
h(p1, P2, - - o Pp) =/_§Iub ({gb(DZ E Li})-

Lerma 7
hil¥1,¥2, - - VP} =gV, Y2, - - o v?).

Proof: The proof follows directly from J; =1, (Lemma &) ®
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Define

ho(vy, vy, ..., p) = /} lub ({glb(Z)|Z € Li}).

This is the presence function generated by a “modified” ratio chart, constructed as follows: Start with a conven-

tional ratio chart for § =¢;, ] <i< m. Then without adding any more rows, add columns corresponding to

Bi=lim.m+l<is<p=m+r.

Lemma 8:
hl(Vl,I)z, e Vms 1, 1, . l) = 112(V1, Vo, 0 Vm, l, 1, . ])
Proof:
m p
hy(r,v2,. . 1) = [/} lub ({glb(Z)IZGLi})j| . [/}1 lub ({2l(Z)IZ € L;}}
i= i=m
v
=ha(ry,va, ..., Pp) - |:/}1 lub ({glb(Z)lZE Li}) .
1=11r
Since §; =+ §; for every i, then {vi} €L; foreveryi. Thusif vy =vpep=++-= v, =1, then

fub ({glb(znz € Li}) =1 for i=m+1,m+2,...,p. This means that

P
._/\1 b {gl(Z)ZEL;}) = 1.

Therefore,
hwv,va, ..o, 1, LoD =halvy,vg, .. o0, 1,1, .. 1) 1=ha(ey,wa, .., 0, 1,1, .. ., 1), ®
Theorem:
iy, va, o v) =ho(vy,vs, .. o, L, I,...,1).
Proof:

fl(.V],Vz, - I_’m)= gl(Vls P2, Vm, la ]: LTI ]) (Lemma 4)
= gZ(V15V2= LR} Vms l: 1, RS ] 1) (Lemma 5)
=hi(r,va, ..o, 1,1, .., 1) (Lemma 7)
=ha(wy, vy, . .Lvg, 1,1, 1) (Lemma 8), =
This theorem says that given any generalized basic cell matrix constructed for terms ¢, | €i<m, a modified

ratio chart which will yield a presence function identical to that produced by the appiication of Petrick’s algorithm
to the given basic ceil matrix can be constructed, where v; is interpreted to be the presence factor cotresponding

to ¢i-
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This modified ratio chart is constructed as follows: Start with a conventional ratio chart for ¢, I <i<m.
Then add r columns corresponding to Ay, Az, ..., B such that the following conditions {based on restrictions
R} through B4) hold:

CI: gi‘i—82+"'+25§3+£\3\} +&2+“'+.ﬁ15¢1+¢2+"'+¢m}
CL (T + U -1 Tl = (& thy o H 8 =0

Naote that one need not concern oneself with the terms Vi, V1., . Vg, since, given the terms Ay, fz. - o Bys
one can always find a set of Vy, V3, .., V; such that restrictions R2 and R4 are satisfied. (R4 is automaticaily
satisfied if each of Vy, V3,.... V, isa single vertex, provided that R4 is also satisfied by the original generalized
basic cell matrix. The original basic cell matrix will sutomatically satisfy R4 if each of the T 0n..0 0 B8
a single vertex.}

Apptlication to an Incompletely Specified Multiple-Qutput Problem

Bartee’s (5) method involves setting up a multiple-output table of combinations. For each row i which the
gutput section of the row is not all zeros, an “e” term is formed by writing each input variable primed or unprimed
depending on whether a Q or 1 respectively appears in the corresponding position in the row and by writing a
primed output variable if a zero appears in the corresponding row position or omitting the output variable entirely
ifa 1 or I {don’t care) appears. Pach row may also yield ¥¢” terms (the “care” vertices) constructed as follows:
Choose a particular 1 in the output section of the row and leaving that 1 as it is, change all other eniries in the out-
put section of the row to 0. Then write each input and output variable either primed or unprimed depending on
whether the carresponding row entry is G or 1 respectively. This is done once for each | in the output section of
the row. Rows which contain no 1 in their output sections generate no ¢ terms.

If a basic cell matrix is used to find the cover, the € and ¢ terms (and the ¢'s generated by iterated consensus on
the €’s) are the only terms needed. But if a modified ratio chart is used, then an additional term catied a “*d” term
is canstructed for each row not having all zeros in its output section as foliows: Take the elb of the set consisiing
of the € term for that row and the complements of ail ¢ terms generated by that row. (If the row generates no ©
terms, then d is identical to the e for that tow.) The d terms may be used directly as the &'s of their number may
be reduced and their length shortened by iterated consensus. It shotid be noted that d terms will always be gen-
erated in nantrivial multiple output problems, even if the problem is completely specified. Thus the d terms cannot
be regarded strictly as conventionat “don’t care” terms.

To conclade with an example, let Mx, vy and p{x, ¥) be specified as follows:

g
nollo
oriti
1ofti
ittol

The multiple-output prime implicants are

oy =y,
$2 = x'y,
¢3 =YX,
pg = XN,
$s5 = xy',

b =%t
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An acceptable set of A’s is

By =N,
Dy =x'y'u,
Ay =x'yu,
Ay = xy'Ne.

The modified ratio chart is as follows:

91 92 P13 dg s b A Dy Ay Ny

& Lol o= x| x| XN]x|o0o] o0
¢ Oj1 | AN]loflo|lpg(aM|loluio
@3 O [ x| 1| x |0 | ]| 0(xulo
¢a |YE|O| vy | 1]Y Wlo]o0o]o
Bs gl ol oAl O Ny 0 0| Au
b6 viliyviywWlojol 1l X1y |o]fo

Let o; be the presence factor for ¢; and §; be the presence factor for A;. Then

hy(01, 02, 03,04, 05, 06, 81, 83,83, 84) = (0] + 0506 +0587) * (03 +0g83)
* (03 + 0204 + 040683 + 048183) * (04 +0305)

Therefore
ha(0y, 92, 04,04, 05,04, 1, 1, 1, [}=0gyo304 + 030505 + 03,0404 t 010406 T 030505 + 040506,

For purposes of comparison, the basic cell matrix is constructed. The ¢ terms are

5 = x'yh',
T2 = xy'\e,
U3 =xy'Nu,
B4 = xyX'u.

The basic cell matrix is therefore

Ul UZ Uj U4

¢ {0 1 0 0

Il 1 0 c 0

¢31 O 0 0 1
A=

ds| 0O 0 1 |

ds1 0 1 1 0

¢ \ 1 0 0 0
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So,

£1(01, @3, 03, G4, s, Ug) = (07 + 0} = (0p +05) ~ (04 +05) (03 + 04)
=gy + 030405 T 030405 ¥ 010405 + O105d5 T 04050

=h2{51, 0z, 03, T4, Js5, U6 lr {r 13 }}

A TECHNIQUE FOR COMPUTING THE INCOMPLETELY SPECIFIED MULTIPLE-QUTPUT FUNCTION
WITHOUT RECOURSE TO A TABLE OF COMBINATIONS

Since the main virtue of the method using the modified ratio chart is that it does net require a canqunical
expansion, the calculation of € and d terms from a table of combinations largely offsets any advantage one might
hope to obtain by using the modified ratio chart method, especially if the incompletely specified multipte-output
problem is initially stated in the form of several incompletely specified Boolean functions which separately have
already been partially or completely “digested™ by the use of iterated consensus o some other means of deriving
nrime implicants.

The modified ratio chart method depends directly on the ¢’s and A’s, not on the 's and ds; so one would like
a technique for going from the separate partially digested incompietely specified Boolean functions to the multiphe
output ¢’s and A’s without having to pass through an intermediate step involving the construction of a multiple-
output table of combinations. The foliowing is such a technique.

Construct

; at .
Glmax(xta XZ, L an fly f’}.? Ay fm): v {( /\ EFimax{xli i Xﬂ) + h(ai}]) (fl e fmm)}

G s [ 1L

and

szc(xl’ K2y s Xns fI; fz, ‘e ey fm} = . t\/ [Fjdcf)(l_, AN Xn)f'i L f;_lf_tf;q-} =t f:ﬂ}
=1,

il PPN

+ V [((\ [Pt ) bt (57 *---fi“‘)],

&f,e0flm

where ot exactly
one 1 is blank.

where the Fy(xy,..., X5 i=1,...,m, are them separate incompletely specified Boolean functions (of the vaci-
ables Xq,. .., X5} which are being treated together as a multiple output problem. Fipuy COVETS those and only those
vertices of F; which are either 1’s or don’t cares. Fj, covers those and only those vertices of F; which are don’t
cares. The f5,i=1,...,m,are the formal symbols used in Bartee’s method 1o stand for the F;,i=1,.. . ,m, ¢
spectively.

The symbol g, =1, .., m, represents either a blank or a prime (*). The function hia;) is a two-valued func-
tion defined as follows:

0, a; = blank,
hia;) =

1, ;= prime.

V means the iterated disiundtivn performed over all possible camhinations of blanks and primes among the &'s.
[23 O S
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Ga(Xp, .. . Xn, f1, . . -, fiy) is the incompletely specified multiple-output function. That is, the prime impli-

cants of Gy, are the ¢’s, which are the multiple-output prime implicants, and any set of terms whose lub yields
G4, constitutes an acceptable set of A’s.

Instead of defining G, by specifyving G20y 2nd Gy, , one could define G; by specifying G2pnax 20d G2yine
where G2 18 that function which covers those and only those vertices of G, which are 1.

The incompletely specified multiple-output function which Bartee’s method vields is defined as follows

Gip (K15 X24 - -+ oy Xp, T3, 2, .,fm)=ﬁ\/ﬁ ([ 1/\ (F;max[h'(ﬁl), N () +f;)] (xfl . an) )
Tsrenln | [=1,...,m

Glmj_n(xls X3, . - o5 Xp, 1, st SR fm) =

\/ [_A (Fimin[h’(ﬁIL fe h'(ﬁn)]
ﬁlv---a@n F1,...,n

xfUxB g i1 fiffey - - - fr'n)]

In the next subsection it will be proved that G, and Gy are identical and that G, de is what it was previously

stated to be. Following the next subsection an example of the application of the technique to an incompletely
specified multiple-output problem will be given.

Proofs Concerning Gy, G, and Ga dc

Lemma i:

Grp =0= Glmax =0
Proof:

szax= 0 = |:(=1A [FI(XI, .y Xn) + h(ai)]) (ff'l ... f[?-?n)] = O

viag, ... an).

In particular,

[(i:l{}m[Fi(XI, Ve, Xg) F h(fi)]) (ffl o f.im)] o

where {y,...,{, are such that (ffl s f,f,n}) =1. Then
Ik, 1<k=m, > [Fe(xy,..., x,) + ()] = 0.

This = Fy(x;,...,%x,) =0 and h(t)= 0.
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B 8 , & B
Now suppose Bi, ..., 0y are such that x; -~ xﬂn =§. tThenthetermof Gy containing X3 - X, 80

and therefore need not be considered further from the standpoint of this lemma. The terms of G; which should be
Bn

B
considered are those for which fi, ..., By are such that xll RS e’

g 8
H xll --‘xﬂn =1, then

(WB), .. W)= (xr, o s Xaks
because
x; = 0= f = prime = Rigy=0
and
x = 1 =§ = blank = KBy =L
Inatermof Gy for wliich xfl o xfn =1 consider the {actor kam{[h'(ﬁ}), LW ty. From the im-

mediately preceding argument,

N 778 WS 1 (c ) o SHRICC STRPRYS SV 5

But it has atready been shown that Fi (%1, .. - %) = 0. Moreover, it has been shown that h(f =0, and this
= fy =0

Therefore, every term of Gy, which is not rendered = G by xfi s xf" is rendered = O by
Fro B, . - W (Ba)} + fic. Therefore
Goppax = 0= G1pgax = 0 =
Lemma li:
CINED T O i.
Proof:

o= 1 2 3C1 - o lm) 2

[(/\[ﬁmmb”“xﬂ+mmgﬁﬁu-ﬁﬂ]:t

i=1,...m

This = (flgi .o fim) =1 and
(_=L/\ [FiadXts o Xa} h‘ié‘i)}) =1,

Y prime, f; = 0,
Bm(ﬁvaﬁ)ziﬁrg = !
blank, f; = 1,

t
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Therefore

.....

Now let (pyq, ..., pa)} besuch that

prime, x; = 0,
blank, xj = 1,

e o
Then xll <%y =1 and h'(pj) = x. Therefore

Fimax[h'(pl)a A h’(Pn)] = Fimﬂ_x(xls = Xn)-

But it was shown that

A [Fimax(X1 - > x) + 1= 15

i=1,....,m

therefore it follows that

/\m( Finax[N'(01); -, h'(on)] + fi') =1

i=l,...,

So, there is at least one term in Gy e Which = 1, namely,

(A (Funs 100, . W Go)] 46 ().

L,...m
Therefore G, = 1= Gy, =1 ®
Lemma IlI:
G2nax = Gl
Proof: The proof follows directly from Lemmas I and II. ®

Define

m
GapmieXLs - « -2 Xy 1 - - -, Bin) =¥[ijin(x1, s X2 Bl -+« fpaf].
Now

szc(xla Xz; ey xn: fl» fz: R ] fm) = sza_x(xl bl XZ, R ] xn: fl’ f2: b § fm)

" Gyl X1 X2+« oy %o, 1, T2, oy £i)




.
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&1, B LAFL

-V K AN F (%) h(cn;}}) (Efl e ff:“)]
SN IR AR R TR

= v [( /\ £F§mﬂ{){1, ‘e Xn) + h(&l}}) (f;ll e f:tm}]
1,00 LA

'(j“l/[\\m{i:jmin(x}’ ce Xa)EL - e *';-1551}')

-V K /\m{Fimax{xi,...,xn}*h(ﬁi?‘})(ffl"'E::rm}l

Q1,een, @i LNFL 0
/\. ! i oot Lt T
ot [FipinlX15 - - » Xa) T f + 12 - 1Hf P

=t

= \/ ( /\ [F;max{xi,...,xn}-i-h{ai}}

[+ AT 48 5 PO

AN TR TS VR BN Y
=i,...n e

@1 & m
+hig)+ h'(ajﬂ) + e ¥ h’(am}} (fl SRR ™ ))

= v /\m (Fimax{xi’ B xn}F}mgn{xi: R,

a;,,,.}am[iﬂ,...,m [ T

+ Py (xq, . xp)R@py + o+ RGEn) ke + W)

ot W]+ h@)F (K1 - - - xa) + Blen[h'ien

+oc+ htag) g R F h'{am)}) (fiEI e t:m)]

= {} +a1,.\.'{am{”}

Q1yeenslm

where exactiy witere not

one it is blank exactly one
@ is blank
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al lm m o j=1,.

\/ (/\ /\ [Figy81 -+ X0 Py K1, - - %)

where exactly
one @ is blank

+ Fimax(XI: .- Xn)h(aj) + h(al) _]]-mn(x].: L] xn)
+ (a;)h(ay)) (ff T fma“’))

+ \/ ( /\ VAN [Fimax(xl,..., X0 )P (X1, « - o5 Xn)

a1,-..0m \i=1,...,m j=1,...,m

where not
exacily one
a is blank

' a1 am
+ Fina(X1s + + o Xn) + W@)F (1, - . ., Xp) + h(a;)] (f; oy

\/ ( /\ /\ |:F"max(xl’ v Xl’1)1:"-{mi:1(xl’ <+ Xn)

al» cam§=1,.
where exactly
one @ is blank

+ FipaX1s -+ Xadh(g) + h(@)Fj (X1, - oy Xn)

ay &m
+ hiajh(a;)] (fl SR ) ))

\/ ( /\ [Fipay (X1 - - - %a) + h(a)] (ff‘---fi“‘))

CLI,

where not
exactly one
@ is blank

Lemma IV:

( /\ /\ [Flmax(xls .+ o Xp)F, ]mln(xl’ ¢« - Xp)

Q1 Om\iFL .m0 =1,

where exacily
one & is blank

+ Py (KL - - X)) + h@)F) (x4, . . ., Xa) + h(ah(y)] (ff” - f:'“))

v [ jdc(x17 ey xt’l)flr e fj’—lfji:],-l-l Tt f;n].
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Proaf:

{Part I} Suppose

V (P /\ /\ [F[mu{xl, . \(R)ijm(x}, B |

Ay, IR I o
where exactly
one & is blank

“m

¥ . at .
+ rlmﬂ‘xl'u -4y xn)h(aj) + h(“i)ijin(xia BT Xn} + h(&l}h{ﬁ}}] (fi e tm )) = 1.

Then 3 an integer k, 1 <Kk<m, =

/\ /\ {F,M(xl, c o Xn)E

.m }_ }min(xlw L xn}

" oy
+F s X)) F @] %o - o ¥t hiayhia;)} (gz SRR I ) =1

and @y = blank, all other a’s = prime.

But this implies that the expression in brackets must = [ ¥ i, i, where i=1,...,m anc j= b, ..., m. Inpar
ticular, the expression in brackets must = | for 1 =j= k. Furthermore, ] - fk_lfkfg-t-l =1,
Thus

P[P O o S0Flgkn oo ) Frg Xy Xahlag (@ F ki X1 - - -» Xn}
+ hahtagy} {510 fearfifiens - fin)
= D10 - - o X0 Pl K15 -+ X0+ P 061, %) O
YO Fo (X1, xa) + 0 O (E] - fkaafifin - )
T (%0 - o Xa) P - s %} flecafidion -~ i)

= Figd¥1, - - o Xa) (fy - fietficfies - - fm)

Since k is an integer such that 1 <k <m, this = A\ (6 (Xts - oo X)L il fll = L.
j=1,...m

Thus

\/ ( /\m }_/\ [F*max(xh”-}xa)ﬁ!mgﬂ{x;,-..,xn)

[+ 2 FURTRT: TV Rk SPPTR

where exactly
one & is blank

¥ B %0 - o Xh(ap) + RE)F (K1 <o Xa) ¥ hai)h(e;) (f(tll o fim)) =t

V [Fjdc(x], e X f;ﬁlfjf}.’ﬂ N -1

Fh.ooom

This completes Part 1 of the proof.




NRL REPORT 7028 21

(Part I1) Suppose

V[ xat] o g =1
j=1,...,m

Then 3 an integerk, ]l <k <m, =
b= dec(xla BICIET xn)fi et f]’c_lfkf1£+] s f;n

= P (X1 -« o Xn)FlinX 00 - - - Xn) {1 - feeafifier - - - fm)

Since k is an integer such that 1 <k < m, this =

v ( /\ /\m[F;max(xl, e xn)Fj'min(xl, cea X))

A1, lm \i=L,.m =150

where exactly
one ¢ is blank

al Qi
+Fi (X1, Xodh(e)) + h(@)F] (X1, . . o Xn) + h(ay)hia)] (f1 RN )) =1.
The preceding statement may be seen to be true as follows: First note that
1= FrpodX1s - - o Xn)Figin(X1, - o Xadf] - - ficfificns  + +
= FraX1s - - o Xn) = Pl (X1, o %) = £ fieafiefiny - - f = 1.

Then consider the term such that ay = blank, all other a’s = prime. One factor in this term is
a a
fll e f = 6] -+ feorfkfis - - - fin = 1. The remaining factors may be partitioned into four cases. T.

is i =j =k, in which case
r '
Fimax(xla LR S Xn)ijin(xla LRI xn) = Fkn]ax(xla S xn)kam(xla RS | xn) = 1'

So, the factor belonging to this case equals I. The second case is i =k, j# k. In this case, a; = prime, so h(g;) =1,
Then :

Fimax(xl1 L] xl‘l)h(aj) = kaax(xl’ RS ] x!‘l) * 1 = 1*

Thus all factors belonging to this case equal 1. The third case isi# k, j = k. In this case, a; = prime, so h(a;) = 1.
Then

h(@)FfX1s - o Xn) =1 = Fi (X1, -2 %) = 1.

Thus all factors belonging to this case equal 1. The fourth case isi+k, j % k.- In this case, @; = a; = prime, s0
h{a;} =h(a;) = 1. Then h(a;)h{a;) = 1. Thus all factors belonging to this case equal 1. Since all factors belonging
to all cases equal 1, then the term under consideration equals 1. Thus, the expression of which this term is a part
equals I,
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Thus,

H\/m[Fjdc(xi, RIS IR Y A R A L

= \/ ( /\ /\ [Fimax(xl,. . xn)F}mm(x;, s Xa)

I, el WL Bhoom

where exactly
one 4 is blank

, oty a

FF (K1 o 3O + (@ Fj (X1 - %)+ h(eoh(ep)] (fi x -tﬂ:“)) = 1.
This completes Part I of the proof.

The lemma then follows directly from Part 1 and Part fi. =

801

GagX1s K2« - o> %o By T2 o f) = ;\/ [Fig (k1o - o Xt =+~ Ftfifler =+ fo)
i=h,...m

+ o Va [( t/\ [F;max(xl, LX)t h(ﬂiﬁ) (ffl o fim)] -
1ooeslm [AF L. 00

where not
exactly one
@ is blank
Lemma V:
sziﬂ(xia <oy Xns f} yom - 43 fm) = Glmin(x-la EIT O fla vy fm)-
Proaf:

(Part 1y Suppose Gy (X, .. - %o, £1,...,fm)= 1. Then 3 an integer k, | <k<m,andaset {a}, . an} =

r 7 a1 a [ H P
Fignlh (@1), <, 1 (ana}(m © X ) fifs - featfifier - fm = 1.

ai a ) o, ,
But this means x; - xﬂn=1,whxch='{h @, .. e =0ag,... Xg ). So

ar @ o
Fiopd Xt -+ Xn}(xi Tt Xp n)f;fz N AT (TR A
¥t foliows that
kain(xl’ < Xﬂ)f’l T f]'c—lfkakH T f;n =1,

where k is an integer such that 1 <k < m. But this=

m
1 :\;:{[ijm(x;, Cees xn}f; S fjj_ifjsz.l s f:“}

:G'me(x11 sy X‘nr f}: Lo fm)-
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850 Gy =1=2Gy ;= 1.
This completes Part I of the proof.

(Part IT) Let &y,..., ¢, besuch that

i

prime, x; = 0,
blank, x; = 1.

4 ¢ ' ' i =
Then xll s xnn =1 and (x1,..., x,) =[h 1) -...h ({n)]. Suppose GZmin(xl’ vo o Xn, 1, ., )= 1. Then
Jan integer k, | <k < m, 3t

1= Fig(X1 o %1+« i By - -
f § ,
= FrpinXis « - - Xn)(x1 s Xnn) £ - feafefier < - - iy

f § i’ ' r
= Frulh' 1), -, h'(fn)}(xll e Xnn)f1 co fiafiliey <o fy

But this is one of the terms in Gipin (X1, . o X, 1, .. o, T). So

Gy 1 =Gy =1.

min min

This completes Part 1T of the proof.,
The lemma follows directly from Part T and Part II. =

Theorem: G, and G; are identical,
Proof: The proof follows from Lemmas I1] and V. m

Example of Application of the Technique

The remainder of this section is an example of the application of the technique for computing the incompletely
specified multiple-output function without recourse to a table of combinations.

Let the functions K, L, and M of the variables X, ¥, and z be specified as follows:

Knux(X, v, 2)=x'z + xy'z" + x'yz',
Kaclx, y,7) =x'y +x'y'e,

Loax(x, vy, 2)=xy' + x'yz',

Lac(x, v, 2) =xy'z +x'vz',

Mumax(X, ¥, 2)= xy'z'+ y'z + X'y + xyz,

Mac(x, y¥,2) =xy'z’ +x'y'z + xyz + X'yz'.

Let &, &, and p be the Bartee’s method symbols used to represent K, L, and M respectively.




.
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The muitipie-output function Ga{x, ¥, 2. K, X, #) is constructed using the formulas devetoped previously:

G ¥a 2,06, N, 1) = 1N g
+ Mpad X, ¥, 2KN
+ Lo £X, ¥, 20 A
+ Lonand X, ¥ Z0Mpmax(, ¥, 206 Apt
+ Konax(%, ¥, 2R
+ KmaxlX, V> ZWMmax (X, ¥, 2)6A 0
+ Konax(X, Vo Domax(X, ¥, 2K

+ Kopan{%, ¥, 2} mad%, ¥, 23 Mpaxix, v, TN,

Gogo (%, ¥, 76, M 1) = K'Np

+ Mgolx, v, 2K\ it

+ Lgo(x, v, 2 A’

+ Linax(% Vs 2 MmaxdX, ¥, 2K AR

+ KgolX, v, 20N

+ Konax(5%, ¥y DM pmax(X, ¥, 2N 3

+ Komaxk%, ¥, 20 man(X, ¥, 20N

+ K a6 ¥ 2 max( % ¥, 2Mpax(X, ¥, ZIKNE.

The prime implicants of Go ., that is, the multiple-output prime implicants, are

f,‘t?l = XIZ}\:
By = X'y,
¢3 = x'yz’,
¢y = '\,
¢s = xy'r’,
dg =xy'z’,
¢? - thl‘{ll.
A cover for Gy, is provided by the terms
&y = x'y'zh,

As = Ky,

Ay =x've,
Ay = xyz'N,
Ag = Xy'ZHON,
bg = xy'2'R,
Mg = kAW,
Ag = xy'z'Kh,
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The modified ratio chart is as follows:

é1 ¢2 P da 95 ¢g oy Ay Ay Ay Ay A5 - b A g

&y 1 y 0 ' 0 0 | k'u | ¥ yK 0 0 0 0 k' 0
@ z 1 z' zK’ 0 0 1 k'u 0 K z' 0 0 0 K'y 0
@ 0 N 1 0 0 0 {kAu'| 0 kN | 0 0 0 | KAy o
Py x' X'y 0 | xy' 0 o x'y' 0 0 Xy 0 0 Ty 1]
@5 0 0 0 zA' I z' | A 0 0 0 0 ZA | z'm | Ay 0
g 0 0 0 0 &' 1 1e'Nu'| 0 0 0 0 0 TR "2 ATR IS X
g7 | xz | x'v | x'yz' | =z xy' [xyvz't 1 [x'yv'z| O [x'v2'| xye 0 0 1 0

Let p{oy, 02, 03,04, 05, s, 07, 81, 82, 83, 84, 85, 86, 87, 83) denote the presence function for Ga(x, v, z, k, A, 1.
Then, from the modified ratio chart,

P(O1, ... 07,81, .., 88) = (0] + 028 +048183) < (0n + 0105 + 0183 + 03048 +048283) * (03 +83)

(04 + 010584 + 020581 84) * (05 + 040585) * G (07 +8).
So

p(01,02,03,04,05,06,07, 1,1, 1,1, 1,1, 1, 1) =(0y + 09 +04) (o +03 +04) 1
{04 +0105 +0705) * (05 +0405) <05+ |

= 01050 + 03050 + 0405 .
As a check, the basic cell matrix is constructed: The ¢ terms are
Uy = x'yze"Nu, Us =xv'z'x ',
Uy = xy'z'Npy, Uy =xy'z'ed’n.
Then the basic cell matrix is

T, U, U; U,

61 1 0 0 0
$2 1 0 0 0
63 0 0 0 0
b4 1 1 0 0
@3 0 1 1 0
b6 0 0 | 1
b7 0 0 0 0

The presence function obtained by Petrick’s algorithm is then

(0y + 02 +04) * (04 +05) * (05 +0g) *0g = 010505 + 02050¢ + G40¢.
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