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ABSTRACT

Multiple interleaved arrays of waveguide radiators have
been analyzed at different frequencies. The approach is a
generalization of the analysis of an infinite array at a single
frequency. The presence of the low-frequency elements af-
fects the radiation characteristics of the high-frequency
elements and generates grating lobes which do not appear in
a single-frequency array. Furthermore, power is coupled
into the low-frequency waveguides when the high-frequency
elements are excited. Numerical examples are presented
which show that these effects are not severe. The analytical
expressions reduce correctly to the single-frequency array
case and satisfy the principle of energy conservation.

PROBLEM STATUS

This is an interim report on one phase of a continuing
problem.

AUTHORIZATION

NRL Problem R02-33
Project SF 11-141-005-13628

Manuscript submitted January 13, 1971.
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ANALYSIS OF INTERLEAVED ARRAYS OF WAVEGUIDE ELEMENTS

INTRODUCTION

A phased-array antenna, capable of operating in several frequency bands, may solve
numerous problems encountered in shipboard and airborne radar systems. To obtain the
best performance possible, the use of phased arrays is desirable in systems which per-
form several functions, such as surveillance, tracking, and guidance. Because each of
these functions must be performed at optimum frequencies, several phased arrays are
needed, each of which may require a sizable aperture. With the limited antenna space on
ships and aircraft, this is quickly seen to be impractical. In the past, the problem of
limited space has forced the use of a compromise frequency for multifunction radars and
has resulted in degraded performance for some functions.

An ideal solution to this delimma is a single-phased array capable of simultaneous
operation at several widely spaced frequencies. Realization of such an array presents
difficult engineering problems, whose solutions are not known at the present time. The
next best approach, which appears more feasible, is the integration of several arrays,
operating in different frequency bands, into a common aperture.

One approach to the design of such an array is shown in Fig. 1. Actually the aperture
contains two arrays, one for a high-frequency band and the other for a low-frequency
band. The waveguides are loaded with dielectric material to reduce their sizes, so that
both arrays can be fitted into a single aperture. The purpose of this report is to show a
method for computing the active admittance of such an array and also to analyze its rad-
iation behavior.

UNIT CELL

Fig. 1 - An interleaved array and the unit cell associated with it

Note: Part of this work has been reported in the 1970 G-AP International Symposium,
September 14-16, 1970.

1
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DESCRIPTION OF THE PROBLEM

One important feature of the interleaved array is that it is composed of a periodic
structure and each period (henceforth called a unit cell) contains several different radia-
ting elements. To simplify the analysis, this array is assumed to be infinite. The infi-
nite array approach has been shown (1) to yield a reasonably accurate and simplified
solution to the problem. Arrays of this nature have been treated previously (2-4). How-
ever, all of these studies are limited to the case in which each unit cell contains only a
single element. The contribution of this report is then to extend the previous work to
cover a-more general case.

If the array is assumed to be infinite, field distributions in each unit cell are then
identical; however, fields inside each waveguide in each unit cell are not necessarily
identical. Therefore, the fundamental problem is to find the exact field distribution at
each of these waveguides. Once this field is known, the active admittance of the excited
mode and other pertinent parameters can then be determined. Since the fields in a wave-
guide are characterized by its modal functions, the problem is then to find the amplitude
of each of these modal functions including both the propagating and evanescent modes.
There are many approaches to this problem. The approach used here is the application
of the concept of a transmission line (5). Since the fields are identical in each unit cell,
each unit cell can be viewed as a transmission line with a discontinuity at the array face,
but the transverse field must be continuous across this array face. Furthermore, the
fields in the radiation region can be characterized by a set of modal functions as shown by
Marcuvitz (6). Hence, by using this boundary condition and the known modal functions in
both regions, a set of simultaneous equations can be formulated which can be used to solve
for the amplitude of the modal functions either inside the waveguides or within the radla-
tion region.

Several observations may be made about this array. First, since the array discussed
here is a linear system, the response of this array to different frequencies can be solved
separately by the superposition law. Second, the high-frequency waveguide is below cut-
off when the array is operating at the low frequency; hence, these elements affect only the
imaginary part of the radiation waves. Furthermore, no power can be coupled into these
high-frequency elements. On the other hand, the low-frequency waveguides are consider-
ably above the cutoff when the array is operating at the high frequency; therefore, some
power may be coupled into these large waveguides. The amount of power coupled may be
a function of the scan angle and the orientation of the waveguides. Moreover, the pre-
sence of these large waveguides may considerably change the radiation characteristics of
the high-frequency elements. This change may also depend on the location of the high-
frequency waveguides in relation to the low-frequency waveguide. The net result of this
variation in radiation is to introduce a nonuniform illumination on the high-frequency
array which may result in a high sidelobe (or grating-lobe) in the radiation pattern. All
these problems will be explored in depth in the following sections.

FORMULATION OF THE BOUNDARY VALUE PROBLEM

Marcuvitz (6) has shown that the transverse field radiating into free space from a
planar boundary can be characterized by a set of orthogonal modal functions:

(k. ?a - k a' ea
[kT y x x y

,TM 1 akTx e T
T ~ (k + k Eli)e (h

2
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where T and 4TM are respectively the TE and TM modes,

kT = k ax + k a, (2a)

and

rT = X + yay. (2b)

A time-varying factor e jwt is deleted for brevity.

The spectrum vector ik of the modal function is determined by the boundary condi-
tions. In the present case, since the array is infinitely large, the field should repeat
itself if the position vector 7r progresses fromn one unit cell to another; hence,

T'Smn = 2we .(3)

where= 0, 1, ±2 ._. and Smn = mS1 + ns 2 (3a)

The terms S, and s2 are the position vectors which describe a unit cell as shown in
Fig. 1. In formulating Eq. (3), it is also assumed that so( has a zero phase reference.
The term 7tT can be represented by two base vectors, as

kT =I + 2 (4)

To satisfy Eq. (3), the following condition must be satisfied:

1i- SJ = 32776 (5)

where

Sij = 0, if i t j

and

8ij = 1, if i = j.

In other words, kT is a reciprocal vector of vector S- . Furthermore, for any p, q= 0,
T ~~~~~~~~~~~~~mf

±1, ±2 ., such that,

k1 (p, q) = p~l + qk 2 , (6)

Eq. (3) can also be satisfied. Therefore, the spectrum vector IZT is characterized by two
sets of integers, p and q. For waves radiated (or received) at an oblique angle (a and o)
kT (p, q) becomes

kT (p, q, (p, q) (7)

where

Ic = k sin9 cos4 a'x + Ik sin9 sinp (7a)

and

k = 2v1/. (7Tb)

In the following text, 1% (p, q, 0,S ) will be shortened to fT. The propagation constant along
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the z direction is related to this spectrum vector hT by

kz (pTq6 I=2 - [412. (8)

This propagation constant k can be either real or imaginary depending on the mode of
kT. The significance of the value of k2 is that it determines whether that mode is pro-
pagating or evanescent. To avoid grating lobes the spacing is usually adjusted between
adjacent elements (equivalent to adjusting the unit cell dimensions) such that only one
mode can be propagated in visible space. However, in the present case, where each unit
cell contains more than one element, higher modes may propagate even though the spa-
cings between adjacent elements are sufficiently small. This will be discussed further

in a later section.

By defining the spectrum vector ZT in this manner, the vector modal function T
becomes a set of orthogonal functions defined over a range of unit ceU. Therefore, the
transverse electric field in the radiation region can be represented as

ET (X, Y, Z) ESV^E z) Pq pq (Sa>
R p q

where R is used to represent the TE and TM modes. Similarly the magnetic field is
then

HT(XY, Z) =Pq (Zp ypq az Xpq (rT>, (
R p q O

where y 1 is the transmission line characteristic admittance of the (p. q)th mode, which
is defined as

TM _____

Y pq =k (p, q6 . ) £1Oa)

and

TE k, (p, q. 6,P)
Tpq =

The quantity vR (z) which is the complex amplitude of the modal function, is a function of
z. Since the q terms are orthogonal functions, the quantityR (z) can also be written
as

VRq (Z) = JE(X Sz g (rT)d-
cel5 q )

The integration is performed over a unit cell and C is its area.

The transverse field inside the waveguides can be characterized by the wavegulde
modal functions. For example, the electrical field of the ith waveguide in the (o, O)th cell
is

ES (xV yI z) m.N (z) (rT+ ci3 e Ji e ,(1

4
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The exponential factors e itai and e - are due to the progressive phase shift
along the array face for beam steering. Vector it is defined by Eq. (7a). The relative
position of each waveguide within the unit cell should also be noted. Therefore, the vec-
tor modal function which is a function of the transverse coordinates must take into account
this position difference between waveguides. Since the transverse E fields must be equal
at the array face, E(x, yo)from Eq. (1i) can be replaced by the expression of Eq. (12),
which gives

=q tz:ff v in(o) infrT + T) * (ORqOri))* d
i n

The integration over the unit cell is now partitioned and performed over each waveguide
opening. If the order of summation and integration are changed and the coordinates of the
integration are replaced with

rT = PT + di

and the relation of Eq. (7) is used, Eq. (13) can be manipulated into

Pq Z Evin (0) (14)
i n

where

( in, Pq) ff n T pq rT)) da

is the Fourier transform of the modal function binK Vector i' (p, q) is defined in Eq. (6).

The transverse magnetic field at the opening of the ith waveguide is

F, i x ,o)=in (°) a x in ( dT +(

and

in) Hr.(XY, 0 ) * (a X %ijt.T + di) jikd da (l5b)

due to the orthogonal property of the modal functions Sin, where

in ( ) iain . Rin Vin (0) Yin (15h)

The quantities Yi. ain, and Rin are respectively the characteristic admittance, the
amplitude of the incident wave, and the amplitude of the reflected wave of the nth mode at
the opening of the ith waveguide.

By invoking the boundary condition that the transverse magnetic field in both regions
must be equal at the waveguide opening, and then following a procedure similar to the
derivation of Eq. (14), Eq. (15) can be manipulated into
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11 j0) -=<IyyVR R cR
in =I pi q Yp q I pq

R U q

-JT i
(18>

where

2 ff $ , 6Y ) 'R(- a .,cins , JJ (DirT) T PrT) 

The unknown quantities vl4@) can be eliminated by replacing them with the relation of
Eq. (13); then by changing the order of summation, the following expression results:

£ ~~~~~~X(p >.(d' -d- >
= YV(0)=)?y2R j(~- IC. f-a Ul 0 ' 1T ww pq C \jIM~p \In PO 

j a R p, q

(IT>

Defining

w< zR I RC , M) - e-*T 4(P'q g (di d~
Yin in Z w pq C (o , jEtPq) (C11,pYin, i =ZZZEY 3 (n

R 

and using the relation of Eq. (15c), Eq. (17) becomes

2 ainyin =:ELVjf (yin, jm + Yin Sin, jmr'
i M

where
Si, j, o 0if t i f jor n + m,

and
Si3 . m = 1, if i -n and n = m

Equatior (18) can be expressed in a matrix form as

A1

A2

Ai

Yll + Y1 Y12 Yi'

Y21 Y2 2 i y2

Yii

Y2 1

YiI + yI

I is the total number of waveguides
partitioned matrices, which are

I

I2ailYyI1

2ai 2yi 2

in each unit cell. Alt the elements in this matrix are

Yij =

Yii, ji

Yi2, 1it Yi2, jN

YiN, ii - * YiN, iN

6

(17*

(184

VI

V2

vI

(19)

yi I, N I
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Vil Yi ° . . . 0

Vi= Vi2 ,and Yi Yi2 . ..

ViN. .YiN

N is the number of modes assumed to exist in each waveguide.

In the above expression, matrix IA I represents the exciting function and matrix lYv
is the scattering matrix in the sense that it relates the exciting function to the amplitude
function vJ of the waveguide modal function. Elements in the matrix IvI are the unknown
quantities in this equation. Once these quantities are determined, it is a straightforward
matter to find other pertinent parameters. Although this matrix equation seems to be
very complicated, it can be solved easily on a fast digital computer.

The active admittance of the excited mode is given by

Yin ain. + R.n (20)in ain R in Yi(°i

This active admittance is a very important parameter in the sense that it determines the
element match in the active environment. The transmitted power of the excited mode can
be found by

Tin = (ain -Rin} (ain + Rin)- (21)

This is the power which actually radiates into free space. This radiated power can be
further divided into three parts: one part will be radiated into the main beam, one part
will be radiated into grating lobes, and the third part will be coupled into the low-
frequency waveguides. In the following sections, these different components of power
will be related to each other and will be determined quantitatively.

GRATING LOBES

The radiation pattern of an infinite array is essentially an impulse function having an
infinitesimally narrow beam in visible space. This corresponds to the situation in which
only one of the radiation wave modes is propagating in the z direction. In general this
propagating mode is the TEM mode (pr 0, q = 0) . This situation, generally, can be
achieved by adjusting the dimensions of the unit cell. For a single-frequency array, each
unit cell contains only one element. Hence, vectors S, and g2 also represent the spacing
between adjacent elements. Therefore, if the spacing between elements is kept suffi-
ciently small, grating lobes can always be avoided. However, each unit cell of a
multiple-frequency array contains more than one element. Controlling element spacing
in this array type does not necessarily suppress the grating lobes. This can be best illus-
trated in the case where an array is steered to broadside. For this case, 1 = o.
According to Eq. (8), the following conditions must be maintained to avoid a grating lobe
in a multiple-frequency array:

I 1I> k, for p 1 1 = q = 0,

7

(22,
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and

ft21 > k, for p = 0, q = 1.

For a single-frequency array, the following relations apply:

K1 Si = 2v, K2' 52 = 27, (23)

where 4s and 52 are the spacings between adjacent elements. Now assume that a
multiple-frequency array has an identical lattice structure to that of a single-frequency
array, and let there be I and J elements respectively in the '& and S2 directions in each
unit cell. Then the unit-cell dimension vectors 'S and 12 are related to the vectors 4
and 4 by

Si = IS1g S2 = Js224

The relation in Eq. (23) leads to

It = ', J1Z2 = (25)

Inserting Eq. (25) into Eq. (22) gives

[IR| > k, 1JZ21 > k- (26)

Equation (26) indicates that in a multiple-frequency array for modes with p< Lor q < il
the propagation constant k(p. q, 0, #) might be real; hence, grating lobes may exist.

For an array of the configuration shown in Fig. 1, the position of the high-frequency
elements can be represented by

d - u I S2 (2

where
u= 0, 1, 2. I - I,

v= 0, 1, 2, J - 1,

and

14 p, q) t i-PI 2- + q 2,. 2w. ~~~~~~(28)

Inserting these relations into Eq. (13) gives the amplitude of the high-order mode (p, qtG)
as

Rq E EVi (0) (Cr e ( I J) + fY (I Rk2 pq
A (ii, V>nak

The summations of indices k and 9 in the last term are for the low-frequency elements.
Now assuming that these low-frequency elements do not exist, Vi,, and CQ became
identical for all the high-frequency elements, and Vq = 0, if p and q are not respectively
integer multiples of I and J. This shows that if the size of a unit cell is arbitrarily
chosen some of the high-order modes may fictitiously exist but their amplitudes are zero,
which is analogous to the situation of representing a periodic function by a Fourier series.
The period may be aribtrarily chosen to be an integer multiple of the actual period. But
the frequency components which are not integer multiples of the fundamental frequency
would vanish.

a
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From this, it may be concluded that the existence of the grating lobes is due to the
difference of the amplitudes of the modal functions among the high-frequency waveguides
and the nonvanishing amplitudes of the modal functions in the low-frequency waveguides.

POWER COUPLED AND ENERGY CONSERVATION

Amitay and Galindo (7) have shown that the mathematical formulation of the waveguide
phased-array problem retains the energy conservation properties. The total power rad-
iated from each unit cell, from the relation of the Poynting vector, is

P =)ff ET(x YO°) x [bT(X Y.O>Y)] - 9i da, (30a)
cell

while the power transmitted from each waveguide to the array face per unit cell is

PW ffI E X Y, O ) X [H (, ye ]*- a-Z da. .0

Since the transverse fields must be continuous across the array face,

P= Pv'¾ (31)

This expression includes both the real power and the imaginary power.

If the E and H fields in Eq. (30a) are replaced by Eqs. (9a) and (9b), and those in
Eq. (30b) by Eqs. (12) and (15a), the relation of equation (31) becomes

CELZ~j~vRqI2 yRq rr.
pq I q =pqin in' (32)

The real part on the left side of Eq. (32) consists of those terms which have a real yR
These usually include the (0,0) mode and possibly high-order modes. The (0,o)mode erm
is the power radiated into the main beam and high-order modes are power radiated into
the grating lobes. The real part of the right side of this equation can be divided into two
parts. One part is the power transmitted from the waveguides which are excited, and the
other part is the power coupled into the unexcited waveguides. By equating the real parts
and using the index i to represent the excited waveguides and the index k for the unexcited
waveguides Eq. (32) can be rearranged into

ESZ(I a I2 -IR1 I)= cE I v 0 I2 YO + Cu 0VqpqI ypq +,ZIVke 1 &ke (33)

The summation term on the left side of this equation is the power fed into each unit cell.
The first term on the right side is the power radiated into the main beam and the second
term represents the power radiated into the grating lobes. The third term represents the
power coupled into the propagating modes of the unexcited waveguides. Thus, the amount
of power coupled into the low-frequency waveguides and the level of the grating lobes can
be quantitatively determined from Eq. (33).

NUMERICAL RESULTS

The matrix in Eq. (19) was coded into a computer program in Fortran language and
then computed on the CDC 3800 at NRL. To check the correctness of this program, a few
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examples of single-frequency arrays (wherein each unit cell contains only one element)
with known data were computed and then compared. Further checks, such as energy con-
servation (7), were also performed. Although this method does not examine the accuracy
of the numerical solution, it does, however, check the correctness of the computational
process.

The number of modes which should be used in both the waveguide region and the rad-
iation region have been discussed extensively in the literature (3,4) for the case of a
single-frequency array. However, so far no criterion is available which may be used to
choose the right modes to obtain a certain given accuracy. Naturally, use of as many
modes as possible is desirable, but, on the other hand, the computation time may become
astronomically lengthy. A thousand modes in the radiation region have been used. Sub-
sequently, when the number is reduced to about 500, the difference is not more than I
percent. Also, the dimensions of the unit cell have been enlarged several times as com-
pared with those of a single-frequency array. As pointed out earlier In this report, the
spectrum vector k'(pq) is the reciprocal of the unit-cell dimension vector. Therefore,
it would be anticipated that more modes are needed to achieve a given accuracy than are
required for a single-frequency array.

The number of modes which should be used in the waveguide, as pointed out by ear-
lier workers (3), need be only three or four of the lowest-order modes to yield a reason-
ably accurate solution. However, in the present case attention should be directed to the
modes which are propagating in the low-frequency waveguides, since these represent a
power loss. Furthermore, because of the different orientation and size of the low-
frequency waveguide, it is not necessary that the lowest-order mode in this waveguide
have the largest amplitude. Therefore, choosing only a few low-order modes may give
erroneous results. In a later example, it will be shown that the amplitudes of modes
inside the low-frequency waveguide vary widely for different planes of scan. Eight to
nine modes have been used. Later it was learned that only three or four of these modes
have significant amplitudes, although they are different for different planes of scan. The
error remains very small, if the right modes are chosen.

Four cases have been studied. All of them are arrays of rectangular waveguides,
loaded with dielectric material. Two of them have a triangular grid structure; while the
other two have a rectangular grid structure. For convenience in comparing results, the
waveguide dimensions and the elements spacings are kept constant in all four cases. Each
unit cell, in all these cases, contains four high-frequency elements and one low-frequency
element. This gives an operating frequency ratio of 2:1 between the high-frequency array
and the low-frequency array with the same scan coverage. For the purpose of investigat-
ing the effect of power coupling into the low-frequency waveguide, this waveguide is inten-
tionally enlarged. It has dimensions, in terms of the wavelength of the high frequency of
a 0. 7545A and b = 0. 19994 K and is loaded with material of a relative dielectric constant
Er = 9 The high-frequency elements have the dimensions a = 0. 3956k and b =0- 57S
and are loaded with a dielectric material with E, = 4. In both the rectangular grid case
and the triangular grid case, the low-frequency waveguides were oriented in two different
ways with respect to the high-frequency elements, either perpendicular or parallel to
them. Moreover, the low-frequency waveguide is always located in the center of the unit
cell and is symmetrically spaced with respect to the four high-frequency elements, ex-
cept in the case of the triangular grid with perpendicularly-oriented low-frequency ele-
ments, where the center element is located slightly nonsymmetrically.

The case in which the lowv-frequency elements were excited was computed. However,
the radiation characteristics were essentially the same as those of single-frequency array,
Furthermore, no power is coupled into the high-frequency elements, since they are below
cutoff and no grating lobe will exist due to the effect of enlarging the unit cell. In other
words, the presence of the high-frequency elements does not seem to affect appreciably
the operation of the low-frequency array. Therefore, the computed results are not pre-
sented here.

10
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In the following presentations, only the high-frequency elements are assumed to be
excited, and the excitation is limited to the dominant mode (TE 0) only.

Figures 2 and 3 show respectively the computed results of a triangular grid array
with the low-frequency elements perpendicular to the parallel to the high-frequency ele-
ments. Figures 2a and 3a show the transmission characteristics of the four high-
frequency elements vs scan angle in the three planes of scan (P=00 , 450, and 900). The
basic patterns are similar to those of a single-frequency array, except that the four
curves (one for each element) are spread apart. This spreading characteristic is a func-
tion of the scan angle and also of the relative position of the high-frequency element.
However, this nonuniformity of radiation does not seem to be severe. Notice that a reso-
nant point exists at 0 -680 in the 0 = 450 plane of scan, which is actually a grating lobe
point of the high-frequency array.

These patterns were compared with the one computed for a single-frequency array.
The transmission coefficient for the single-frequency array was found to be approximately
equal to the avarage of those for the four elements in a unit cell of the dual-frequency ar-
ray. To explore this effect, an analysis is presented in the Appendix, which indicates that
this formulation does indeed degenerate into the case of a single-frequency array. Fur-
thermore, if the amplitudes of the low-frequency waveguide modal functions are very
small, the average pattern of the high-frequency elements in each unit cell is closely
similar to that of a single-frequency array. This is what our computer results showed.

The amounts of power coupled into the idling low-frequency waveguides for the per-
pendicular case and the parallel case are shown respectively in Figs. 2b and 3b. This is
the total power coupled, which includes all propagating modes in the low-frequency wave-
guides, in percent of the radiated power. For illustration, the contributions of each mode
at a particular scan angle are listed in Table 1. It can be seen from this table that only
a few modes make a significant contribution. Furthermore, they are different in different
scan planes. Judging from Figs. 2b and 3b, the total power coupled into the low-
frequency waveguide is less than 10 percent of the total radiated power within the usable
scan range. Furthermore, the coupled power stays rather constant in the usable scan
range. At the grating lobe point (at 0 = 680 in the 'k = 450) a large amount of power is
coupled into the low-frequency waveguide. Also, in the parallel case a sort of resonance
phenomenon occurs at 0 = 35° in the H-plane scan. It is of interest to notice that at this
particular angle of scan a grating lobe occurs in the rectangular grid array with the same
dx and dy spacings.

Figures 2c and 3c show the maximum grating lobe level vs scan angle in the three
planes of scan. The level of this grating lobe in general is less than -20dB in both the
perpendicular and parallel cases. The shapes of these curves are similar, although in
the parallel case they exhibit an oscillatory nature.

It is concluded from Eq. (29) that these grating lobes are due to the nonuniformity of
the amplitudes of the modal functions among the high-frequency elements within a unit cell
and also due to the nonvanishing amplitudes of the modal functions in the low-frequency
elements. The former effect is equivalent to having the array nonuniformly, periodically
illuminated. It is well known that this in general introduces a high sidelobe level. The
second effect is due to the spacing of the low-frequency elements too large to suppress
the grating lobes.

Figures 2d and 3d show respectively the total power distributions for the perpen-
dicular and parallel cases. The top curves show the total power radiated into the main
beam and the bottom curves represent the total losses, which include both the power
coupled into the low-frequency waveguide and the power loss into the grating lobes.
These values are plotted as a percent of the total radiated power. According to the prin-
ciple of conservation of energy (7), the sum of these components should be unity. It can

...
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Table I
Power Coupled Into Low- Frequency Waveguide:

Triangular Grid Array

be seen from these figures that this is indeed the case. In general, more than 90 percent
of the total power is radiated into the main beam and less than 1 percent appears in the
'loss" components. Furthermore, comparing Figs. (2d) and (3d) with Figs. (2b) and (Sb),
most of these losses are'seen to be due to the power coupled into the low-frequency wave-
guides. Less than 1 percent of the loss actually is radiated into the grating lobes.

The computed results for the rectangular grid array including both perpendicular
and parallel cases are shown in Figs. (4) and (5). In general, they are very similar to
those for the triangular case. The spacing of the grid structure of the high-frequency
array results in a grating lobe at o = 35° in the H-plane scan. However, in contrast to
the triangular case, the power coupled into the low-frequency waveguide does not exhibit
a resonance phenomenon at this grating lobe point. Furthermore, with scan beyond this
point, the power radiated into the grating lobe (true) increases steadily. Beyond B = 50',
more power is radiated into the grating lobe than into the main beam. However, in the
triangular grid case, the grating lobe level is always less than that of the main beam.

Plane TEo TE20 {TE 3 0 fTE To J TE1 t TM1 1

. ._. . _. , ....................3. ..4C ,l~ E -I ._ 

_____ ______ Perpendicular Case Modes

o 0 0. 0221 0. 000 O.0033 0.0000 0.0120 0.000 0.0054 0.0000

H-plane
0 = 240 0.0000 0. 0012 0. 0000 0.0006 0. 0382 0.0000 0.0050 0. 0000

D-plane
t= 24C 0.0271 0.004 0.0022 0.0009 0.0105 0.0003 0.0025 0.0002

E-plane
e = 240 0 0000 D. 00 0. 0000 0.0000 0.0354 0.0111 0.0016 0.0004

Parallel Case Modes

° = O0 0.0375 0,0000 0.0054 0.0000 0.0018 0.0000 0.0189 00000

H-plane
0 = 240 0.0295 0.0093 0.0018 0.0010 0.0000 0.0137 0.0170 0.D002

D-plane
= 24° 0.0338 0.0040 0.0031 0.0011 0.0005 0.0048 0.0153 0.0002

E-plane- 240 0.0370 0.0020 00047 0.0002 0.0008 0.0001 0.0108
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SUMMARY

1. A method has been derived to solve the boundary value problem. of an array wChi
may consist of many different waveguide radiating elements interleaved into a single
array.

2. The presence of the low-frequency waveguides affects the radiation chanateris-
tics of the high-frequency elements. Furthermore, because the low-frequency wave-
guides operate above cutoff, power will be coupled into them when the high-frequency ele-
ments are excited.

S. Due to the nonuniformity of the amplitude of the modal functions in the high-
frequency waveguides and the nonvanishing amplitudes of the modal functions in the low-
frequency waveguides, grating lobes appear in visible space even though the spacing of
the high-frequency array is sufficiently small to suppress the grating lobes.

4. A method has been shown for computing the power coupled into the low-frequency
waveguides and the level of the grating lobes.

5. Computed results of four different interleaved arrays have been shown. In these
examples, the interleaved array really consists of two arrays, one for the high-frequency
and the other for the low-frequency. The grating lobe level due to the presence of the
low-frequency waveguides is less than -20dB while the power coupled into the low-
frequency waveguides is less than 10 percent of the total radiated power.

6. The formulation derived has been demonstrated to degenerate correctly into a
single-frequency array case, which is considered to justify the correctness of this
approach. This approach also retains the energy conservation properties.
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APPENDIX

AVERAGE PATTERN

From Eq. (18), the expression derived for the nth excited mode in the ith waveguide
is

2a inYinZZVjm (Yin, jm Yin kin, kii

In this equation the terms due to the high-frequency elements and the low-frequency ele-
ments have been separated. Indices j and m represent the mth mode in the ith high-
frequency element; indices k and e represent the fth mode in the kth low-frequency
waveguide. If all the equations involving the nth mode of all the high-frequency wave-
guides are summed, the following equation results:

2E ainyiz E Z Vim E Yin, jt +Yn E Vin + E E Vkf E Yinkt (Al)
i i m i i k e

where

EYin, j = cZZ y(q (c~, ) (cR pq) e ( j (2)

Notice that the order of the summation in the above equation is changed. Assume that all
high-frequency waveguides are identical and that there are a total of I elements in the S,.
direction and j elements in the S2 direction in each unit cell. Then those terms in the
above equation whose indices are not respectively integer multiples of I and J, by the
relation of Eq. (28a), become zero, giving the equation

ZYin, jm LEEYR R, pq) (CR, ) (Aa)

for the high-frequency elements, where L is the total number of high-frequency elements
in each unit cell. For the low-frequency elements

LHEp q C i1 p ~Zj Yin, k C C Pqy (k (Ckg pq) ePO e (M~b)

If each high-frequency element has an identical excitation, Eq. (A2) then pecomes

2 an Y Y., m + YnVn +ESk kP Yn, ke (M)

where

1 LLL yR (CR, pq) (Cnpq)

and

SES y (CR )(R ) jTUp .q ) Jdk~no k C: (Cp q kg, pqC npq)
k Hp k
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The summation of the series is performed only on those indices p and q which are re-
spectively integer multiples of I and I. Here

C' = C/L

is the area of a unit cell of the high-frequency array, and

L

is the average amplitude of the Eth mode of the high-frequency elements in each unit cell.
If the last summation in Eq. (A4) is neglected, this equation becomes identical to the
equations that are used for the characterization of a single-frequency array. If the low-
frequency waveguides were short-circuited, the amplitudes of the modal functions VkE in
these waveguides would vanish. This is equivalent to the effect of covering the low-
frequency waveguides with a ground plane, and the array then becomes essentially a
single-frequency array. From this it may be concluded that the formulation presented
here indeed degenerates into the case of a single-frequency array, which may indicate
the validity of this approach.
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