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ABSTRACT

A hypothesis test has been designed for a situation which arises
when multiple sensors observe the positions and only the positions
of vessels in a specified region of the ocean. Given that two sensors
each observe the position of a vessel, the problem is to determine
whether the sensors observed the position of the same vessel or the
positions of different vessels. Assuming the observations occur at the
same time and the observation errors are normally distributed with
known covariance matrices, it is a simple matter to design a test to
test the null hypothesis that the observations refer to the same vessel
against the alternative hypothesis that the observations refer to dif-
ferent vessels. This test is designed to have a fixed but arbitrary prob-
ability of the type I error (concluding that the observations refer to
different vessels when they actually do not). Remaining is the ques-
tion of the probability of the type II error (concluding that the ob-
servations refer to the same vessel when they actually do not.) With
out a complete statistical description of the processes, one cannot
answer this question exactly. The authors have only assumed that the
number of vessels in any subregion is a Poisson random variable having
for the parameter the product of a constant and the area of the sub-
region, the constant being the expected number of vessels per unit
area. Under this condition the least upper bound for the probability
of the type II error is expressed as an explicit function of the error
covariance matrices, the probability of the type I error, and the ex-
pected number of vessels per unit area.
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TWO-DIMENSIONAL POINT RESOLUTION

INTRODUCTION

The problem of two-dimensional point resolution arose in the context of ocean surveil-
lance. Suppose that the vessels in a region of the ocean are uniformly and independently
distributed with a specified density (expected number of vessels per unit area). Further,
suppose that at the same moment in time each of two sensors, which are operating inde-
pendently, observes the position of one of the vessels in the region. Do the observed posi-
tions refer to the same vessel? As the density in the region increases and/or the observational
errors grow larger, the confidence with which one can answer this question decreases. In this
report, this question is put into the form of a hypothesis test in which the null hypothesis is
that the observations refer to the same vessel. Under the assumption that the density and
the observational errors are known, the least upper bound for the probability of the type II
error (concluding that the observations refer to the same vessel when they actually do not) is
found as a function of the probability of the type I error (concluding that the observations
refer to different vessels when they actually do not). The least upper bound is the original
contribution of this report.

PRELIMINARY DISCUSSION

In this section, a model of the experiment will be developed, and the hypothesis to be
tested will be given. Here the word "experiment" refers to the entire process which generates
the positions of the vessels, determines the vessel or vessels whose positions are to be ob-
served and then generates the observed positions.

Let the random vectors X., n = 1,2,..., be independently distributed in the plane in
such a manner that if Q is any region of the plane with finite area aQ then the number of
these vectors in Q is a Poisson random vector with parameter p *aQ *. The random vector Xn
can be considered to be the position of vessel n, while p is the density per unit area. Let I
and J be random variables which assume positive integral values. The values of I and J in
the experiment determine the vessel or vessels whose positions are to be observed; therefore,
the joint and marginal distributions of I and J are assumed to be unknown.

*The theoretical aspects of this statement are questionable. To give the statement a firm foundation, the reader can replace
the words "the plane" by "a bounded convex subset of the plane," and he can assume that this subset is large enough to
be considered infinite in area.
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Suppose in the experiment

Xn =37n

for n = 1,2,..., and then

I = i,

J =j,

Now define the conditional random vectors

and
Yv = i +z 1

Y2 = i + Z2,
where

Zk - N[ (0), 2k I

for k = 1,2. Of course, Yj and Y2 are the random vectors corresponding to the position
observations, and ZI and Z2 which are assumed to be independent correspond to the errors
in these observations. The values assumed by Y. and V2 in the experiment will be denoted
by -y and Y2 respectively.

Given that Yl, Y2, A,, 12, and p are the only known quantities, a hypothesis test will
be given to test the null hypothesis

Ho i=j

against the composite alternative hypothesis

HI i j.

The test is based on the statistic

(1)

where D is the matrix such that

*Here I is the 2 x 2 identity matrix.

D(E1 + Z2 )DT = I*. (2)
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Given that
XI = 34

and

xJ =3j,

it follows from the relations expressed in Eqs. (1) and (2) that the random vector

D(Y -Y 2 )

has the conditional distribution

N[D(Zi - ij ), (I ,°)] .

Define the quantity

a = ID(ov i -ab )]e

and note that a is a sample of the random variable*

A= ID(XI - XJ)1.

If A=a

it is knownt that the random variable R has the probability density functions

fRI X (rA = a) = r - exp [-(a2 + r2 )/21] IO (ar)

for r positive §. Observe that Eq. (4) defines the conditional distribution of the test sta-
tistic R.

*In justifying that A is in fact a random variable, the reader should restrict his thinking to a convex set as mentioned in
the previous footnote.

tK. S. Miller, "Multidimensional Gaussian Distributions," New York: John Wiley and Sons, Inc., 1964.
f Given that A = a, the random variable R2 is distributed according to the noncentral chi-square distribution.
§ Here IO is the modified Bessel function of order zero.

(3)

(4)
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THE DISTRIBUTION OF R WHEN Ho IS TRUE

When the null hypothesis

Ho :i=j

is true, Eq. (3) yields

A= 0.

If F0 denotes the distribution function of the random variable R when Ho is true, it follows
from Eq. (4) that

F0 (r) = 1- exp(-r2 /2) (5)

for r positive.

THE LEAST UPPER BOUND FOR THE DISTRIBUTION OF R WHEN H. IS TRUE

The distribution of the random variable A when H. is true must be examined before
anything can be said about R. Recall

A= ID( 1 -XJ)j

and when HI is true, the random variables I and J are such that

I J.

Given
I =i,

define the conditional random variable I' to be the positive integer i', i 0 i', which has the
property

ID(X3 -xj')j • ID(34 - Xk)1

for k = 1,2,... and k = i. In other words, Dix' is the point which is nearest to Dxj.

The linear transformation D does not alter the Poisson property, which was discussed
previously, but under this transformation the unit density is

p' = plIdet Dl.
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It follows directly from the Poisson property that

P[ ID(XI - X,')j < a] = 1 - exp(-a2'rp')

for positive a. Note that this probability is independent of the value the random variable I
assumes in the experiment.

When H1 is tiue, the distribution of the random variable A is

FA (a) = P(A < a)

< PIDCXI - -I') I a]

= 1 - exp(-a 2 irp') (6)

for positive a. If I' = J, the inequality in Eq. (6) becomes equality; therefore, the upper
bound on FA is the least upper bound.

Now if F1 denotes the distribution function of R when HI is true, then

r 

F, (r) = J J RIA (xIA = a)dFA (a)dx
o o

00

< X X {x * exp[-(a2 +x 2 )/21 Io(ax)}

* [2airp' * exp(-a27rp')]dadx

= f 27rp'x - exp(-x2 /2) l a * exp [-a2(V2 + irp')IIo(ax)dadx
o 0

r ~o
= f 27rp'x * exp(-x 2 /2) Ja * exp[-a 2 (V2+wrp')IJO(ax\/I)dadx

o 0

=f 27rp'x exp(-x 2 /2) II 2., exp[X 2/(2+4irp')] } dx

0

= 1 - exp(-r2 /2u2 ),
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where
a' = I + 1/(2irp').

Or
F, (r) < I - exp[-r2 /(2a2)]

for r positive.

HYPOTHESIS TEST

For a test of the null hypothesis

Ho: i=j

against the alternative hypothesis

HI :i j

with the probability of the type I error of a, the critical region is

Ca = (r: r >v'Ai21).

The reader should note that the critical region Ca is the uniformly most powerful for the
test of Ho against H1 .

The least upper bound for the probability of the type II error for the critical region
Ca is

OL UB = 1 - exp(lna/,g 2 )

= 1- (aX)1/02 . (7)

For a graph of az and OL UB as a function of the lower point of the critical region, see Fig. 1.
Observe that in the limiting case, when a = 1,

a= I -PLUB-
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Fig. 1 - Graphs of a (the type I error) and PLUB
(the least upper bound of the type 11 error) as
functions of the lower end point of the critical
region

If the hypothesis Ho is accepted, the minimum variance unbiased estimator Y of x; is
given by

Y = (Z + 2 )(1 Q1+2 YA)

and if Ho is true, Y is distributed according to

N[-Xi, (E-l + E- ) l

EXAMPLE

For the sake of illustration, suppose that the errors in the position observations are
circular, and

2 = Ul
with

a
1
l( 2 0

j1 =
0 a]l

Now

7
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and

D 1 I a L

It follows that

Idet.D += 1)al2(k + o2

and

a2 = I + (2irp')-1

= 1 + [2ir(k+ l)ul 2 pI'.

If
a = OLUB,

Eq. (7) yields

2 = 1 ln(1 - a)
0 27r(k+l)p In a

I 1-a

For k = 3

the relationships between p and a, are plotted in Fig. 2 for four different values of oz.

5
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Fig. 2 - The required standard deviation of the errors of
the more accurate sensor as a function of density, a, and

3L UB
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The results obtained in this report have strong implications concerning the ocean-
surveillance problem, which was discussed in the Introduction. To depict a special case re-
lating to this example, suppose that two sensors are viewing a region of the ocean in which
the expected density is 40 vessels per 100,000 square nautical miles, and let the circular
errors of the two sensors be in the ratio of V/T: 1. If the probability of the type I error and
the probability of the type II error of the aforementioned decision is to be less than or equal
to 5 percent, then Fig. 2 indicates that the standard deviation of the more accurate sensor
must be less than or equal to 1.315 naut mi.
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