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Abstract: The authors investigate common right factors of entire functions and their
derivatives. In particular, it is shown that, assuming F to be a meromorphic function,
then if F, F"', and P'i> have the same right factor g, then g is one of the four forms (az' +
tz + C)^, (Ae'" + B)", [A cos (cz + d) + B]^, or an elliptic function of second order,
where a, s, c, d, A, B, and C are constants and 8 =+I.

INTRODUCTION

In accordance with the definitions in Refs. [1] and [2], a meromorphic function h(z)
Jf(g(z)) is said to have f(z) and g(z) as left and right factors respectively, provided thatf(z)
is nonlinear and meromorphic and g(z) is nonlinear and entire (g may be meromorphic when
J1(z) is a rational function). It was shown in Ref. [2] that a meromorphic functionf and its deriva-
tivef' cannot have a common right factor other than one of the form e('z+b + d, where c, b, and
(I are constants.

In this work we are primarily concerned with common right factors of a meromorphic func-
tion F and its second derivative F". This problem (as well as the analogous problem for F and
its nth derivative FV1 )) seems much more difficult than the F, F' case. In general one would
expect the following conjecture to hold:

CONJECTURE. Let FI be mncromorplici. Any common rightjfic-torofF iand F" must have one
of the to/lotting forms: (aZ2 + bz + c)8, (Ae-a + B)8, [A cos (cz + d) + B]5 , or elliptic functions
of s('(conl order, t'uhere a, b, c, d, A, and B tire constants and 6 = + I.

The proof of the above conjecture reduces to the problem of finding meromorphic solutions
J, g, and I of the equation

g12fJ"(g) + gf' (g) =2(g) -

Though we have not succeeded in solving this problem, we can find simultaneous solutions of
pairs of such equations. These simultaneous solutions, as we shall see, lead to some interesting
results which are special cases of our conjecture. We shall prove among other things that the
assertion of our conjecture holds for common right factors of F, F"', and "iv).

PRELIMINARY LEMMAS

LEMMA I (Briot and Bouquet [3]). If a solution of an algebraic fifrential equation of'
the first ortde

P W(d ) = 

is unzifoin in the plaine, theut the solution is a rationalfillfction, a raltionalfinction of 'eh( (b a ( on-
stant), or anll elliptic fiuction (second' ordler).
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LEMMA 2 (Wittich [4]). Let

p(Z, We Wt, W2, ... WP) - ao...11,(Z)w °W It ... 4WP = 0

be an algebraic differential equation, where w, (z) = wti)(z), the ith derivative of w. Let n=
no + nf + ... + n,, denote the dimension of the term w"Ow'i" .. .wrP. Then the above equation
has no transcendental entire solutions if only one term appears in the equation with a maximal
dimension.

THEOREMS ON COMMON RIGHT FACTORS OF
A FUNCTION AND ITS DERIVATIVES

THEOREM 1. Let F and H be two nonlinear meromorphic functions with F 4 CIH + C2,
where C, and C2 are constants. IfF, F", H, and H" have a common rightfimctorg, thenghas
one of the forms (az2 + bz + C)8, (Aecz + B)S, [A cos (cz + d) +B]5, oran ellipticfunction of
second order, where a, b, c, d, A, B, and C are constants and c =+1.

Proof. From the hypotheses of the theorem we have

F= 2,(g) and F"= 12(g) (1)
and

H=ht(g) and H"=h 2(g), (2)

where 2i and hi (i = I, 2) are meromorphic and g is entire or Gi and hIi are rational and g is mero-
morphic. From Eqs. (I) and (2) one obtains

2 (g) = 1"(g)g'2 + 11'(g)g" (3)
and

h2(g) = h','(g)g'2 + h I(g)g". (4)

Since V','h - CMh'( # 0 (otherwise it would lead to F = C1H + C2, contradicting our hypotheses),
one can eliminate g" from Eqs. (3) and (4) and obtain

12 h'(g) 2 (g) - 2;(g) h2 (g)
9 , (g) II '(g) - h' (g) ', (g)

R (g). (5)

With the aid of a result of Clunie ([5], p. 54) one easily shows (see [3], p. 216) that R (z) must be
a rational function.

We have the following cases:
Case A. g is a rational function (but not the form laz + b).
Case B. g is a transcendental function.

Case A. When g is a polynomial, one easily concludes from (5) that g is a second degree.
When g(z) = g(Z)/g2(Z), where the gi(z) (i = 1, 2) are polynomials and g2(Z) is not acon-
stant, then either R (z) is a polynomial or R (z) = pi (z) /p, (z), where pi and p2 are polynomials
and p2 (z) = (z - a)n (n a positive integer) and g(z) - a # 0. That is, either R (z) is a polynomial
or g(z) = a + [1/h (z) ], where h(z) is a polynomial. Suppose that R (z) is a polynomial. A count
of the poles of g(z) and g' (z) reveals that R (z) is either of degree 3 or 4. Thus, we may write

R (z) = (z -a,)l (z - a2)n2 (Z - a:t)'" (z - a4)n 4

2

(Ini -_ 4).
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We may assume without any loss of generality that the degree of g, # degree of g2. Looking at
the orders of the zeros of g(z) - ai leads to the conclusion that either nj = I org(z) -aj =, 0
(i = 1, 2, 3, 4). Replacing g in (5) by g,/g2 and using a simple degree argument one finds that
ni = I for at most one i and that in fact g(z) -ai =a 0. Thus, in any caseg(z) has the form g(z) =

a+ [1!h(z) ].
Again using (5) one sees easily that h (z) is a second-degree polynomial. This completes the

proof of case A.

Case B. R (g) has the form

R (g) P t(g)

where PI (z) and P2 (z) are relatively prime polynomials. If P2 (z) is nonconstant, then g must
omit some value, say a, so that lI(g- a) is entire. Thus we may assume in this case without any
loss of generality that g is entire. We have

' 2 P2(9) = P.(g).

Thus g is entire and has at least one finite Picard exceptional value and at least one other com-
pletely ramified value. It follows that g is a constant. This, of course, is not the case. Thus P2
must be a constant and R (z) must be a polynomial. Since g cannot have more than four com-
pletely ramified values, the degree of R is at most 4. Furthermore, if g has a pole, one easily
verifies that the degree of R (z) is greater than 2, and if it is entire, it follows by Lemma 2 that
the degree R (z) = 2. When the degree of R = 3 or 4, one can conclude from (5) that g is an elliptic
function (second order). When the degree of R = 2, we have

g12 = a (g-a) 2 + b.

From this it follows that

g = A cos (cz + d) + B
or

g = Aeez + B,

where A, B, c, and d are constants. This completes the proof of Theorem 1.
As a special case of Theorem I we have the following:

THEOREM 2. Let F be a meromorphic function. If F, F", and F01"0 have the same right
factor g, then g is one of the four forms in Theorem 1.

Proof. We set H = F". If F = CH + C2 , where C, and C2 are constants and C f 0, then
we have F = CF" + C2, so F is entire and has the form

a(1 + ,Bten' + 8 2e'2', a, = ±a2 (ai # 0, i = 1, 2).
Thus,

F" = 83tetz + 6 4 e02z and F(iv) =- 3enlz + f36ea2z,
where 133, j3i (i = 1, 2, ..., 6) are constants. Now F, F", and Ftiv) are pseudo-prime [2]. Therefore
two possibilities exist:

Case 1. The left factors are rationals. Then

F" = R. (g) = f:teolz + 8 4ea2z (6)
and

3

F00 = R2 (9) =,G.,e'IZ + 8(ie'2z, (7)
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where R and R2 are rational functions. One can solve for ealz from Eqs. (6) and (7) and obtain

ealz = R:3(g), (8)

where R:j (z) is a rational function. Since F is entire, one may assume without any loss of gener-
ality that g is also entire. Thus it is easy to conclude that

g = a + be" ,

where a, b, and a are constants.
Case 11. The right factors are polynomials. It follows from Ref. [6] that the polynomials

must be of second degree. This completes the discussion of the case F = CXF" + C2 . The case
F * CF" + C2 follows from the previous theorem. Thus, our proof is complete.

It is easy to verify that g can in fact have any of the forms given in the theorem. For example,
let E (z) be an elliptic function of order 2, and letf be any rational function; then both the function
F(z) =f(E(z) ) and its second derivative F"(z) have E(z) as a common right factor.

Our method can be used for more general problems of the same type. For example, one can
easily prove the following analog of Theorem 2.

THEOREM 2'. Let F be a meromorphic function. If F, Fen), ..., F(W2) have the same right
factor g for any integer n - 2, then g is a rational function, a rational function of ebz, or an
elliptic function.

We now return to our original problem and study the common right factors of F and F"
for some interesting special cases.

THEOREM 3. Let F be a meromorphic function. There do not exist meromorphic functions
2 and g with g nonlinear such that F = 2(g) and F" = (g).

Proof. From the hypotheses we have

A"(g) =F"= [I(g)]" 1"(g)g'2+ 2 '(g)g". (9)

From this we have

2(g) Pe# (g) -g12 (10)

As in Theorem I we conclude, by agrowth argument, that R (z) =- "(z)/' (z) is a rational func-
tion and

R(z) Q(z)+2 z i

where Q(z) is a polynomial, the ai are poles of R, and the ni are integers (i = 1, 2, ... , t).
We have

,=1 g- a 1g (unless I-g 2 0). (11)

If g has a pole of order k at z = z0 , then z = zo is a zero of order k of g"/ ( 1-g' 2 ) . Thus Q (z) = O
unless g is entire.

We cdisider two cases.

Case a. Q(zy 0. This is the case when 2 is not a rational function and g is entire.
Case b. Q(z) = 0.

4
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In the first case if I- g' 2 / 0, we have

Pi (g) g
P2 (g) 1 -g2(

where Pi and P2 are polynomials and the degree of P. - the degree of P2. It follows from Lemma 2
that g must be a polynomial and in fact g -0. Hence I - g1 2 - 0 or g = ±z + C.

For case b, Q(z) - 0, we have

t ni g
E -g' 2 (13)
1 ~l g ai 1-

Multiplying both sides of the above equation by g' and integrating, one obtains

k
1 -g' 2 = C fJ (g - ai) i (14)

or
g- = R* (g),

where R* is a rational function. As in the proof of the previous theorem one easily verifies that
R* (g) and thus g'2 must be a polynomial in g of degree at most 4. Furthermore, from Eq. (10)
one gets 2 '(g) = (1 -g' 2 )-1 2 . Thus, 2 is not meromorphic, contrary to our hypotheses.

Along similar lines we have

THEOREM 4. Let F be a nonlinear meromorphic function. There do not exist meromorphic
fiunctions 2 and g (g nonconstant) such that F = 2 (g) and F" = 2' (g) vwith 2 and 2' nonlinear.

Proof: Let us assume that g is entire. Proceeding as before, we obtain

R(g) - 2 '(g) g2 (15)

where

R (z) = P(Z) + Ez-( '

in which P(z) is a polynomial, the ni are integers, and the ac are constants. By virtue of Lemma 2
one can again conclude that P(z) -0. Hence, we have

R (z) = E-= 2'(z) (16)

Using (15) and (16) and Nevanlinna's theorem on ramification values one easily verifies that
t < 2. We will consider two cases: (i) t = 2 and (ii) t = 1.

Case i, t = 2. We have

1-g" n n (g)

g,12 g- a, g- a2 (g)

If g- a, has a zero of order k, then g' has a zero of orderk-1. If 1-g" * 0, then we have
k =2(k- 1) ork=2. If I -g" -0, then g"#0andk=2again.Thusg-a1 =h1 andg-a2=h2
or hV + a, = hV + a 2 or

5
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It follows from Ref. [7] or [8] that

hi = sin f (z) and ih2 = cos f (z)

or h= sin2 fp(z), where fp(z) is an entire function and X = a2- a, $ 0. So we have

g = X sin2 c (z) + a,.

Substituting this back in (17) and simplifying it, we have

(4An, + 2X) '2 cos2 0 + (-4Xn 2 - 2X )p'2 sin2 p - 2XAp" sin p cos p- 1.

By a well known theorem of Borel (proved by Nevanlinna) ([9], p. 113) one can conclude that

(n, + n2f+I'2-2f"=°.

This implies that p is a constant, contradicting our hypotheses.

Case ii, t = 1. In this case 2' would have to be of the form

fl(w) = (w-a)n;
consequently,

Q(w) = (w-a)n+l + C.

Thus, F = Q(g) = [I/(n + I) ] (g -a)n+l + C, f"' = (g- a)n, and [(n + I) (F-C) ]n=Fln+l.
If F has a pole of order k > 0, then we have nk = (n +1)(k+2)or2n+k+2=0;sonmust
be negative. Since 2 is nonlinear, In + 11 > 1; consequently n - -3.

From
I9t n2 n (18)g g-a

it follows that g - a = hI2 , where h is an entire function. Thus g' =2hh' and g"=2(h '2 + hh").
Hence (18) becomes

I-2(h '2 + hh") = h2
or

I- (2 + 4n)h'2-2hh" = 0. (19)

To solve ( 19), let S = I'. Then

h" =S'= dS dS d = dS

Hence we have
dSI-(2 +4n)S 2 - 2IS =0 (20)
Al~

6
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or
2S dS dh (21)

1-(2 + 4n)S2 h (

Let u = 1 -(2 + 4n)S2, so that du = -2(2 + 4n)S dS or 2S dS=-dul(2+4n). Hence(21)
becomes

-du I = dh and u-l1(2 +4n) = Ch, (22)

where C is a constant. Hence we have

1 - (2 + 4n)S2 = C'h-(2+4n), (23)

where C' is a constant. Since n - -3, then 2 + 4n - -10. Thus, Eq. (23) cannot hold unless S
and h are both constants. Thus we have a contradiction, and the theorem is proved when g is
entire.

Assume that the theorem is false for meromorphic g. One easily shows that for integers
ni (i = 1, 2, 3, 4)

1-9 ni n2 + n3 + n4 Q'(g) (4'2 + + + - 24
g g-a, g-a2 g-a:; g-a4 (g)

Hence, for some constant C,

F" = P'(g) = C(g-a, )n (g- a2)2 (g- a:,)n3(g- a4)n4.

By virtue of what we proved for entire g we may assume that g has a pole z( of order t.
F' = g'V'(g) = Cg'(g- a,) n(g- a2)"2(g- a:1)n3(g- a4)"4 has a pole atzooforderd=
(n, + n2 + n3 + n4) t + (t + 1) whenever d > 0. Thus F" has a pole of order d+ 1, and we have

(n, + n2 + n3 + n4)t = (n, + n2 + n:, + n4)t + t + 2

or t + 2 = 0, which is not the case. Thus d 0 0. A similar argument shows that d < 0 is also not
possible. Hence d= 0 and n, + n2 + n:I + n4 =-2. Thus F"(z) has a zero of order 2t - 2. How-
ever, F'(z) has a zero zo of order 2t - (t + 1) = t - 1. We must have t-I > 2t. Since this is
impossible for t - 1, our theorem follows.

A similar argument can also be used to show the following:

THEOREM 5. Let f be a meromorphic function and let n and m be any nonzero integers.
Iff n andf"' have the right factor g, then g is a rationalfunction, a rationalfunction of ebz (b con-
stant), or an elliptic function.

More generally we might conjecture:

CONJECTURE. Let RI and R2 be rationalfunctions. If RI (f) and R 2 (f') have the same
right factor g, then g has one of the forms stated in Theorem 5.

Even more generally we state the following:

CONJECTURE. Letf, I, and k be meromorphicfunctions and h(f) and k(f') also be mero-
morphic functions. Then if h (f) and k(f') have the common right factor g, then g has one of
the forms stated in Theorem 5.

7
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