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ABSTRACT

The problem of thermal blooming of a laser beam in viscous and
thermally conducting fluids is treated by means of the model discussed
in NRL Report 7213. (In that report blooming was treated for an
ideal gas only.) It is shown that viscous effects are small, as should be
expected. The longtime behavior of the density in the presence
of thermal conductivity is discussed at length. The cases of diameters
of 0.5 and 1.0 cm with beam Gaussian intensity profiles are treated.
The effect of thermal conduction in these cases is small, but in the
direction of reducing the thermal blooming. For smaller diameter
beams, it is shown that conductive effects are more pronounced.
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THERMAL BLOOMING IN VISCOUS AND
CONDUCTING FLUIDS

I. INTRODUCTION

In a previous report (1) the problem of thermal blooming of a laser beam was con-
sidered for the case of perfect gases. For that study, a model* for the laser and the
medium was defined, and within the framework of that model, light rays from the laser
were traced and intensity profiles downbeam were determined, both as functions of time.
The solution obtained was appropriate for those intervals of time up to the point where
convection or wind effects, or both, became predominant. The calculation was deficient
insofar as it applied only to gases and it ignored the effects of thermal conductivity and
viscosity. Since these effects are much easier to study in experiments concerned with
liquids, it would be desirable to extend the theory to include these fluids. The determina-
tion of these effects may prove necessary for a quantitative comparison between experi-
ment and theory.

We may expect that viscous effects will not play too large a role in the blooming of
a laser beam because the velocities involved are quite small. It will be seen that this ex-
pectation is justified by detailed calculations applied to a number of common fluids. The
effects of thermal conductivity are another matter. Since a finite thermal conductivity
for a medium acts as a heat sink in hotter regions of the medium and as a heat source for
the cooler regions, the principal consequence expected in the problem at hand is a flatten-
ing of the density profile p1 compared to that obtained in Ref. 1, subsequently leading to
a diminution of the blooming. Since thermal conduction depends upon temperature
gradients, we must expect the effects of heat transport to depend upon the absolute di-
mensions of the laser beam, in contrast to the results of Ref. 1 where scaling was com-
plete. Therefore we qualitatively expect that thermal conduction will be important in
small beams and considerably less so in large beams (for a fixed power profile across the
face of the laser). Since a change in the spatial mode of the laser alters the power pro-
file, which in turn alters the temperature profile in the medium, the effects of thermal
conduction will change from one mode to another. Generally speaking, heat transport
will tend to diminish the differences between differing profiles and to diminish the bloom-
ing. An exception would be a beam with a flat power profile; in Ref. 1 we saw that this
case led to no blooming. When thermal conduction is included, there exists an infinite
temperature gradient in the medium and this would imply an infinite heat transport. This
of course is quite unrealistic, but a very flat profile with smooth edges will have a large
temperature gradient; thermal conduction will cause the temperature (and density) profile
in the medium downbeam to spread, and thereby cause blooming.

Our qualitative expectations will be found justified by detailed calculations of these
effects. The calculations are based on the same model as used in Ref. 1, with the afore-
mentioned exceptions, and the notational conventions used there will be adopted here.

*For a brief summary of the model as discussed in Ref. 1, see the present App. C.
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II. DETERMINATION OF DENSITY CHANGES

The fluid medium, which is now taken to be viscous, obeys the linearized equations
of hydrodynamics (2) given by

ap, (Rt) + p0 V v1 (R,t) = 0 (1)
at

and

PO fav, Rt _q7V2v1 (Rt)-(t + 7)VV v 1(R,t) = -Vp1 (R,t) (2)

where 17 and ¢ are the first and second viscosity coefficients, p0 is the initial ambient
density, R is the position vector to a point in the beam, t is time, and v is velocity. The
equation of energy transport reduces to

aT1 (Rt) _ ToB apt + _V 2 T,(R t) + q(Rt)(3)
at p~cV at pOcV CV

where i3 is the volume expansivity, B is the isothermal bulk modulus, CV is the specific
heat at constant volume, K is the coefficient of thermal conductivity, and q is the energy
deposited per gram-sec by the laser beam. The quantities p1 , v1 , p1 , and T1 are the
deviations of density, velocity, pressure, and temperature of the fluid from their initial
values p 0, v 0 = 0, po, To. The existence of an equation of state for the fluid gives a
fourth relation

P1 = - P1 + b3T
PO

between the dependent variables.

To get the density p1 , not all three vector components of the pressure gradient in
Eq. (2) are needed. Taking the divergence of both sides of Eq. (2), we get

a POVvl - (+ 4 V 2 VV 1 = -V 2p1 . (5)

We need only solve the scalar Eqs. (1), (3), (4), and (5) to get p1 in Eq. (5), thus reducing
the equations to three in number. We take the Laplace transform of these equations with
respect to the time variable, and the Fourier transforms with respect to the space varia-
bles. The resulting equations may then be solved algebraically to get the Laplace-Fourier
transform bl(k;s) of the density p1 . Omitting the detailed steps, we have as our result

i1(k;sL 3f0c2 1 k 2 c2 f(k;s) (6)

PO 2 cp tC ( (s+ rKk 2c2 )(s2 + k2C2 + rk2C2S)- rKk4c4

where the function f(k;s) is related to the Laplace-Fourier transform q(k;s) of q(R,t) by

2
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3c2

q(k;s)= - f(k;s). -(7)
2c

The constant tc is the characteristic time constant tc = 3ira2 p0 c2/2aW, as defined in
Ref. 1, c is the velocity of sound in the medium and is given by C2 = y/p 0 , ^y is the
ratio of specific heats cplcv, and TK and T,, are new constants with the dimensions of
time, defined by

TK K _ 'YK (8a)
K poCVC2 PO0pC2

and

4

1+37
T1- p0

2 * (8b)

For a perfect gas, TK = T17 = 0 and 30c 2 /2cp = 1; then Eq. (6) becomes the Laplace-
Fourier transform p1(k;s) as derived in Ref. 1. Thus, for a liquid whose thermal con-
ductivity and viscosity may be ignored, the only changes required of the theory in Ref. 1
is to multiply the density variation p1 given there by 33c2 /2cp.

The effects of thermal conduction and viscosity are concentrated in the denominator
of the right-hand side of Eq. (6); it is a cubic polynomial in s which we designate by
F(s). Multiplying out the terms, F(s) is given by

F(s) = s3 + (rT + TK)k2 C2 s2 + (1 + T7 TKk2 C2 )k 2 C2 S + TKk4 C4 Iy. (9)

The inversion of the Laplace transform is easy to accomplish when the zeroes of F(s) are
known, in which case F(s) may be written as a product of three linear factors. Standard
tables of Laplace transforms may then be used. Furthermore, the solutions for the roots
of a cubic in terms of its coefficients are well known, so in principle we have no problem.
However, the coefficients of F(s) are functions of the wave number k, or more precisely,
of k2 . Hence the roots of the cubic will also be functions of k2 , and indeed they will be
very complicated functions of k2. Since we still have to invert the Fourier transform to
obtain p1 (k,t), one can forsee an analytical problem of considerable magnitude if one tries
for an exact solution. Hence we seek to locate the roots only approximately, but with
sufficient accuracy so as to leave us a result in which we have the confidence that it still
represents the physical situations to a considerable degree of accuracy.

A reference to the tables in App. A is helpful at this point. There we list, among
other things, the values of Tn. TK, and c2 for some common substances which may easily
be used in the thermal blooming experiments. (We note that the viscosity coefficients in
some substances show a frequency dependence which, if included, would complicate the
inversion of the Fourier transform. Since the viscous effects are expected to be small,
choosing ¢ and 7 to be independent of wavenumber will simplify our discussion and give
us a result that is representative of the real situation, even if it is not exact. Indeed,
justification of this simplifying hypothesis will be a posteriori.) It is seen that T in all
cases is of the order of 10-12 to 10-11 s, while TK _ 10-13 to 10-10 s. Hence T 71TKk2 c2

will be small compared to unity if k2 c2 remains sufficiently small. Now, if the radial di-
mension of the laser power profile is of the order of a, then the function f(k,s) in the
numerator of Eq. (6) diminishes to zero rapidly when k becomes significantly larger than

3



a-1. Hence the behavior of the denominator F(s) for larger values of k is of no great
consequence. Therefore, T17r Kk2c2 will be small compared to unity if T rKc2/a2 is small
compared to unity for significant values of k2 . For the fluids listed in the tables of
App. A, T11TKC2 /a 2 ; 10- 4 a- 2 ; thus, the approximation improves as the radius of the
beam increases and is excellent even for a - 1 mm. Within the framework of this approx-
imation, the polynomial F(s) now becomes

F(s) - s3 + (T71 + 1K )k 2 C2 S2 + k 2 C2S + rKk4 C4/-y. (10)

To get the zeroes of F(s) as given in the above equation we could use Cardan's tech-
nique, but this proves to be very cumbersome. We shall want the roots only to order T

anyway, so they will be obtained as follows. First we note that at 117 = = 0, F(s) be-
comes s(s2 + k2 C2); hence the roots in this case are at 0, +ikc, andC-ik. Now assuming
nothing peculiar happens, the roots are generally analytic functions of the coefficients of
the polynomial. Hence, the roots of Eq. (10) must be near 0 and ±ikc. So, write F(s) in
the form

F(s) = (s-sj)(s 2 + Os +-yk2C2).

The roots are then determined uniquely by multiplying the two factors of the last ex-
pression and comparing them with Eq. (10), and by requiring that, to the lowest order in
T11 and 1 K' (a) the sum of the roots be (117 + 1K)k 2 C2 , (b) the sum of their products in
pairs be k2 C2, and (c) their product be r17 k4 C4/ y. The roots thus obtained are

Si = -k2C2TK /Py, (lla)

S2 = ikc -k 2 C2 (T17 + (1 - Y 1 )TK )/2, (llb)

and

S3 = -ikc - k2 C2 ( T17 + (1 - y1 )TrK )/2. (11c)

It remains to check if these roots are consistent with our assumptions. The ratio of the
real part of s2 to its imaginary part has the magnetude kC(T,7 + (1 - y- 1 )TK)/2, which for
significant values of k is smaller than, or of the order of, C(1,17 + (1 - 'y- )K)/2a. For a
laser whose radius is of the order of 1 mm, this ratio is of the order of 10-4; for larger
beam diameters, the approximation improves.

Before the Laplace transform can be inverted, the function f(k;s) has to be specified.
Adopting the same model of energy deposition as in Ref. 1, f(R,t) is, in fact, independent
of time so that f(k;s) has the form f(k)/s. Then p 1 (k;s) can be written as

j 1(k;s) _ 33C 2 1 k2 c2f(k) (12)
p0 2cp tc S(s -S)(SS2)(S 2) (12

In Eq. (12), we have incorporated the fact that s3 = s2; also note that si is real, and that
the denominator itself is real. Then

1_ 1 1 \_1

sF(s) s(s - s(s ) s(s-sl )(s - 2 ) s22

=-(Im s2 f)1 Im ( ss )(s-s 2 )) (13)

4 J.N. HAYES
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Inverting the Laplace transform and keeping terms to the order TK and 171 at most in the
multiplicative factors, we get

~Pk~t) - 3 -e 1f(k) [k7 (1 -- e(k 2 c 2 1K1'Y)t)
P 0 2ce tc lk2C27- (

1 #e1/2k2C2(T17+(1-'Y1)TK)t 13in kct -kc + (23 7i ) )
ke S Ksnek(Tr 7 2~jK okJ- (4

The model in Ref. 1 assumed the laser beam to have an intensity profile which is
rotationally symmetric about the beam axis. This assumption renders Ak) to be a function
of k2 rather than a function of k. Then j 1/po may be written as the product f(k 2 ) and
G(k2), where G(k2 ) is the set of factors on the right-hand side of Eq. (14) that multiply f.
The density function in space and time may then be written

'i(R,t) = dr' ' rdr' r' f (-) A dk k Jo(kr') JO(kr) G(k2) (15)

where f(r/a) is the reduced intensity profile defined in Ref. 1, r = (x 2 + y2)'/2 is the
distance of the point whose position vector is R from the beam axis (the z axis), and JO
is the Bessel function of order zero.

From Eqs. (14) and (15) it is clear that the density variation p1 in the medium is
composed of two additive parts, one which involves the effects of thermal conduction
alone, and another which has both thermal and viscous effects intertwined. Further, the
latter term involves a description of the propagation of sound as well. In Ref. 1 where
viscous and thermal effects were ignored, we saw that this term went to zero rapidly when
t became larger than the time required for sound to traverse the distance a. A similar re-
sult obtains here, with minor modification due to the presence of 117 and T KI It is readily
seen that both terms tend to the results of Ref. 1 in the limit that 177 and 7K vanish.

Write G(k2 ) = GL(k 2 ) + GS(k 2 ), where

GL~k) 2e~ tc 22 (1ey-(k2 c2 1K)I(Y)t) (16a)

and

GS(2 ) = + 3Ce 2 1k e-1/2k2c2(Trn+( --y-1
2ep tc ke

X (in kc t-kc( + (3 _2 Cos kct (16b)

Correspondingly, we may write p1 (R,t) = pj(R,t)L + pj(R,t)s- We study the behavior
of Pis for times t > ac.

23c2 1 Jo dr' r f[() 0 dk Jo(kr') Jo(kr) e- /2k2c2Tt

X (sin ket - kCT' cos ket).

5
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In Eq. (17), we have substituted T' for T11 + (3/2) - (2/y)TK and T for T11 + (1 - '' 1 )TK.

Indeed, for the liquids listed in the tables of App. A, I - T' 1 T7, 50 that Pis is domi-
nated by viscous and sound propagation effects primarily. Arguing as we did in Ref. 1,
the first of the two terms on the right-hand side of Eq. (17) vanishes by the Riemann-
Lebesgue Lemma as t - °0; this can be demonstrated to mean t >> alc. Next we look at
the k integration in the second term; make a change in the variable of integration from
k to x = kc \/t. The k integral then becomes

2i-' jdr-'(±)x
dT JO Jo (x\-T )a)cs( e-x 

This expression is bounded by

2TL Xdx e-x 2x =te
CtT CtT ct

Therefore the second term on the right-hand side of Eq. (17) is smaller than

3 gc2 1 r 3 = P a2

2 Cp c2tt 0f (a/ 2 Cp Ctct

This term will be of interest only if it is comparable to, or larger than, the first term P1L.
While we have not yet determined P1L when thermal conductivity is present, we know
from Ref. 1, and from our remarks on how to generalize those results to fluids, that
P1L - (3/2)(002 /cp)(t/tc); hence the ratio of these terms is given approximately by
a2 t2 /c2 . For times of the order of 1 s, this quantity will be small. Hence we may ignore
Pis compared to P1L-

The function P1L is given by

P1L C to O3pC2 dr' r' (r) f dk k Jo(kr') Jo(kr)
PO 2 Cp tc 0 0

X k2 (1 -e-(k2c2 TK 1)t).
k2e 2 ,r,

Make the r' integration dimensionless by letting r' = aX and k = x 'f/eAlt; then

p1L - - JI~e~t,~fG~dXo fo J( )Kt ( / a

where tK is a constant with the dimensions of time defined by

tK = y a 2 = popa 2 (19)
TK C

2
K

6
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It will be seen that the value of tK is a measure of the importance of the effects of
thermal conductivity.* If K is very small, then tK by Eq. (19) is very large. Now when
thermal conductivity is very small, we would naturally expect that a long time would have
to pass for its effects to manifest themselves. That tK is large for small K indicates that tK
is the appropriate time constant to associate with our qualitative description. Conversely,
when K is large, tK is small and, on intuitive grounds, we expect that conduction effects
will show themselves in a short time in these circumstances. Further, tK depends upon
the linear dimensions of the beam-the smaller the beam, the shorter the time constant.
This again coincides with the notion that thermal conduction will make its effects pro-
nounced over shorter dimensions more rapidly than over longer dimensions. For a laser
of dimension a t 0.1 cm and a medium with p0 - 1, we have cp t 1, K 10- 3 , and
tK t 10 s. For a laser three times as wide, tK t 102 s. For air at standard temperatures
and pressures and a - 0.1 cm, tK t 0.25 s. To determine conduction effects quantita-
tively, however, Eq. (18) must be evaluated.

In paragraphs 1 and 2 of App. B it is shown that for a laser with a Gaussian profile,
for which f(x) = exp(-x 2 ), the integral may be computed exactly in the sense that it may
be expressed in terms of known tabulated transcendental functions Ei(x). For this case,

p1 (r,t)L - _ 3fc tK 2 Ei rEi (Gaussian Profile). (20)
PO 2c% tc 4 a2 +4(

In the limit of zero thermal conductivity, i.e., tK e , we should recover the results of
Ref. 1. We obtain this limit, to the order (tltK)2, by expanding the first term in a Taylor-
McLaurin series about r2/a 2. Then

Pl(r,t)L_ _3jpe
2 (t er2a2 + 4t2(r )6 e-2/2) 21

p0 2cp ( tc tKt \) er/aa) (21)

for (t/tK ) << 1. In the limit as tK - °°, we see, indeed, that the results of Ref. 1 are re-
covered, although the factor 3c2/2c was unity there. However, from the evaluation of
tK in the above paragraph for typical substances, we saw that t. varied from 101 to 102 s
for typical laser dimensions and a liquid medium, and an even shorter time for air. The
phenomenon of thermal blooming occurs over a time scale of the order of seconds. It is
therefore apparent that the approximation given by Eq. (21) in many instances will not be
applicable and that Eq. (20) must be used instead for determining the light rays in the
medium and for the intensity profiles. The effects of thermal conduction in some experi-
mentally realizable situations, therefore, cannot be ignored.

For the case of the general choice of f(X), it is shown in App. B, Sec. 3, that the
density everywhere increases as ln(t/ 4 tK ), and that for r >> a the spatial and temporal
development of the density varies as Ei[(tK/4t)(r 2 a2 )], regardless of the choice of f. For
values of r << a, the spatial details are wiped out and a uniform growth given by Ei(tK /4t)
takes place. Thus, thermal conductivity, given enough time, tends to obliterate the struc-
tural details of the initial beam profile. In any specific case, the time required is of the

*In the Gaussian case, it would appear that tK/4 is a more appropriate value for this constant.

7
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order of tK /4 for this to occur; if this quantity is significantly less than the time scales
for phenomena that interrupt the blooming, then it appears reasonable that we may always
take Eq. (20) as a good approximation to the behavior of the density. However, in apply-
ing this result to blooming, one must be extremely cautious because the blooming phe-
nomenon depends primarily on the difference in densities between two points in space
(see Ref. 1). Therefore, while structural differences in the densities due to differing selec-
tions of f(X) may affect only slightly the absolute values of the densities p1 , these same
structural details may well be important for blooming.

III. TRACING LIGHT RAYS

The equations for the light rays derived in Ref. 1 require modification to be appli-
cable to liquids as well as gases, and to include the effects of thermal conduction. The
changes are slight, however. The Lorentz-Lorenz law is still valid:

n2 - 1
2 = 2 Np (22)

where n is the index of refraction of the field, p is the density, and N is the molecular
refraction. If p1 represents a slight deviation of the density from p0 , then this gives rise
to a slight change Wn2 in the square of the index from its initial value n2, which is easily
shown to be

rbn2 = 3N(n6 + 2)2 p,. (23)

The difference between liquids and gases is that the right-hand side of Eq. (22) may be
taken to be very small for gases, but is generally of the order of unity for liquids. In
Ref. 1, it was proved that the equation for the light rays could be case into the form

F ~~~~~z M 1/2
n2 (r0 ,0;t) + [ dz' an2(r(z ),z ;t)

dz _ z'(24)

dr 2rz)zt-n, Z an2 (r(z'),z' ;t)
n2(r(z) z;t)-n 2(roO;t)- dz' a(z

Adopting the same model here as we did in Ref. 1, p1 is independent of z; from the
hypothesis and Eq. (23), it follows that an2 /az' vanishes and the differential equation for
the light rays reduces to

dz [ n2(r0 ,0;t) 11/2
dr Ln2(r(z),z;t) -n2(r 0 ,0;t)J (25)

The numerator changes with time, but since we are limiting ourselves only to small
density changes, and thereby through Eq. (23) to small changes in n2 , the numerator may
be replaced to a good approximation by n2, the initial index squared. The principal source
of changes in dz/dr come from the denominator in the right-hand side of Eq. (25).
Writing n2 (r,z,t) = n2 + 6n2 , and using Eq. (23), Eq. (25) may be integrated and cast into
the form

8
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[1 N(nO + 2)211/2
3 n2 jI 0 1

r dr'

£ro " 1 (r -P1 (rO t) -

For those liquids and gases for which the effects of thermal conductivity can be
ignored, or equivalently, for very early times, we have seen that

p1 (r,t) = -3C2 t f(a
2ePt \aI)

Then Eqs. (26) and (27) combined can be written as

1 N(n2 + 2)2 3OC2 t 1/2 z

\3 n 2cp tc a0 p

rna dx'

froa f+(xo) -f(x )

where x0 = ro/a. Equation (28) is equivalent to the result of Ref. 1 for an ideal gas, but
is now cast into a form that is applicable to a liquid as well. The results of Ref. 1 apply
to Eq. (28) in all particulars, therefore, except for the definition of the reduced variable
¢ defined there. Here it becomes

= (1 N(n2 + 2)2 3gc2 t 1/2 z
\3 n02 2cp t, a a

(29)

Scaling is once again complete; with the appropriate choice of constants and beam in-
tensity profile, the graphs given in Ref. 1 may be used to estimate the light rays and the
intensity profiles for nonconducting liquids.

When thermal conduction is important, part of the scaling in space and time is lost,
and the situation becomes more complicated. Because the Gaussian profile is probably
one of the more important ones, and because it is the only profile for which tractable
analytical results are available to use, we restrict our discussion below to this case. We
introduce the scaled or reduced coordinates

x = a 'a'

X0 = - .
at

4t

(30a)

(30b)

(30c)

The quantity T is a "reduced" time variable, which is not needed when conduction can be
ignored. In addition, we define a "reduced" distance ¢ downbeam by

[i N(nc2+ 2)2

3 02 (31)

With Eqs. (30), (31), and (20), the equation for the light rays becomes

(26)

(27)

(28)

9
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I = X dx'

Jxo (Ei(xo) -Ei[xo(1 + 1)-1]) - (Ei(x'2) - Ei[x'2(1 + T)y] )I)
(32)

I -

Note that the quantities t and ¢ differ from one another in that the factor t in t is re-
placed by tK/4 in t; observe also that time, through the reduced variable r appears in the
denominator on the righthand side of Eq. (32) and cannot be factored out as it was in
Eq. (28). For this reason, one has to compute a set of light rays for each value of the
time variable r; the light rays do not scale in the time variable as they did in Ref. 1, or as
in the case of nonconducting liquids discussed above. In addition, scaling is lost in the
downbeam intensity profiles. What must be done now is to select a distance downbeam
and, using the intensity formula from Ref. 1, compute the modifications to the energy
profile induced by the blooming; but this must be done separately for each downbeam
distance. Thus, the numerical work increases considerably over what is needed for a non-
conducting medium.

The effect of thermal conduction on the thermal blooming is shown in Figs. 1 and
2. The solid curves represent the blooming as calculated in Ref. 1 without thermal con-
duction effects taken into account, while the dashed curves show the blooming with
thermal conduction included. The beam sizes, ranges, and other pertinent parameters are
given in the figure captions. It is seen that the conduction effects cause only a small
modification in the beam profile by the time that the linearization approximation is not
valid any longer, or by the time that convection begins to set in. As expected, the effects
are more pronounced for smaller beams. These same qualitative features will carry over to
the case of a beam in a liquid.

a = 1.00 cm
Z = 100 cm

t 0.0sec
< t=0.O5 sec

- ,t=0.I~sec
<0t=0 sec

l I I

0.5 1.0 1.5

al=.OOcm
z =300 cm

t= 0.00 sec

=0.05 sec

tl=0.10 sec

, I

0
r
a

0.5 1.0 1.5

Fig. 1-Intensity profiles for a Gaussian beam. The solid curves
show the bloomed beam without conduction effects taken into
account, while the dashed curves include conduction. Specific
parameter choices here are W = 100 watts, a = 10- 3 cm- 1 , PO =
10-3 gm/cm-3 , anda = 1.00 cm; all other parameters are those for
air at STP. For these choices, tc = 5.1 s, tconv = 0.33 s, a/c =
0.3X 10-4 s, and tK = 1 S.

1.00

|N a 0.75
it

0.50k

0.25[

0.00(
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H||`

11

r

Fig. 2-Intensity profiles for a Gaussian beam. The solid curves
show the bloomed beam without conduction effects taken into
account, while the dashed curves include conduction. Here, the
beam radius is a = 0.5 cm, and the other parameters are as indi-
cated on Fig. 4. For these choices, tc = 1.0 S, tconv = 0.16 s,
a/c = 0.15X10- 4 s, and tK = 0.25 s.
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APPENDIX A
PARAMETER VALUES

The data shown in Tables Al and A2 are adapted from the paper by Karim and Rosen-
head*, who list the quantities ,u and p' rather than our t and 7i. These quantities are related
by p = 77 and pu' - 2/3 17. The data are listed to indicate two things: first, that the
bulk viscosity coefficient cannot be ignored, as it had been up to 1940. (Indeed it may
dominate 71 by a substantial factor.) Second, these numbers indicate a frequency depend-
ence. The numbers are not meant to be exact, in spite of their appearance; they should
be taken as representative or indicative. Finally, ¢ and 71 in Table Al have units of cen-
tipoise (cP).

The bulk viscosity coefficients ¢ have not been determined for as many substances as
have the corresponding first viscosity coefficients t7. To forestall the effects of convection
in an experiment on blooming, one might choose a fluid that is much more viscous than
those listed in Table Al. In such a case, it may prove to be important to obtain the value
of t. For such fluids, our treatment of the viscous terms in Sect. II of the present report
is not correct.

Table Al
Viscosity Coefficients for Common Substances

Substance Freq n7 (cP) | /rj | (CP) +4/3 1(cP)

Water 5 1.00 3.06 3.06 4.40
Methyl Alcohol 5 0.60 1.96 1.18 1.98
Ethyl Alcohol 5 1.20 4.46 5.35 6.50
Acetone 5 0.30 3.76 1.13 1.43
Isoprophy Alcohol 5 2.20 5.66 12.45 .15.25
Amyl Acetate 5 0.89 10.56 9.40 10.60

2 0.89 10.26 9.35 10.55
Xylol(m) 5 0.62 11.66 7.25 8.05

2 0.62 11.66 7.25 8.05
Ethylformate 5 0.40 15.66 6.26 6.78

4 0.40 22.66 9.06 9.58
3 0.40 31.66 12.66 13.16
2 0.40 85.66 34.30 34.80

Chloroform 2 0.57 24.66 13.88 14.68
Carbon Tetrachloride 2 2.00 28.66 57.32 60.50
Benzene 2 0.65 107.66 70.00 70.90
Carbon Disulphide 2 0.37 200.00 74.25 74.80
Air - 1.82x10- 4 0.00 0.00 2.43x10-4

*S. M. Karim and L. Rosenhead, "The Second Coefficient of Viscosity of Liquids and Gases," Rev. Mod.
Phys., 24:108-116 (1952).
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Table A2
Parameter Values for Select Substances

l________ l_______ ______ ___________ C onstants

Substance P cp TK | K7 7*7K

LX___m al () 1010 -3cm -c N (10-13 sec) (10-12 sec) (10-25 sec2)\CiTi3 (gm- C) sec d1 yne C-cm-sec) (sec)

Water 1.00 1.00 0.98 2.214 45 1.45 .642 2.01 1.290 1.72

Ethyl Alcohol 0.784 0.584 1.17 1.24 111 0.405 0. 72 6.68 5.22 3.68

Acetone 0.783 0.514 1.40 1.378 126 0.380 0.959 1.325 1.272 2.65

Carbon Tetra-chloride 1.582 0.207 1.47 0.854 106 0.248 1.30 44.75 58.18 3.32

Benzene 0.872 0.410 1.42 1.685 95 0.343 0.808 48.3 39.12 2.60

Air 0.00118 0.240 1.40 0.1156 106 0.062 2790 188 525x103 0.0108

*For a = 10-1 cm.
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APPENDIX B
MATHEMATICAL CONSIDERATIONS

In this appendix we evaluate and estimate some integrals pertinent to the discussion
of Sect. II of this report.

Some Simplifications

We make use, in the sequel, of the standard integral

and of the integral representation

00

dx x e' 2 , 2 JO(bx) 1 e-b2 /4a2 (B1)

1 - - x 2 [dse--x. (B2)

Also, we use the symbol Ei(x) to designate the exponential integral

Ei(x) = -dt. (B3)
x

Using Eqs. (B3) and (Bi) one can readily show

00 (1 - e-x2 1 0
J dx x Jo(bx) = 2 Ei( 4 ) (B4)

and

'1 ~~~~ 1 [1 ~~~b2 lb 2 N

dx e' x Jo(bx) = 2 LEi(4(l+a2) Ei( j)j. (B5)

In addition, we make a transformation of the kernel of Eq. (18) to obtain the inte-
gral representation

f dx ( e ) Jo(ax) Jo(bx) = f Id -( eda2+b2 )4sI o(ab)
0 0

2 00 dS e-(a 2 +b2 /4)s 10 ()ab (B6)

0
which might prove useful.

14
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To derive Eq. (B6), use Eq. (B2) and Eq. (11.601) of Wheelon*. The second version
of Eq. (B6) is obtained from the first by transforming the variable of integration from s
to s-1 . With Eq. (B6) and one more simple change of the variable of integration, Eq. (18),
the expression for the density change, may also be written as

pl(r,t) 3032 tK

Po 2cp tc

X J A co dp e_(0O2+(r2/.2))p Io r)
dX NfXf 17

tK/4 t

The Gaussian Profile

For a laser whose intensity profile is Gaussian, f(X) = exp(-X 2). Then Eq. (18)
becomes

p1 (r, t) _ 3O3C2 tK

Po 2cp t

X jdXXe2Jdx x 2 Jo (X L) a) (B8)

Interchange the orders of integration and use Eq. (B1) to do the integration over the vari-
able N. Then use Eq. (B5) to complete the remaining integral. This gives

Po 2cp tc 4 p(a2 + tK 

The General Profile

We consider f(1X) arbitrary and take the limit of very small thermal conductivity, or
equivalently, very early times. In Eq. (18) make the transformation y = (tK/t)x. Then

_ 2Cp Pt(rft-t dX X f(X)f dy (1-JeYOI(tK/t)) J ( r)J 0(Yx)
3jc 2 po tc O Y a

For very large values of tK/t, the exponential may be expanded in a powers series using
just the first two terms; this approximates the first factor in the y integrand quite well for
those values of y where the Bessel functions differ from zero by a substantial amount.
Thus,

*A. D. Wheelon, "Tables of Summable Series and Integrals Involving Bessel Functions," San Francisco:
Holden-Day, 1968.
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2c P p1(r,t)L -K 00t
0

- 3=32 p = t dX X f(X) t-J dy y Jo (Y-) Jo(yX)

0

t00 X)

tfa

= t-J dX Xf(X) L 

_tC \a/(B10)

which is the result of Ref. 1 where thermal conductivity was ignored.

To estimate the behavior of P1L for long times or large conductivity, rewrite P1L as

P1L 3fc2
_f dx (1 ex) Jo (X )

Po 2cp tc 0 x t

00

XJ dX Xf(X)Jo (x K X)-

Now if t is very large, xX has to be very large in order that Jo (x\/'-7l 7X) deviate signif-
icantly from unity. For r >> a, however, Jo(x~/t7i r/a)/x in the x integrand tends to
zero for large x. Therefore, in the X integrand, because f(X) has finite width, X,- 1 and
Jo(xy \/t)7F) may be replaced by unity. Since

00

dX X f(X) =
f ~ =2'

we get, using Eq. (B4),

P1L 2 C t- 4 Ei(4t a2)' for r >> a. (Bll)

To obtain the behavior of P1L closer to the beam axis, i.e., for r - 0, we observe
that the two Jo's in the above argument may be interchanged. Specifically, put r = 0.
Then

P1(O~ - 2cp tK 00dX X f(X) 1 Ei(tK X2)
P 0 2cp tc 2Jo f2 nt l

3fC2 tK1 00 _K (t)]V dX X f(X)[-Y X - In'. - + 

2C~~ tc 2 0t

3/c - l+)J 0 dX f(X) XlnX' + 0 (B312)
2 cp, t, 44 J k4t)Ij

16
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Thus, the density at and near the beam axis decreases as ln(4 t/tK) for t/tK >> 0.

These qualitative conclusions are easily verified in the special case of the Gaussian
profile. For the general case, the kernel of our Fourier-Laplace inversion is much too com-
plicated to say more. Each choice of f must be handled individually to make better ap-
proximations than the above, and it is unlikely that many choices of f will render the in-
version reducible to the more common transcendental functions.

In spite of the precautions of the above paragraph, physical and statistical arguments
may be combined to give weight to an interesting conjecture. First, we note that for a
confined beam, i.e., f(X) -- 0 rapidly as X > 1, the heating and subsequent density changes
for points r, such that r/a >> 1, should not depend much on the profile of energy deposi-
tion within the beam but only on the rate. This led to Eq. (Bli). Inside the beam, dif-
ferences in energy deposition rates lead heat to flow into the cooler regions until a steady
state is built up. This led to Eq. (B17). Said in another way, heat conduction is a statis-
tical process and the final state in suci processes never reflects the initial state. Hence, we
conjecture that for any reasonably smooth choice of f(X), i.e., no infinite discontinuities,
and one that satisfies the normalization condition

0 0

fJ dX X f(X) =2

as r becomes very small, then

00 ~001
0 2 )J dx (1 Jo(xE)Jo(xp) i( P2) - Ei(p2)( (B13)

+ 0(T) + 0(p) + 0(pj), for -rz 0.

This conjecture is consistent with the result of Eq. (B9), and with our special approxima-
tion. The integral is seen to be finite when p = 0. On the other hand, Ei[(r/4)p 2] is
singular at p = 0, but with a logarithmic singularity Ei[(r 2/4))p 2] ln(r2/4) + lnp2 .
Therefore the singularities of the two terms in the bracket on the right-hand side of Eq.
(B13) cancel. The terms 0(T) and 0(p) will reflect the choice of f.
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APPENDIX C
BASIC MODEL HYPOTHESES

A brief resume of the hypotheses used in the model for laser propagation in an ab-
sorbing medium as discussed in NRL Report 7213 is presented here for convenience:

1. The beam was assumed to propagate through an initially homogeneous isotopic
and quiescent medium.

2. Convection, viscosity, and thermal conduction were neglected.

3. The variation of intensity of the initial laser beam, as a function of distance, due
to absorption was ignored.

4. Energy deposition by the laser beam into the medium was calculated using alo,
where Io was the unperturbed beam. The model was therefore restricted to those times
for which the calculated beam distortions were small.

5. The index of refraction was related to the density by the Lorentz-Lorenz law,
and the model of energy deposition described above was used in conjunction with the line-
arized hydrodynamic equations to determine the subsequent behavior of the medium param-
eters, in particular, the density.

6. The optical changes in the beam were determined by the laws of geometric
optics. This restricts the model to those times and distances where diffraction may be
ignored and caustics do not form.

The present report does not neglect the viscosity and thermal conduction.
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