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A Starting Algorithm for Minimal Cost Survivable Networks

ALVIN B. OWENS

Operations Research Group
Mathematics and Information Sciences Division

Abstract: It is assumed that a network will be attacked by an all-knowing, intel-

ligent enemy who will expend minimum effort to break communications in the network.

An algorithm is presented which designs a near minimum cost network with specified

incidences at each node.

INTRODUCTION

In designing a communication network which may be in danger of attack, there are three basic
considerations: cost, the ability of the network to communicate after an attack, and the amount of
the network structure that will be known by an attacker. If an attacker has no knowledge of the
network, then any attack will be made at random and the network design should reflect this. In this
report, however, we assume the attacker has complete knowledge of the network and attacks the most
vulnerable points to disrupt communications. This assumption leads naturally to assuming that a good
measure of survivability of a network is the fewest number of nodes which must be destroyed before
the remaining nodes can no longer communicate with one another. Networks for which a great many
nodes must be destroyed to minimally disrupt communications will be said to have high survivability.

One easy way to give a network high survivability is to insert many extra branches. However,

this increases the overall cost of the network. The objective is a network which attains a specified
level of survivability with minimal cost. At present the only known methods are algorithms for near
minimal cost networks.

BACKGROUND

Suppose a network N is given. The maximum number of node-disjoint paths between a pair of
nodes vi and v1 is said to be the redundancy between vi and V1 and is denoted ri. A set of nodes whose

removal disconnects N (separates at least one node) is said to be an articulation set. The cardinality

of the smallest articulation set of N (for N noncomplete) is said to be the connectivity of N and is
denoted by c. The smallest number of nodes whose removal disconnects all paths from nonadjacent
nodes vi and v1 is called the i-j connectivity and is denoted by cog. Menger's theorem states in particu-

lar that wo, equals riq
Since any articulation set is an i-j articulation set (a set of nodes which disconnects nodes vi and

v,) for some pair of nodes vi and vi, it follows that

co = min wip vi, vi (EN and vi, vy nonadjacent.

NRL Problem B01-10; Project RR 003-02-41-6153. This is a final report on one phase of the problem; work on
this problem is continuing. Manuscript submitted March 8, 1971.
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Hence

X = min ri-pi, vi -EN and vi, vj nonadjacent.

Since survivability is a measure of the minimal effort required to disconnect a network, we de-
fine the survivability of N to be A, the connectivity. The survivability between pairs of nonadjacent
nodes vi and vi is taken to be ci>, the i-j connectivity. (Equivalently it can be taken to be rip the re-
dundancy between vi and vj.)

Suppose a symmetric matrix D = (diq) is given with di = 0, i = 1, . . ., n, and each dii is a positive
integer. Then any n-node network whose redundancies rij are such that ri > di, (i, i = 1,. . ., n) is said
to be feasible. (D is often called the redundancy matrix.) Suppose a cost matrix C = (cii) is given,
where ciy is the cost of a branch between nodes vi and v1. C is assumed to be symmetric with all zeros
on the main diagonal.

The problem is to find a feasible network of minimal cost, called a solution network (or. an
optimal network). In general no optimal network is unique. Indeed, when C is a constant matrix, the
problem reduces to finding a feasible network with the fewest branches.

There is an algorithm due to Steiglitz, Weiner, and Kleitman [I] which can be used to find a
near optimal network. This algorithm has two parts. First is a starting routine which constructs a
feasible network. Second is an optimizing routine which searches .networks generated by a pair-
branch local transformation for a feasible network of lower cost. When a locally transformed network
of lower cost and feasibility is found, the improved network is adopted. The search continues with
the new networks by local transformations until no further cost improvements can be found;

The aim of this report is to present an improved starting routine with the advantages of flexi-
bility in the number of branches chosen for the network and of lower cost.

THE STARTING ROUTINE

Suppose that n distinct points are given, along with an n by n redundancy matrix R = (ri,) and an
n by n cost matrix C = (cq). Let Ri = max1 ri, be the row incidence. Let C be considered as the sum Of
two triangular matrices U and L, where'cei E U if i < i and ci (E L if i > j:

; ' 0 C' = V * * ) '~~~0 

This can be done, since C is symmetric with a zero main diagonal. The aim is to construct a simple
low-cost network so that the incidence at the node vi is Ri. This latter condition is necessary, since
the degree of the node vi must be at least maxij r1y if at least riq distinct paths are to be demanded
between v1 and vi. This condition, however, is not sufficient for feasibility. Thus each network con-
structed must be tested by the method of Frisch [2], which calculates the node-pair redundancy. For
this algorithm it is assumed that the R 'values are known.

Consider all the possible sums of length R 1 of elements of the first row of matrix C. In general
many of these sums will have the minimal sum value. Let Sl (indicating stage 1 in the routine) be the
collection of elements which appear in arty of these fiiinimal sums. S1 in general will look like

Cit1 6 C1 t2 6 *.- C• t < C12 1 = C122 C2... R

The elements from kl to 2R'i are called optimal elements. (In the example given in Appendix A,
SI = {2, 1, I}.) R is the number of optional elements.
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The strategy is to select R1 elements from SI to go "into" the network, i.e., into class J. (For
example, if c 1 3 is chosen, then c 1 3 is put in J and branch (v 1, V3) is put into the network.) First place
all the nonoptional elements of SI into J. The problem is to decide which optional elements to put
into J. (The first row is the easiest, since there are no tradeoffs.)

Consider the elements

CQ11, CQ21, .. ,CPMl (=2

These are the reflections of the optional elements. In the rows l .... Rm there are sets

SQX ... *, SQm

and optional element sets °Q, ,..' °
If any of the c2 .1 belong to S2Ž-. i OR, then note (choose) this c2Q and put the corresponding

c12i into J. To make sure no more than R1 elements are placed into J, note the c2 ,1 in S'i--. 0,
by decreasing order of the corresponding R2 i. Thus the cv 1 is noted first whose R2 , is greatest. (In
case of ties choose that ceil whose row sum is largest.) (In the example RI = 3 and the optional set
°l = {2}. Since IS 1 1 = 3 = RI, all of S1 is placed into J.)

On the other hand, suppose that the number of cqil which belongs to S.Q>Op is insufficient,
so that less than RI elements are placed into J. In this case pick the c12 , so-that the c12 belong to
rows with the largest R2 i value. In case of a tie note those c2 ij from rows with the largest optional
sets. If a tie persists, choose at random. (This last situation does not arise in the example.)-

Let K be the set of elements symmetric to those selected for J. Elements in K will be called
blue elements, and elements in J will be called orange elements. (An element in K or in J will be called
circled.)

Now proceed to the second row of the C matrix. Some elements in this row may be blue ele-
ments already. Thus let R2 = R2 minus the number of blue elements. In general R! = R minus the
number of blue elements, in thejth row.

Consider all possible sums of length R2 of uncircled elements of row two. Let M2 be the col-
lection of all those sums of minimal value, and let S2 be the set of all elements which appear in some
sum belonging to M2 . In general S2 will consist of the smallest uncircled elements plus a number of
optional elements which are all equal (in magnitude).

Let

02 = {C2 21, C2 22' - CUM

be the optional elements, where m = R", the number of optional elements. (In the example R2 = 3,
R2 = 2, the element c21 = 1 is blue, S2 = {1, 2, 2}, 02 = {2, 2}.)

The problem is to determine which of the optional elements to put in J. Consider the elements
symmetric to the optional elements:

c912, c922 , * * ., CQ2m (m 2R).

Let SQ (i= 1, . . ., R ) be the set of uncircled elements in the Qith row (i = 1, . . .,R") which belong
to minimal sums of length R921. (In general, Sjz contains more than Ri1 elements due to the optional
elements.)

Define Case I to be the case in which there are at least R2 elements in S2 rl U, where U is the
upper triangular submatrix of C. Let bi be the number of elements in the basic set Bi = Si '\, 0.
Let R2" be the number of optional elements in 02 needed for J in order for the second row to have
R2 circled elements, (considering B2 as already in J). Let N2 be the number of elements in 02 for
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which c2 i2 E B2 i (the basic set). If R2 = 0, go to the next stage by changing the 2's to 3's in the
algorithm.

There are two subcases in Case I:
A. If N 2 > R2", then note the c212 in BR2 in order of decreasing R.Q values. Put in J those

C22I whose reflections c2. 2 have been noted above. In case of a tie avoid noting those c2. 2 which
belong to rows whose row sums are largest.

B. If N2 < R"', then let N2 be the number of elements in 02 for which cQi2 E Si. There
are two subcases to be considered in this subcase:

1. If N'2 > R"', then place in J all elements inB2 and the R.' elements in 02 for which the
corresponding O°Q are largest (this takes care of the case when SR, = (p) making sure that if C221 is in
02 then C2 2 is placed in J whenever c-2j 2 is in B21 and moreover, that a c 2 Q in 02 is placed in J only

if c212 is in SR,. In case of a tie avoid noting the c2Q 2 in rows with the largest row sum. If a tie persists

choose at random. (In the example N2 = 0, R." = 1, N2 = 1, 06 = {2, 2, 2}, and 02 = l. Hence
c6 2 is noted, C2 6 is placed into J, and c6 2 is placed into K.)

2. N2 < R'", then place into J those R.2 " elements c2 2 i belonging to 02 whose reflections

cQ2 2 increase the cost of the Qith row the least (over the rows theoretical minimum) making sure that
if c 2 2. is in 02 then c22 1 is placed in J whenever c212 is in SQj. Also, place all the elements in B2 into
J. Add to K the reflections of these new orange elements.

Define Case II to be the case in which there are not R2 uncircled elements in S2 n U. In this
case check each element in L n S2 for a tradeoff advantage. Consider the element c2k in L. A trade-
off advantage occurs when the difference between the cost of some uncircled elements in U n S2

and L n S 2 , say C2j - C2k 0 > 2, k < 2, so c2 k E L, c 2 jE V), is less than or equal to the largest ele-
ment in SP.

If this occurs, choose the c2i for J which gave rise to the greatest tradeoff difference.
(If Cj2 E B, and c2 j - c2k > 0, where C2k is the smallest element in S2 n L ,then always choose c2i for
J.) Place the corresponding reflected element cj2 into K. Lower R2 by one, and recycle through the
algorithm with this new R2 values. Make sure that in the tradeoff the number of circled elements in
the jth row does not exceed Rj. If tradeoff does not occur, then choose all elements in S2 n U for J
and choose the smallest in S2 n L for J until R2 elements have been circled.

Proceed to the third row, changing the appropriate 2's to 3's. Repeat this one stage at a time
until the nth row has been processed.
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Appendix A

EXAMPLE

In the following example the Ri are assumed to be given as follows: R1 = 3,R 2 = 3,R 3 = 1,

R4 =3,R 5=3,R 6 =4,R 7 =3andR 8 =4.

STAGE 1

In stage 1 of the algorithm as applied to the example of the C matrix to follow it is given that
R1 = 3 and, since the first row has no blue elements,R' = 3. Hence in the example of the matrix to
follow SI = {2, 1, 1} and 01 = {2}. Thus place all of SI into J (and their reflections into K). (A
heavy circle about an element indicates that the corresponding edge belongs to the orange set (i.e.,
J set). A light circle indicates an edge which belongs to the blue set.)

1 2 3 4 5 6 7 8

1 _ (DO 4 4 8 3

2(i 2 6 3 2 1 4

3 (i) 2 _ 1 5 3 2 1

4(i 6 1 1 2 2 1

5 4 3 5 1 1 1 1

6 4 2 3 2 1 2 2

7 8 1 2 2 1 2 3

8 3 4 1 1 1 2 3

STAGE 2

For the second row of the above matrix R2 = 3 and R2 = 2. Hence S2 = {2, 2, 1}. Since

02 = (2, 2}, the problem is whether c23 or c26 should be placed in J. Consider the elements
symmetrical to these: c32 E S3 \, 03 and c62 GE S6 -° 06. Under subcase B of Case I, choose
those c2 Qi corresponding to the largest 02k: 06 = {2, 2, 2} and 03 = (D. Thus c26 is placed in J, and
the matrix now has circled elements as follows.
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1 2 3 4 5 16 7 8

1 000 4 4 8 3

2 ( 2 6 3 4))4

3 (i) 2 1 5 3 2 1

4 c 6 1 1 2 2 1

5 4 3 5 1 1 1 1

6 4(9- 3 2 1 2 2

7 8 I2 2 1 2 3

8 3 4 1 1 1 2 3

STAGE 3

At this stage R3 = 1, R'3 = 0, and the matrix remains the same as at the end of stage 2; thus pro-
ceed to stage 4.

STAGE 4

For the fourth row of the matrix in the preceding diagram, R4 = 2. Hence S4 = {1, 1, 1} and
04 = {1, 1, 1}. Since B4 = ($ and S4 n U = {1, 1}, then C45 and C48 are placed inJ (and C54 and
c8 4 are placed in K). The matrix becomes as follows.

2 3 4 5 16 17 181

1 _000 4 48 3

2QI 2 6 300 4
3~ (i)2 1 5 3 2 1

4 ( 6-1 2 22(i

5 4 3 5 1 1 1

6 4 (73-21 2 2

7 8 2 1 2 3

8 3 41 (i) 1 2 3
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STAGE 5

For the fifth row of the matrix R5 = 3 and R's = 2. Hence S5 = {1, 1, 1} = {c 5 6 , c7J, C5 8 } and
05 = {1, 1, 1}. In choosing two of the three optional elements note that B5 = (D,N2 = 3, R." = 2,
and C6 5 and C8 5 belong to the rows with the highest row incidence. Thus C56 and C5 8 are placed in J
(and C65 and C8 5 are placed into K), so that the matrix becomes as follows.

1 2 3 4 5 6 7 8

1 ()G() 4 4 , 3
2 ( )26 010 O24

3 i2 1 5 32 1

4 (D6 1 ( 2120 (
5 4 3 5Q (DI10
6 4 ( 3 2 2 2

7 8 (i)22 1 2 3

8 3 4 1 (0 0 2'j3j

:2-

r-

A::

STAGE 6

For the sixth row of the matrix R6 = 4 and R'6 =2. Hence S6 = {2,2, 2}. But S6 n U= {2, 2}
= {C67 , C6 8} . Thus C67 and C68 are placed in J (and C76 and C8 6 are placed in K), so that the matrix
becomes as follows.

-1 2 3 4. 5- 6 7 8

1_ (zQ i (i)4 4 8 3

2 0__ 2 6 3 (Q (

3-(i)J2 .. 1 5 3 2 1

'1KQ(D 2 2. (

8 3 _ 010@__ _
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STAGE 7

For the seventh row of the matrix R7 = 3 and R;, = 1. Hence S7 = {1} and 0 7 = (. Inthis
case, S7 n U does not have R, elements. Thus, there is the possibility of a tradeoff: C7 8 - C75 =

3 - 1 = 2. However, 2 is not less than the largest element in S8 , namely 1. Hence no tradeoff advantage
is available; C75 is placed into J (and c57 is placed in K), so that the matrix becomes as follows.

1 2 3 4 5 161 71 8

1 _D 4 1 4 18 

2 (L)= 2 6 3 O 4

3 O 2 _ 1 5 3 2 1; : 40 6 0 2 1I

64Q320 006 4 (in 2 O ( i (i
7 8 ( 2 2 O ( 3

8 3 4 1 0 0 1(D 3

STAGE 8

In the eighth row of the matrix R8 = 4 and R8 = 1. Hence S8 = {1} = {c8 3 } * Since S8 ) U = 0p,
there is no tradeoff possibility. Thus, place c8 3 in J (and c38 in K), so that the matrix becomes as
shown below. (Placing c38 in K gives two circled elements in row 3 and exceeds the row incidence by
one.)

4 5 6 7 181 2 13
I ( 000 4 4 8 3

2 0 2 6 3 (0 4

3~ (i)2 1 5 3 2 Q
4() 6 1 2 2 (Q

5 4 35 ( 00(
6 4()3 2 ( Q

780( 2 2 @ _ 3

8 3 4Q(i) QQQ3

The total cost equals 1+ 1+ 2+ 2+ 1+ 1+ 1+1+1+ 2+ 2+1+ 1= 17.
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