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ABSTRACT

The discrete Fourier transform and the inverse transform of a
finite set of data points are derived. By relating these transforms to
a "fast Fourier transform," it is shown how they may be used effi-
ciently in convolving two sets of data points, digital filtering, computing
lagged products, and estimating amplitude spectra. Some of the dif-
ficulties encountered in using transforms in these areas are discussed,
and computation times for direct evaluation of the results are compared
with those using transform methods.
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THE FOURIER TRANSFORM AND SOME OF ITS APPLICATIONS

INTRODUC TION

In April 1965 J. W. Cooley and J. W. Tukey published an article titled "An Algorithm
for the Machine Calculation of Complex Fourier Series" (1). Since then, this algorithm
and its various improved versions have become known as the fast Fourier transform
(FFT). This algorithm provides for the rapid calculation of the discrete finite Fourier
transform (DFT) of N data points and the inverse transform (IDFT) by digital computers.
Before the discovery of this algorithm, the length of time required by a digital computer
to calculate these transforms inhibited the use of Fourier methods in the computer
analysis in such areas as digital filtering and spectral analysis. The computer time
required to calculate these transforms by means of the algorithm is minimized when the
number N of data points to be transformed is of the form 2k, where k is a positive
integer. Therefore, most existing computer programs require than N be such a power
of 2, although the algorithm only requires that N be a composite number (1).

It is not the purpose of this paper to dwell on the FFT algorithm itself, since it is
well documented. Rather, the present purpose is to investigate the DFT and the IDFT
which the algorithm evaluates. In particular, the first section is concerned with defining
the DFT and developing some notation for later use. The second section presents the
DFT transform method for evaluating convolutions. In the third section this method is
extended for use in digital filtering and calculation of lagged products. The use of the
DFT to estimate amplitude spectra is also discussed here. Attention will be paid along
the way to hazards encountered when attempting to use a computer to apply the FFT
algorithm in each of these areas. The final section is devoted to the relative merits of
the transform methods when implemented using the FFT algorithm for computers. Com-
putation times are compared for both the transform method and the direct evaluation of
defining formulae in the cases of digital filtering and lagged products.

THE DISCRETE FINITE FOURIER TRANSFORM (DFT)

Let W be the principal Nth root of unity, i.e.,

W = exp (27r /N) (1)

where i = VaT. If k is an integer, then

Wk = exp (27n ik/N) (2)

and
WkN = exp (2-rik) = cos 27rk + isin2rak = 1. (3)

The periodicity expressed by Eq. 3 is used repeatedly in calculations with w, e.g.,

W-(N-3)k = W-NAWjk = Wik. (4)

Consider a sequence X of N complex numbers and let

X = XO'X1 * * XN-11 (5)

1
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X can be thought of as a point in complex N -space, since complex N-space is a normed
N-dimensional linear vector space CN of NI-tuples of complex numbers. Thus, for any
basis for CN, say b0 , b1 . bNI, X can be written as the linear combination

N-I
X= 2 Ak bk

k=O

where the Ak are complex. Also, this representation is unique, i.e., the coefficients
Ak are unique for a given basis. Let

bk = (1, WT, W 2 k5..., W(N-1)k), * = 0,1, N-I. (7)

It is a simple calculation (2) to verity that

B.bmb= E1 wimW-in =to1 ::: (8m=n

where bm bn is the usual N-tuple dot product in the space Cly. Thus the N vectors
b 0 bl,). , XbN are mutually orthogonal. Hence, from a well-known theorem of finite
dimensional vector spaces (3), it follows that the vectors b0.b,, .b_- form a basis
for CN .

Substituting Eq. 7 into Eq. 6, one finds the coordinates X. of x to be given by

N-,
Xk Y A5jWi A = 0, 1, 2,..., N-1. (9)

J=o

By multiplying both sides by w-km for = 0,1 . N- and summing over k, we get

N-I N-1 N-1

E Xkrkm = EA LWJikW-km
i=o k=O

N-1iN-I

j=I k=O

N-I

A (3

= AN, in = 0, 1 .. -I. 0-1)

2
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Thus, the coefficients Ak, which are unique for the basis bobl . bNl , are given by

1N-I
Am = L XE W, W = 01, 1 .. 5i (11)

Substituting j for m in Eq. 11 yields

N-I 1~~~~~~~~~~~~~~~~(2
A S XW-i j =1 0, 1 N-i (12)

k=0

The sequence A = {AQAl_ A. *SN given by (12), is defined to be the discrete
finite Fourier transform (DFT) of X. Vice versa, the sequence X given in Eq. 9 is
defined to be the inverse discrete finite Fourier transform (IDFT) of A. The preceding
definitions of the DFT and IDFT are somewhat arbitrary and by no means standard.
Often the IfN is associated with the IDFT rather than the DFT (4, 5). Which transform
is to be called the "inverse" is also rather arbitrary and is often avoided by referring to
(9) and (12) as the transform pair (2). However, the definitions chosen here are con-
sistent with those of J. W. Cooley (6).

Given a sequence Y = {YOYI .-YN l of complex numbers, the usual FFT com-
puter program calculates

N-I
Bk Z yjWIk, k = 0, 1, N-1. (13)

This is because the FFT algorithm is essentially a reformulation of Eq. 13 which results
in a reduced number of arithmetic operations. The DFT of Y then, is given by

Bk = Bk, k = 01 l. N-1. (14)
N

The same computer program can be utilized to calculate the IDFT of Y by first con-
jugating each Yk, then using the computer program to calculate

N-i
Zk y WJk, = 0, I... ,N-1, (15)

Next, conjugate the 7 k to get

N-I
Zk EJ )VWj

j=O

N-i

=E YjWJk. k = 0, 1 . N- (16)

Then the sequence Z k (k = ,1 . N - -l )is the IDFT of Y.

3
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Before proceeding, let us develop some notation. For a given sequence
X= jXGX10 . x .J-I of complex numbers, let the sequence A = 1A0.A 1 , .* *Asv-} be
the DFT of X. That is, let the numbers A. be given by

IN-1
A, =-3 XkWjk , i =0,1, . . N ,N- i

k=O0

Let F denote the operator defined on finite sequences of complex numbers by the DFT
and write

A = F(X).

( 11)

(18)

Letting F-1 denote the IDF T operator,

(19)X =F- 1 (A).

It is easy to show that F and F- 1 are inverse operators, so we may write

X=F iF (X) , A FF-1 (A).

Define kX, where k is an integer, to be the sequence

a = fN1IkX',...,kX

and X by

X - Ik¾'yl ' - --'IN11

Then (15) becomes

so that

(20)

(21)

(22)

(23)Z= F-1 (Y)=NF T)3.

F'- I Y) = NF 00) . (24)

From Eq. 17 it follows that

1 N-1

k=O
I- = E X W jk

I 0y k

j = OA, . . . , N-i , (25)

4



NRL REPORT 7170

so

F {X I) = I F-1(N) (26)

CONVOLUTION

Consider two sequences x. and Y C = O , . .., N- 1) of complex numbers. A cyclic
convolution of these two sequences is defined as

N-l
Zr =E XYr. r = 0,1,...,N-.

j=0
(27)

The term cyclic refers to the assumption that the Y. is defined for all integral values of
Jwiththvalues 0. . N-1 being repeated every N values. Thus,

if in m n (mod N ), then Ym = Yn (28)

where 0 c n c N-1. In order to avoid modular arithmetic it is sufficient to note that when
the subscript r-j in Eq. 27 is negative, one may use the relationship

Kr-j Yr-j IN

For example,

Y-1 = YFN1

Y_2 = Y N-2
(30)

Yr-Nil Yr+i-'

Therefore, in Eq. 27 as iis incremented from 0 to N- 1, Yri will follow the sequence

Y, I Y,-, .. Y o '1-I' Yh- 2, , . Y, + I'

(29)

(31)

It has been shown (5, 6) that

N-Z

Z, = N 1: AkBk Wrk
k=O

where A = F (X ) and B = F(X ). Now for any integer mi, there exist integers p and n,
whereo c n < N-l, such that m = n + pN. Thus,

mi-ij n + pN-j = n-j + pN.

( 32)

( 33)

MM�

5



L. B. PALMER

Since the values of Y are repeated every N values it follows that Y. 1 = Ynj . So

N-1 N-I
zm Y XJ Y.= J = X X' J = Zn, (34)

i=o, j5o

and hence the values

Zr N 2!NI AlkWrk, 0rO1, N-I (35)
k-0

are repeated every N values of the index r. Letting

Ck= AkBkkO,i .,N-1 (36)

Eq. 35 becomes

Z = NF 1 (C). (37)

In review, the sequence Zr (r = ,. - i ) may be generated by first taking the DFT
of both X and Y , then multiplying the results [A and ltogether, term by term. Finally,
take the IDFT of the result and multiply each term by N to get the desired Z. Another
expression for Z may be obtained by noting that from Eq. 26

F N1 -3R Y) Nf

F-1 (i)=Nr73=1VT

Therefore

N-I

k kk

N-I

= K N JYAifNfB,.fW-, 3)
kD

N-I
= ±Z & W-rk,

so that

Z = F (NT)

and

I

6

Z = F(N2��). (40)
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Therefore Z may also be obtained by first taking the IDFT of both X and 7, then
multiplying term by term. Next, one may either take the DFT of the resultant products
and conjugate to get Z, or first conjugate the resultant products, take the IDFT, and
divide by N. If X and Y are real, then z will be real, in which case conjugation may be
ignored. Graphically,

NA IDFT Y Conjugate DFT
A - - - A

NM IDFT V

Multiply
term by term

N2C DFT and
conjugate

or

Conjugate

Comn

Y l)DFT B

*I I >~. I I

tolution Multiplyiolution term by term

Z IDFT and C
multiply
by N

Conjugate and
IDFT and divide by N

The definitions of the DFT and IDFT vary in the scientific literature. This may
lead to confusion when attempting to implement the technique of some article, especially
if Fourier transforms are used to perform convolutions. The above graph demonstrates
two ways in which the transforms may be used to convolve data.

APPLICATIONS OF THE DET

Digital Filtering

Digital filtering consists of convolving a predetermined set of coefficients C. ,
k = 0,1 L-1 , with a set of samples YF., j- 0,1. N-, from some time series,
with L c N . The output, or filtered, values are calculated from

L-1

Zr E Ck'-k. (41:
k=O

Since the values Yk are not considered as being cyclic with Y0, Y, *1YL-1 representing
one period, Eq. 41 is only valid for r L-1, L. N-.. The transform methods of the
previous section yield values of Zr for r= 0, 1, L-1 , so only ZL-1 could be calcu-
lated in this way. However, consider appending zeros to the sequence of coefficients.
That is, if one defines

=k Ck k 0,1, (42)

Eq. 41 becomes

N-1
Z = XF'Y'r (43)

k=O

_M - -1 - M

7
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which will be valid for r= L-l . N-1. Now the transform methods of the previous
section may be applied.

Several problems arise when attempting to apply the transform methods of the
previous section to digital filtering. First, most FFT computer programs for the rapid
calculation of the DFT and IDFT require that N be a power of 2. 1I N is not a power of
2, the difficulty may be overcome by appending additional zeros to X and Y, or by dis-
regarding some of the last terms of Y . Second, the resulting power of 2 may be so
large as to make computation by a digital computer impracticable because of computer
storage restrictions. This may be overcome with Helmst "select saving" method (5) in
applying the before-mentioned transform methods. Third, the transform methodof
calculating Eq. 43 forces the shifting of the filter coefficients along Y in increments of
one data point. That is, Zr is calculated for all values of r=O, 1, . . . I N1. When not
every Zr is desired, it may be more practicable to evaluate Eq. 41 directly. This
problem usually arises when only every nth output value Z, is desired. The critical
value of in depends on N and L (5). If X and Y are real, this value appears to be about
10. Direct evaluation of Eq. 41 versus the transform method of digital filtering is in-
vestigated in the last section of this report.

Lagged Products

The cyclic lagged product with lag r for two (perhaps identical) sequences X1 and
YJ , I =0,1.... J M-1, of complex numbers is defined as

N-I
Vr= EXjFYrj, r=0,l . N-1. (44)

i=o

Again, the term cyclic refers to the assumption that the values YOFY1,... Y._,] are
repeated every IN values. Thus as the index i in Eq. 44 is incremented from 0 to N-1,
YJp- will follow the sequence

Yr i F'+1. 1 . YF- 1 ,Y 0rO. ,F',.1 (45)

Defining the sequence X ' by

X' = {XO IXYXN1 -21 *'. Xj (46)

Eq. 44 can be written

N-I

yr E ti r +j
j=0

= XOYI.+ XIYI; 1+ . . . + X. ,_il

- X 0Fr+ XN1 1Y - + XfN-2YF-2 +D + X1. 1+

= Xlr +X lYr + " + XNyl' a

N-I

(47)

8
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Thus, the cyclic lagged product can be considered as a convolution. From Eq. 32,

N-1
Ur = N A Bk Wrk. (48)

k=O

where A'= F (X') and B =F (Fy). Note that

NA k = EZXW-jk
j=O

=X'WO +0 X W -k+ +X _ W-(N-1)k

= XOW0 + XN1 1W-k+ . . IW-(N-1) k

x OW0+X W-(N-l)k+ . . . +XN_Wk

N-I
= XW-Q-J) k = 0,1, .,N-1 (49)

J=0

since W° 1 W-Nk, by Eq. (3). But also by Eq. 3

W (NV-i)= Wjk = W-i (N-k), (50)

so Eq. 49 becomes

N-l
NA' = EX.W-I (N-k)

k 

= NA,-1 kk = 01, . N-1 (51)

where A = F(X) . Therefore,

Ak=AN-k ,k=l, . ., 1 -1 (52)

and in particular
N-l N l

Aoa = AN = N N j -J N E1X

N-lIL x. W0 1

AO, JO)

=A 0o (53)
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Now Eq. 48 becomes

N1= N AN*kkW, r =0 1. N-1 (54)

where B = F(Y), A = F(X), and AN = AO. Thus when computing lagged products by the
technique described in the previous section on convolution, the transforms A and B must
be multiplied together as in Eq. 54.

As was the case with digital filtering, there are several problems in attempting to
apply the Fourier transform to compute lagged products. These problem include re-
quirements of existing FFT computer programs that N be a power of 2, computer storage
restrictions on the size of N, and the desirability of computing for only selected indices.
Possible solutions to these problems are the same as those in the case of digital
filtering.

Also, lagged products are often desired in such areas as correlation and spectrum
analysis (7) where X and Y are samples, perhaps identical, from time series. In such
cases Y is usually considered as not being cyclic. One possible way to account for Y not-
being cyclic is to compute

- r -1
Ur= Xi YF' j r0 O.N-i. ( 55)

Unfortunately, it is found in most applications of lagged products that Eq. (55) is only
useful for r = 0, 1 . . L where L is approximately io% of N (7). Also, note that in
Eq. 55 the subscript i has a variable upper bound of N-r-i. This fact inhibits the
application of the Fourier transform methods used for computing a sequence of lagged
products as defined by Eq. 44, where the upper bound is constant.

But if L zeros are appended to each of the sequences X and Y, Eq. 55 becomes

N+L-12

jj=0

which has the form of Eq. 44 so that the Fourier methods previously discussed in this
section may now be used. However, since the transform method of evaluating Eq. 44
yields more Vr than the desired 10% of N, direct computation of Eq. 55 may he
warranted. This question is discussed more fully in the last section of this report.

Amplitude Spectrum

A real-valued periodic function Y of period T that satisfies certain conditions (The
Dirichlet conditions) that are usually met in practice can be expressed by a Fourier
series

Y t) = a,,/2 + Z (% 3OS (2 27 ntT) + sin s1i (j 2T tT)) (57)

10
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in which the coefficients are given by

a. =- f Ty(t) cos (ji dt jŽ >O.

b + = Y( t) sin (IZ7#dt, j >0 
o (58)

If Y is not periodic, Eqs. 57 and 58 can still be used to represent Y on an interval of
length T. If we define an amplitude c, and a phase j by the relations

c -aTF 7- ; singj, aj/cj, and cosq5 = b1/c 1, (59)

then Eq. 57 can be rewritten as

Y z(t) - ao + Ec. sin [(j2w t/T) + J )3 (60)
J-1

Thus, Y may be thought of as a sum of sine waves, the jth component having an ampli-
tude of cj, a (cyclical) frequency of fj = j/T, and a phase of XJ (8).

A more convenient form of Eq. 57 can be obtained by replacing the sine and cosine
functions with complex exponentials according to the Euler definitions

cosX = (CiX + eCIX)/2
and

sinx- (eX - eiX)/2i. (61)

After some rearrangement of terms, Y is found to be represented by the complex
Fourier series

Y(t)= J C3 exp (i27jt/T), (62)
)m -o

in which the coefficients are given by

C = 4.1 f Y{ t) exp (-i2w jt/T)dt. (63)
0

Comparing Eqs. 59 and 63 we find that

Ic 'I~~ *2r 1 ia 2 CJ j ) o
(64)

l~l=2 3 ,j = o.

11
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The phases t are found to satisfy

n Re(Cj ) IM(Cj)
-In csi = 1 , J >0. (65)

The set of coefficients C1 , when paired off with the corresponding frequencies fr 
form the amplitude spectrum of Y. This spectrum is a "line" spectrum since the
frequency f takes on only the discrete values fij = j/T. The phase spectrum is defined in
a similar way. In many applications the amplitude and phase spectra of a time series
play an important role in understanding and describing the underlying physical process
that generates Y in time. We will now show how the amplitude spectrum can be
estimated from a sample of Y.

Suppose AN samples are taken of Y such that the time between samples is given by

At = T/N. (66)

Then the time span over which the N sample values are obtained from Y is (N- 1) T/N.
Without loss of generality it can be assumed that the first sample Y0 was taken at t =0
so the time tk at which the k + 1th sample Yk was obtained is

tk = kAt = kT/N. a8t)

From Eq. 62, Yk can then be represented as

Yk = Y(tk) E C1 exp (i2vjt*/T)

i= -ID

= z C} exp (i 2 tfi tk)' (68)

Although the sample values Yk are real, they can be considered as complex numbers
with zero imaginary parts. Therefore the sample value Yk can also be represented by

N-I
Yk= E AjWk, k = O, 1, N-. . (69)

J0

where the coefficients Ai are found by taking the DFT of the observations Ykp In order
to bring Eq. 69 into a form more like Eq. 68, we let N' be the largest integer less than
or equal to N/2 so that Eq. 69 becomes

Yk= AjW]k + XA jk. (70)
i-° i=N +I

Changing the index of summation in the second sum by letting i = N-m, we have

N' (N-1)--N'
Yk Z Y A1 Wjk + X ANWn(N-m)k

.j0 m= 1

12
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N (N-1) _N'
= E AjWik + A NW-k

j=O ml

Now define Am by

Am = AN-.m

Then Eq. 71 becomes

N (N-I } _N'

Yk = X AjWJk + X AW-k
j=O m.=l

Finally, let j= -m in the second sum. Then

NI -1

Yk= Z A1 WJk + E AJWjk

p=O j=_- (N-IhN']

AjWjk
} - (N-N' 1i)

N

= Z A, exp (i2r7jk/N)

j=-(N-N' _ 1 )

= f Aj exp [i2v(j/T)(kT/N)]

j=-(N-N' _-1)

N

- E Aj ep(i2rfj tk)
j= -N I EN

where EN = 1 if N is even and 0 if f is odd.

Now Eq. 74 can be considered as an evaluation of the function

NI

Y'( t) = E Aj. exp (i27fft)
i = _-N' EN

(71)

(72)

(73)

(74)

(75)

at the time

tk = kA t = kT/N. (76)
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Comparing Eqs. 68 and 74, we see that Y"(t) can be interpreted as an approximation to
Y(t) i.e.,

N

L C1 exp (i 27rt) it? A1 exp (I 2n 7 t) (T7)
i =-: ]~~~~=-N' + EN

with the coefficients A j serving as estimates of the complex amplitudes C1 . The ampli-
tudes C;j are obtained from the C1 by means of Eq. 64.

We do not obtain estimates of the amplitude for all frequencies in the spectrum. If
we define the sampling frequency fs by

Fs = NIT, (78)

then we see that we obtain estimates only at the frequencies

f. = J = fs (9
-1 T i N .=-

In the special case where ' is a power of 2 (and hence even), estimates are obtained for
the frequencies

f = 0, Fs/N, 2fs/,N. . i . fs/2. (8I)

The fact that only N' sine wave amplitudes are approximated is related to the Nyquist
sampling theorem (9) which says in part that one can not expect to detect frequencies
greater than fs/2.

It is not unreasonable to question the validity of approximating an infinite sum
(Eq. 68) by a finite sum (Eq. 74). However, the physical source or medium of Y may
warrant the assumption that there are no contributing since waves having a frequency
greater than twice the sampling frequency, or if there are any, they are insignificant.
In such a case, an approximation of the time series Y(t) by the finite sum (Eq. 75) may
not be so unreasonable. Also, one may only be interested in the amplitudes and phases
corresponding to some finite range of frequencies. In this case the contributing sine
waves of the undesired frequencies may be filtered out of Y before it is spectrum
analyzed.

The estimates for cj may be further refined by applying "smoothing" coefficients to
the sequence of estimates. Hamming and Hanning coefficients (7) are two such examples.
Another procedure is to generate more than one set of estimates and average.

ADVANTAGES AND DISADVANTAGES OF FOURIER TRANSFORM METHODS

The FFT algorithm provides such rapid calculation of the DFT and JIFT as to
promote the use of Fourier transform methods by computers. However, the use of
these transformations is not without its drawbacks. For example, the requirement by
most existing FFT programs that the number of values to be transformed by a power of
2 may not be convenient for the user. In addition, the transform methods provide the
evaluation of cyclic convolution and lagged product formulae, whereas noncyclic formulae
are usually desired. This produces extraneous results in addition to the desired results.
Also not to be forgotten are the usual computer restrictions such as amount of available
storage and input-output speeds.

14
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