FR-7041

Fortran Program for Fast Fourier
Transform

James R. Fisher
Signal Processing Branch
Acoustics Division

April 16, 1970

Se¢urity Classification

DOCUMENT CONTROL DATA-R&D

[Sl‘t‘l;l;‘jly classification of title, body of abstract and indexing annotation must be entered when the overall report is classitied)

1. DRIGINATING ACTIVITY (Corporate auther) 28. REFPORT SECURITY CLASSlFICATION‘
Naval Research Laboratory - iricta531fied
: - u
Washington, D.C. 20380

A. REPORT TITLE

FORTRAN PROGRAM FOR FAST FOQURIER TRANSFORM

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

An interim report on a continuing NRL Problem

.-AUTHORI(S) (First nome, middle initial, last name)

James R. Fisher

6. REPORT DATE 7&. TOTAL NT. OF PAGES 7b. NO. OF REFS
April 16, 1970 24 4
2a, CONTRACT QR GRANT NO.

NRL Problem S01-39

b. PROJECT NO. NRL Report 7041
RF 05-552-403-4069

sa. CRIGINATOR'S REPORT NUMBERI{S)

< 9b, OTHER REPORT NO(S) (Any other numbers that may be assigned
this repari)}

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SFONSQORING MIELITARY ACTIVITY

Department of the Navy
(Office of Naval Research)
Washington, D.C. 20360

13. ABSTRACT

The recent development of algorithms for the rapid computation of Fourier transforms
has reduced the computation time of this powerful analysis tcol by orders of magnitude, en~
abling previously uneconomic procedures to become commonplace.

In this report the fast Fourier transform (FFT) is derived from the basic equations and
presented in matrix form as a means of illustrating the stage-by-stage reduction of the input
data to Fourier coefficients by the algorithm,

Based on this development a Fortran IV program is presented, including a full description
of the sfatements, by relating it to the theoretical requirements. Thus a complete understand-
ing of the FFT algorithm and program can be obtained, eliminating the constraints imposed by
treating the FFT as a black box beyond the manipulative powers of the user.

DD o 1473 (PacE 1)

5/N 0101.807.6801 21

Security Classification

Security Claszification

LE N

KEY WORDS

LINK A LiNKk B

LiNK ©

ROLE

WY ROLE wT

ROLE

Fourier transformation
Fourier geries
Computer programming
Computer programs
Fast Fourier transforms
Periocdic functions
Signal processing
Fortran

Algorithms

DD 201473 (aac

{pact 2}

22

Security Classification

CONTENTS

Abstract
Problem Status
Authorization

THEORETICAL DEVELOPMENT

Introduction

Discrete Fourier Series
Decimation in Freguency
Coefficient Scrambling
Continued Reduction
Total Computations
Flow Chart

Coefficient Scrambling

FORTRAN IV PROGRAM FOR FFT
General
Subroutine FFOUR
Subroutine GNSCR and UNSCR
Subroutine COSINE
ACKNOWLEDGMENT

REFERENCES

ii
ii
ii

— —
DD O CO 00 O O = =

12
13
16
19

19

20

ABSTRACT

The recent development of algorithms for the rapid
computation of Fourier transforms has reduced the compu-
tation time of this powerful analysis tool by orders of
magnitude, enabling previously uneconomic procedures to
become commonplace,

In this report the fast Fourier transform (FFT) is de-
rived from the basic eguations and presented in matrix
form as a means of iflustrating the stage-by-stage reduction
of the input data to Fourier coefficients by the algorithm.

Based on this development a Foriran IV program is
presented, including a full description of the statements, by
relating it to the thegretical requirements. Thus a com-
plete undersianding of the FFT algorithm and program can
be obtained, eliminating the constraints impoged by treating
the FFT as & black box beyond the manipulative nowers of
the user.

PROBLEM STATUS

This is an interim report on a continuing NRI, Problem.
AUTHORIZATION
NRL Problem S501-39

Project RF 05-552-403-4069

Manuscript received December 17, 1969,

33

FORTRAN PROGRAM FOR FAST FOURIER TRANSFORM

THEORETICAL DEVELOPMENT
Introduction .

The Fourier series is a powerful tool for the analysis of periodic phenomena ena-
bling conversion of a time related function to a more easily analyzed function of fre-
quency. The Fourier transform can serve as the kernel of computation for commonly
used processes in signal analysis such as algorithms for digital filtering, beam forming,
and power spectrum determination.

The fast Fourier transform permits the reduction of redundancy in the well-known
discrete Fourier transform by a factor of N2/N log, N for a data sample length N equal
to a power of 2, thus permitting a substantial reduction in computation time and permit-
ting analysis of previously uneconomic processes.

The program presented here was developed for use in the Naval Research Labora-
tory and utilized "decimation in frequency" (1), a variation of the familiar Cooley-Tukey
algorithm (2).

Although prepackaged fast Fourier transform (FFT) packages are available from
software firms, such programs are presented as black boxes, giving the programmer no
understanding of the inner workings of the computations. Such a situation imposes limi-
tations during the construction of new programs requiring subtle modifications of the
FFT. It is the purpose of this report, therefore, to describe the FFT by associating its
mathematical derivation with the actual computer program, complete with explanations
of the Fortran IV statements.

Discrete Fourier Series

A discrete finite series X, resulting from sampling of a continuous function of time
can be represented as a finite sum of its frequency components (3) and expressed as

N-1

Xe = 2 A, exp(2mirk/N), k=0, 1, ... N-1, (1)
r=0

where A represents the coefficients of a Fourier series and
N-1
__Ar:-:?z X, exp(-2mjrk/N) ., r=0,1, ..., N-1, (2)
k=0

with X, consisting of the sample points of the discrete time series.

.For simplicity of presentation of the FFT in matrix equation form, the factor i/N
outside the summation sign in Eq. (2) will not be included in the following development,
and the notation

2 JAMES R. FISHER

W= exp (-2 jn/N} (3}

will be used in place of the complex exponential of Eq. (2) when matrix equations are
presented. Thus Egq. (2) becomes

N-1
A = Dl X Wk, r=0, 1 .., N-1. {4)
k=0

The representation of Egq. (4) would be the square matrix in Fig. 1, whose elements are
complex.

f [wo we W T %,
5 wo wl -1

‘t iA;] = wo wr \ME‘{N"]}

[I_WO -1 W(N—i}{N—I)_ ._X'N-Iw

Fig. 1 - Matrix form of the discrete Fourier transform

As an aid to the understanding of the arithmetic manipulations involved in the F¥T,
the process will be evaluated for an eight-point arbitraryly sampled time function, i.e.,
N - 8. Consequently Fig. 1 is reduced to the eight-by-eight matrix of Fig. 2, Reduction
of Fig. 2 to Fourier coefficients would require N? = 82 = 64 complex multiplications and
N¢(N-1) = 56 complex additions.

~AG— I W | —x:

A woowr o ow?owd oWt WS oW W X,

A2 W w2 wa wh we wit wi2 gl4 XZ

A, wo w3 wé w9 wi2 wiS wis w2l |x

Al = A, Tlwe whoows Wiz owis w20 w24 g2 |y,
Ag wo WS wlo w15 w20 25 §30 wIS[(X,

Aﬁ wﬂ wh ‘i\’12 wl8 w24 w:-m W36 w2 xﬁ

[_A?_ LW{} w7 wie gll wig 35 g2 w49— _K?_

Fig. 2 - Matrix form of the discrete Fourler transform
forthecase N = 8

NRL REPORT 7041 3

Decimation in Frequency

By suitable pairing of Fourier coefficients it will be possible to reduce the number
of computations required by the discrete Fourier transform. From the basic Eq. {4) we
have

N-1

A, =) Xeexp(-2ujrk/N), r=0, 1, ..., N- 1. (5)
k=0

It is to be assumed in this step and in those that follow that N is restricted to a power of
2,i.e., N - 27, where n is any integer. Thus Eq. (5) may then be rewritten by halving
the index and using two terms under the summation sign:

N/2-1

Ar = Z (Xk exp (-27jrk/N) + Xk+(N/2) exp {-2wjr [k+(N/2)]/N}) , r=0,1, ..., N~ 1.
®)
This can be further simplified to
N/2~1
A, = Z [Xi+ Xioqny2) P (-mie)) exp (-27imk/N) . 1= 0, 1, ..., N~ 1, (7)
k=0

It is the next step that yields the reduction in computation, By pairing the coeffi-
cients obtainable from Eqs. (b} and (7), we will split the N by N matrix of Figs. 1 and 2
in such a way that the sum of the computations from the new and smaller matrices is
less than that of the original matrix of dimension N by N. Proceeding, we pair the coef-
ficients A, of Eq. {7) into odd and even parts. For even values of the subscript of A in
Eq. (7) we then have

N/2-1

Azr = Z [Xk+Xk+(N/2)]-exp(—47Tjrk/N) , r=0,1, ..., N2 ~-1. (8)
k=0

In a similar manner the odd values are chtained:

N/2~-1
Agrsy = Z (X ~Xgeaqny2y] exp (27§ (21 + 1) k/N] (9)
k=9
N/2-1
- (X, 7 Xps(n/2y) €xp (~271k/N) exp (47jrk/N) . =0, 1, ..., N2- 1. (10)
k=0

Although at first sight it might appear that a simple equation has been reduced to
two equations of increased complexity, an examination of the matrix equations indicate
what progress has been made to reduce the number of computations required to evaluate
the N coefficients of the Fourier series. The matrix representations of Eqgs, (8) and (10)
are shown in Fig. 3. Assuming that X is added to X,, X, is added to X, etc., in the
vector A, and that (X;-Xx,) w9 (X -X;)W!, etc., is computed for vector A,_,,, then the
operations for reduction of A, to Fourier coefficients would require 16 complex addi-
tions and 16 complex multiplications if N = 8. The reduction of A,,,, to Fourier coeffi-
cients would require 16 complex additions and 20 complex multiplications, again assuming

4 JAMES R. FISHER

Al (w0 oW o g X [we W wo yol “x:
(Al - b2 o), " MW
A, LANEE A L S A whoowt o ows o w2y xo
| As _s&;ﬂ we wi2 WIEL X, (WO we w2 iRl iy
(w0 Wy o] —xg F Xy, LA G S %]
o
LA R S X+ X wo w2 oWt ws |)x;
LA L e e @ e X SR
wloowe wlZ w8 Ix. . wooowE Wl owlsp dxy
] fweowe we we] Dxgewe] [weoweowe wol Tx, - wol
, Ay wooow?oowd o ows X, W wo o w2 oWt ws Xg W
Haral A e W e g2 X, - w2 Clwe o ow w2 X, - W
l_At [W0 we wi2 WIS| Xy WAl w0 o ws Wil wis) X W
W w0 Wt o _xe W - X, wﬂ wo we o we wo] [xg]
woo w2 owt gt X, Wo- X W WO w2 owd o gs X%
R0 s wE gz Xy W2 - X - w2 Cwo o oy w2 X T
_WG W w1z WIS 1w X wit _w9 we wi2 wls_ X7

Fig. 3 - The first stage of the FFT matrix reduction for the case n = g; for this case,
r=9,%...,N/2 -1 hecomes r = ¢, 1, 2

N =8, A, isidentical in structure to A,, except for the complex mullipliers w°, wi,
2, w3 thus the reduction of A, ,, to Fourier coefficients requires four additional mul-
tiplications compared with the reduction of A, . The total number of operations for

A,. and &, ,, is then 32 complex additions and 36 complex multiplications. This eom-

pares with 56 complex additions and 64 complex multiplications required for solution of
the N by N matrix, as previously mentioned.

Coeificient Scrambling

An additional consequence of the FFT process should be noted at this time and must
be incorporated into the final algorithm. If Eqs. {(8) and {10} were processed as they now
stand, the Fourier coefficients &_ would be obtained, but they would not be in the erder
r- 90,1, 2..., N~ 1 as originally suggested in Eq. {2). Instead the coefficients would
ke computed from the even and odd subeguations (8} and (10) in the order ¢ - 0,2, 4,...,
N-2,1,35,..., N-1. This scrambling of the coeificients will continue in subsequent
stages of the computation and must be remedied at the eonclusion of the algorithm when
the coefficients are desired in increasing order from zerc through N - 1. Coetficient

unscrambling will be further discussed following complete reduction of the FFT.

NRL REPORT 7041 5

Continued Reduction

Instead of computing the Fourier coefficients as suggested, the cbvious next step is
to reduce the N/2 by N/2 matrices in Fig. 3 by proceeding in a manner similar o the
first stage when we progressed from Fig. 2 to Fig. 3. In preparation for this, we per-
form the sums indicated for A,. and the differences multiplied by the constants indicated
for A,.,;. The new "data" values obtained will be labeled respectively X;, Xj, X; ...,
and for notational purposes the matrix operations indicated on the right side of A,, and
A,.., in Fig. 3 will be denoted by B, and C, respectively.

With these new data values we are now in a position to perform the next stage of
computation. For the simplified case of N = 8, this will reduce B, and C, into two by
two matrix operations. Using the notation described,

N/2-1
B, - Z X, exp (~4mjtk/Ny, r =0, 1, ..., N/2 -1 (11)
k=0 -
N/4-1
= Z {Xy, exp (-4 jrk/N) + Xiansaexp [F4mir(k+ N/9YNIY, r=0, 1, ..., N/2-1
k=0
(12)
N/4-1
= Z [X; + xl‘c+N/4 exp (~7jr)}] exp{-4mjrk/MN), r = t). 1, ..., N2-1, (13)
k=0
N/4-1
Bae = Z (X Xiconsal exp (-8mjrk/N) . £ = 0, 1, ..., N/4~1, (14)
k=0
N/4-1
By,sy = Z Xk - Xpinsq) exp [~47j(2r+ 1)k/N], £ =0, 1, ..., N/4-1 (15)
k=0
N/4-1
= [Xi - Xpinsal €xp (<4mik/NY exp (-8njrk/N), =0, 1, ..., N/4~-1.
k=0
(16)
A similar development for C_ would yield
N/4—1
c,, = Z (X + X yn/ql ©%p (-87itk/Ny, r=0, 1, ..., N/4 -1, (17)
k=0
N/4-1
Carer = Z (Xic - Xansa) exp (~47jk/N) exp (-Bmjrk/NY, =0, 1, ..., N4 - 1,
k=0
(18)

where X indicates the data values of C_ in the previous stage. The matrix form of Eqgs.

(14), (16), (17), and (18) for the case N = 8 (Fig. 4) shows the simplification resulting
from the reduction of B, and c,.

\

(B, }

i82‘+13 g

(€1 -

(Capssl =

JAMES R, FISHER

- ; " .
[4, wWow X, wo oW X4
- +
a 14 t 0 2
_A4 LA X5 we o wdl rx)
[wo wol Txgoooxgl [we wol [xg]
we . A lee pa LS
WX X W W
) 0 s wl o wd | '
Ayl (W w0 kg We o WOl [xg-wo
Tl [0 wh R
A (WO W] xp-w WO W iy W
Pt w0 CLgh ‘L wo o o »
L L SR R R L X5 -
O 4 Fo,ow2 w2 ’ O 4 " r
W ‘#J X;-w?- Xj oW We W X4
3 O o . 0 o v
Al W W X4 W W Xb
= +
0 4 H) 4 4
__AS w w X W W X.},
R : . o i o]
WO WO Ixg e Xl WO WO ixgy .
o i IR N Y G o
LS N < B LA S I
- L g0 0 o] C L0
Al (WO Wl X)W W owol Ixy-w
w0 we ¢ L2 5 i f Lo
Al (WO W) IXi-w WO WAL g
- v Lowb oyt Lyl 0 w0 "
A L A IR LR R e o
WO owd| opx:ow?2-ooxp-owdoorwt owhioixg :

Fig. 4 - The second stage of the FFT matrix reduction for the
case & = 8 for this case, r = ©,...,%N/4 - 1t becomes r = 6, 1

The above process would be repeated for an arbitrary N - 2% until the malrices are
reduced to the degenerate form of the last stage, {o be described later. The tofal num-
ber of stages required for computation of the FFT is, of course, a function of the input
data length and is determined by the power of 2 required for a given N; i.e., the aumber
of stages required would be log, N.

As in the preceding stages, only those operations necessary for simplification of the
matrices are performed. Thus, as indicated in Fig. 4, the sum {X}+ X}) is replaced by
Xy, {(X; + X}j) is replaced by X, etc.

N/d-1

For D, we then have

X exp(-8mirk/N}, 71 =0, . Wi4-1

k=0

(19)

NRL REPORT 7041 7

N 8-1
= Z {X;, exp (-8njrk/N) + X n,gexp [-8mjr{k+N/8)NI}, =0, ..., N4-1,

k=0

(20)
N/8~1

- Z [Xi + Xponsg €xp (-nir)] exp (~8mitk/N) . r = 0, ..., N4 -1, (21)
k=90
N1

Dy, - (X + Xgonsg) e¥p (-16mjrk/Ny, =0, ..., N8 -1, (22)
k=0
N §-1

Dyrvy =) 1K~ Xiiwsa) exp [-87i (2r+ WAL, 10, .., N8B -1 (23)
k=0
N/8-1

= D - Xlune) exp (-8TIk/N) exp (-16mitk/N) . r = 0, N/B - 1 (24)
k=0

Similar developments would simplify E., F., and G,. The results for this reduc~
tion to the final stage for n = 8 are shown in Fig, 5.

Dy, = (&) = [W0] [x3]+ [wo] [x{]
Dyery = (A0 = [WOI fxp-w0] - [wO] [xj-wo]
E,, = [A,] = [WO] [x3]+ [wo] ([x]

Barer = (Mgl = [WO] g - wol - [wO] [xg - w9]

e}
[
5
]
—
-
.
| B
3
—
=
(=]
]

{xi]+ W] [x¢]
Forer = [A] = [WO] [XG-w0] - [WO] [xi-wo]
Gy, = [Ag] = [wO] [xg]+ [w0] [x2]

Gorey = [A:'] = [w0] [xg-wﬂ] - [w°] (X7 - W]

Fig. 5 - The last stage of the FFT matrix
reduction for the case N = 8; for this case,
r=90,...,N/8 - 1 becomes r = 0

8 JAMES R. FISHER

Total Computations

We are now in 4 position to compare the computational savings produced by the FFT
as compared to reduction of an N by N matrix of Fig. 2 and Eq. {2}. From Figs. 3, 4, and
5 we obtain from each stage {assuming N = 8) four complex muttiplications and eight
complex additions. Thus 12 complex multiplications and 24 complex additions suffice for
the entire FFT process. This compares with 84 complex multiplications and 56 complex
additions for the standard reduction of Eg, (2). In general the fractional computation
time is given by (N log, N)/N2. For example the computation in the case of 8192 data
points can be performed in §.0016 of the time required by the regular method — g gaving
of more than 99% in computer time.

Flow Chart

An alternative view of the FFT can be embodied in the flow charis of Figs. & and 7.
These show FFT's of eight points and 16 points respectively. In Fig. 7, for example, the
original time sampled values are represented on the left as X, thru X,; and are complex
valued. The figure shows the four stages of computation with the complex operations re-
quired for each stage. When two lines connect at the same point in a stage {shown by the
enlarged dots), a complex sum is indicated. The lower half of stage 1 requires complex
multipiication by complex constants, This is indicated by the value W7, equivalent to the
values discussed in the preceding sections. Thus at the last data location in Fig. 7, input
data value X,. is transferred to stage 2 after it is multiplied by -¥’ and added {o the
product of data value X, and W7,

DIRECTION OF COMPUTATION ——————

000 X, A,
601 X, A,
ot X, Ay
011 X, A,
104 X, Ay
101 X, As
110 X, A,
111 X, A,
STAGE SFAGE STAGE
1 2 3
BINARY INPUT FOURIER
LOCATECN DATA CORFFHCENTS

Fig, 4 - Flow chart of an eight-point FIT, showing coefficient secrambling.
As an example in interpreting the chart, the dot directly above the lubel
Stage 1 indicates the complex operation %, - w* - X, - w3,

0000 X,
0001 X,
0010 X,
0011 X,
0100 X,
0101 X
0110 X,
oL X,
1000 X,
1001 X,
1010 X,
1011 X,
1100 X,
1101 X,
110 X,
1111 X,

BINARY INPUT
LOCATION DATA

DIRECTION OF COMPUTATION

RN i
SN NP

STAGE STAGE STAGE STAGE
1 2 3 4

Fig. 7 - Flow chart of a 16-point FFT, showing coefficient scrambling

AlS

FOUREIER
COEFFICIENTS

1704 LHOAHE TUN

10 JAMES R. FISHER

The flow charts of Figs. 6 and 7 indicate the process known as decimation in fre-
guency and is the method described by Gentleman and Sande {4}, The form of computa-
tion known as decimation in time is the method originally described by Cooley and Tukey
{2). Comparison of both methods as well as variations to eliminate coefficient seram-
bling are described by Cochran, Cooley, et al. {1).

Coefficient Scrambling

As previously indicated the coefficients have been computed in a scrambled sequence.
To arrange the coefficients in the order from the lowest frequency component {the de
term} to the highest, it is necessary to select the coefficients according to their seram-
bled position in computer memary. As seen from Fig. 6 coeflicient A, is correct, but
4, and A, have been interchanged, A, and A, have been interchanged, etc.

The scrambling, of course, has been the result of computing even-coefficient groups
before odd, thus taking advantage of the symmetry relations of the FFT. In base 2 nota-
tion we see this to be the reversal of the binary number renresenting the subscript of the
Fourier coefficient. Consequently, for an FFT of N = g8 length, coefficient &, = A;,, can
be found in location 100, = 4, since 100; is the binary reversal of 001,. Similarly,

A, = A,,, can be found in location 011, = 3, and so on for all coefiicients.

The reason for this scrambling can more easily be understood by consideration of

the basic equation {Eq. 4} in its binary notation for the case N = 8. The indices r and k
can be written in binary form as

r=or (2 4 r (28 ¢ (2% {25}
and
ko= ky(2%) + k(21) + k(2% {26}
where r,, r,, ry, Xz ¥, kg = 0, 1. Thus Eq. (4} becomes
! 1 1
Alr,.t5e) :Z Z D X(kykyk)
kgs% k=0 k,=0

] [W{fhgé-!r}+ro){4k2+2§:1+k9)] ‘ @7

The exponent of W can be simplified by performing the multiplications suggested. Equa-
tion {27} thus becomes

A(rz,rl.ro} = Zzz Z!: i K(kzrkvkﬂ)

kp=b klz‘(} k2={}

) [w(4r2¢2r1+r0}4k2 W(Clrz+2ri%r0)2kiw(‘ir?+2ri+r&)kﬁ} . (28)

For simplicity of notation, let us consider at present the first ¥ term of the above equa-~
tion: WiArat2ritrordkz Thig is easily reduced to

NRL REPORT 7041 11

16r,k

w6 2k2 w#rika Tk argk,

2 _ W
. - 4 2 AN
since Wi = exp [-24j(n)/N| and Wit" - w80 - 1, Similarly w'*T2"?"17 0% 1 can be reduced

to
w8r2klw4r1k1w2r0k1 _ w(2rl+r0)2k1

Equation (28) could thus be written

A(r,.rp,rg) = Z Z: § Xk, ki ky)
k=0 k;=0 k,=0

. [w4r0k2 §(2rtrad 2k w(4r2+2r1+r0)k0]

1 1

1
- Z Z Z X (kg ky k) WEWAWS (29)
kO:O kl:O k2:0
If we examine the sequence of calculations in obtaining the Fourier coefficients, we
find that the coefficients are obtained in a binary reversal sequence as suggested previ-
ously. This is easily seen by consideration of the summations one at a time. The inner
sum including W*is a function of r;, k,;, and k,, Thus we have

1 1
Alryiryrg)y = Z Z fy(rg ky ko) WEWE (30)

ky=0 k=4

We now see the new inner sum including #? as a function of r, r,, and k,. Thus

1
A(ryiryry) = Z fo(rg 0y ko) WH .
=0

But this sum including W? is a function of ry; ty, and r,. Thus

Alry ryarg) = f{rgryiry)
which we see to be nothing more than the binary reversal previously suggested.

The problem of unscrambling can be handled in several ways. Modifications of the
FFT procedure can be derived which require no unscrambling but at a sacrifice of re-
quiring increased computer memory for a given number of input data values. Essen-
tially, the storage requirements of such programs would be twice the value for scrambled
algorithms — effectively halving the resolution obtainable from a given memory size,

An alternative method would require the input time samples to be stored in computer
memory in scrambled positions according to the binary reversal code. Thus, on conclu-
sion of the FFT process, the coefficients would be in correct order. Consequently, the
previously developed algorithm could be used and no additional memory locations would
be required. This would be the natural method to use in special purpose computers de-
signed only to perform Fourier transforms, in which input data can be buffered directly

12 JAMES R. FISHER

into the memory for processing by the avithmetic unit. The buffer device would be
hardware-wired to perform the binary bit reversal and would not require additional com-
putation time.

For general purpose computers in which input data must be handled by decisiong in-
volving the central processing unif, either input or output values must be scrambled by
suitable programs. In the program described in the next section the frequency coeffi-
cients are unscrambled by the subroutine UNSCR in conjunction with subroutine GNSCR.

FORTRAN IV PROGRAM FOR FFT

General

The Fortran IV program consisting of subroutines FFOUR, COSINE, GNSCR, and
UNSCR, is constructed in such a way that complex numbers ¢an be computed by complex
operations without recourse {o considerations of the real and imaginary parts as sepa-
rate quantities. In some operations however it is necessary or convenient to perform
operations on the real or imaginary parts individually. This is illustrated by Fig, 8,
where the general construction of the data block in computer memory is shown. The
complex values are associated with array X, the real values are associated with array
Y, and the two arrays are equaied by an equivalence statement in the Fortran program.

CAIPUTER MEMORY BLOCK
L E i Ye Y k l g % - {YZNVV Yzw—a[\’zw—: "’:N{r!"m—s Ty Yo 2 Fon

Yo Y
e e S e A e e e
. . : . . LEPLLY
X, X, L Xy X Xyt LYY Xy Xy VAL

REAL
NEEEFR

Fig. 8 - Computer memory block eguating comptex values with their real components

Before execution of the program begins, these arrays are filled with the data values
such as might be obtained from the oulput of an analog-to-digital converter. I the input
values are real, as is normally the case, they are placed in the odd values of the Y array
{the real part of X). The even valueg of Y are set to zero, indicating no phase component.

During computation of each FFT stage the computed resulis are stored "in place™;
i.e., the results of computation of each stage repiace the results of the previous stage.
Conseguently no intermediate storage locations are required, and on completion of com-
putation the complex Fourier coefficients remain in array X.

Subroutine FFOUR is the main subroutine, which computes the Fourler coetficients,
stage by stage, according to the flow charts in Figs. 6 and 7. At the conclusion of sub~
routine FFOUR subroutine UNSCR is called to ungcramble the coefficients and place them
in eorrect order in array X. As shown in Fig. 8 the main program should be constructed
with subroutines COSINE and GNSCR outside the F¥T loop. Subroutine COSINE generates
the complex constants W™ required for the FFT processing and need be compuied only
once when many FFT's of similar length are to be processed in sequence. Similarly
GNSCR, which generates the computer addresses needed in unscrambiing, should be eal-
culated only once when the data length remains unchanged.

NRL REPORT 7041 13

BIN = 8192

T=BIN

Y
CALL COSINE (C,BIN)

P
|

Y
CALL GNSCR (T}

N

[
o

Y

PROGRAM TO LOAD }

X ARRAY

'

CALL FFOUR (C,T,X,BIN)

—\

o ——_—————

™~
| SUBROUTINE FFOUR {C,T,X,BIN} |
|
|
|
¥
|

CALL UNSCR (T,X)

1
1
1
!
'
!

PROGRAM TO QUTPUT
COEFFICIENTS

Fig. 9 - Flow chart for repetitive
FFT operation

The FFT length is specified by the statement BIN = N = 2. This is the only state-
ment that must be modified if FFT's of different lengths are desired in the same pro-
gram. A typical deck structure for the NRL CDC 3800 computer assuming a data length
of 8192 values is shown in Fig. 10.

Subroutine FFOUR

Subroutine FFOUR (Fig. 11) is the basic subroutine that computes the Fourier coef-
ficients from the input data, When needed the subroutine calls on the results of addi-
tional subroutines which have the task of computing the complex exponentials associated
with the Fourier transform {subroutine COSINE) and performing the coefficient unscram-
bling (subroutine GNSCR in conjunction with subroutine UNSCR). As shown in the param-
eter list, subroutine FFOUR requires values in array C for complex constants and the
array X for access to original data values at the beginning of the subroutine. The data
length is established by parameters T and BIN.

In addition to the dimensioned arrays ¢ and X, subroutine FFOUR also requires the
dimensioned array CSE, which is equated to the complex storage location E; location E
may be accessed by a complex operator or by successive operations on the real part of
E, namely, CSE (1), and on the imaginary part of £, namely, CSE (2).

14 JAMES R. FISHER

Kcsa EHE OF FILE
/RUM
(LOAD

SCOFE

SUBROUTINES

i

PROGRAM TO OUTPUT X ARRAY
COEFFICIENTS

CALL FFOUR (C, T, ¥, BIN}

/

PROGRAM TO LOAD X ARRAY

CALL COSINE {10 BN

CALL GN3CR [Ty T = BiN

7 /f/
REALK{ INTEGER T, BIN ‘
(

COMPLEX X

DATA LENGTH

— SPECIFICATION
EQUIVALENCE (X, Y1

{Ontly card reeding

change when the
DIMENSION X{8192), Y (15384) number of data points
C {2049 changes}

(PROGRAM FET

/ FIN L, 4, X
/Joa CARD

Fig. 10 - Deck structure for computing one FFT nsing the NRL CDC 3800 camputer

10
80
8C

&0

20
50

an

a0

21
@z

100
G4

NRL REPORT 7041

SUBROQUTINE FFOURIC+T+XsBIN)

COMPLEX E+X
REAL CSE.C
INTEGER TeTINCaTHTAWBIN

DIMENSION CSE(2)CL204%)«X81%

EQUIVALENCE (£ CSED
TINC=RINAT

LINC=T/2

LLOC=1L NG

THTA=O
CSECL)=CU{THTA+1
CRE(21=2=C(BINS+1-THTA}
LOC=L0OC+1
LOCI=LOC-LINC

ExFa (X (LOCT~X{LOCYHY
XALOCT) =X {1 0C1 ¥ +X{LOCY
XLOC)Y=F
THTA=THTA4TINC
IF{THTA-BIN/2120+30+30
IF{THTA~BIN/G)IBO+S0+50
CSEL1Y==CIARINAZLI-THTA}
CRE{PIa2~C{THTA-(BING-1 1)
GO TH &
IFILOC-TI90+F1 491

L. OC=L . OC+HL INC

GO TO 40
IF(Z2-LINCI92+493454
LINC=LINCr2
TINC=TINC+TINC

GO TO 18

D0 100 LOC=2+Te2
LOC1=L0C~1
E=XtLOC1) ~X{LOC)
XKILOCI 1 =XiLOCT y4X(LGCY
X{LOCr=E

CALL UNSCR{T«X)

RETURN

E D

Fig. 11 ~ Subroutine FFOUR

FF1
Fra
FF3
FFa
FFS
FFe
FET
FF8
FF9
FF10
FFil
FF12
FF13
FF14
FE1S
FF16
FF17
FF1i
FE1Y
FF20
FF21
FF22
FF23
FF24
FF25
FF26
FER2T
FF28
FF29
FF30
FFa1
FF32
FF33
FF34
FE35
FF36
FFE37
FF36

“~rera TINC

JAMES K. FISHER

whose argument changes by fixed amounts, its value in quadrant II can be determined by
changing only the argument of 7 in quadrani I. Consequently, in subroutine FFOUR ac-
cess is made only to quadrant I, with corresponding sign changes for guadrant 1.

The test for membership in quadrant [or II is made by statement FF20. I the vee-
tar belongs to quadrant 1, the program returns to statement FF11 fo repeat operations on
succeeding values in the X array; should membership be in quadrant I, the real part of
the vector is changed in sign in statemeni FF21 and then returns to FF13 for repeated
operations provided the program has not arrived at the end of a stage or substage.

If we have arrived at the end of a substage (such as eomputing the last values in D,
and E, in Fig. ¢) we test by statement FF24 if this is the last substage in 2 given stage.
If it is not, the storage locations of the beginning of the next substage (such as F, and G,
in Fig. 4} are computed in statement FF25 and the complex vector is reset o its initial
value in statement FEF10 and the process is repeated. Should FF24 indicate that the last
substage has been computed, statement FF27 is tested for determination of which stage
is next to be computed. This process will be repeated until all stages except the last are
computed.

The computation fime of the last stage may be considerably reduced by performing
it in a different manner from the preceding ones. Since the vector in this stage always
equals 1 or -1, po complex mulliplications are required. Such an operation involving
only sums and differences is performed in the DO loop indicated by FF31 through FF35.

We have now completed the computation of ¥ complex Fourier coefficients. How-
ever, they are in scrambled order and must be rearranged by subroutines UNSCR and
GNSCR.

Subroutines GNSCR and UNSCR

Once the Fourier coefficients have been computed, appropriate measures must be
incorporated for presenting them in sequential order. As explained previcusly, the coef-
ficients will be in compuier memory according to the bit reversal in binary notation ae
sociated with the order of the coefficient, upon completion of guhvnnsi- —

The binary numbers ave ~~ 7
puter hw -~ 7

NRL REPORT 7041 17

Continuing in the same manner we see that the next two scrambled values are 010 = 2
and 110 = 6 respectively. These values can be obtained by adding N/4 to the previous
values obtained (in this case ¢ and 4). Combining the previous values and the present
values we now have the sequence 0, 4, 2, 6, The next set of scrambled values are ob-
tained by adding N/8 to the previous values, and we obtain the complete scrambled se-
quence 0,4,2,6,1,5,3, 7.

In summary, for any power N of two we can obtain the binary reversed sequence by
considering the first value to be zero (zero of course is its own reversal) and then ex-
tending the sequence by adding diminished powers of two to the previous values cbtained.
In the computer program the scrambled values are used as address values for obtaining
the Fourier coefficients in correct order. In Fortran notation they would be congidered
the subscripts of a dimensioned array. One additional factor must be accounted for: the
Fortran language does not permit a dimensioned subscript of zero. Thus we must in-
crease by one the scrambled address values we wish to obtain. For N = 8 we would then
have the values 1, 5, 3, 7, 2, 6, 4, 8.

Subroutine GNSCR computes the scrambled values defined above for N data values.
This subroutine is shown in Fig. 12. The formal parameter T specifies the data length
being computed and is equal to the number of coefficients in the FFT; its value is ob-
tained from the main program as shown in Figs. 9 and 10. As the scrambled values are
computed, they are stored in array SCR. The first scrambled value is the reversal of
itself, and the value in location 1 is identically equal to 1 as indicated by statement FF44.
Location M in the subroutine defines how many elements are in the sequence previous to
the "add" cycle. Thus for T - g, after location 1 in array SCR is set to one by statement
FF44, statement FF45 tells us that the sequence consists of one element. During each
cycle of additions to previous values, the value M will be used to define the DO loop in
statement FF48. Statement FF52 increases M upon completion of the DO loop in prepa-
ration of the next add cycle.

The value TM defines the algebraic quantity to be added to previous values during
each add cycle. This will be N/2 for the first cycle, N/4 for the next cycle, N/8 for the
next, etc., where N is the data length. In statement FF47, TM is set equal to N/2 as re-
quired at the beginning of the first add cycle: statement FF53 modifies ™ for the begin-
ning of the next cycle. The above process is repeated until the full sequence of N values
has been computed. The termination of the subroutine is executed by statement FF51
when the last scrambled value has been computed. (The last value computed is the bi-
nary reversal of itself and is equal to N = T).

Having computed the coefficient scrambling order, it is now possible to rearrange
the scrambled coefficients in array X in their proper sequence of increasing ordinal
number. This is performed in subroutine UNSCR, in which the scrambled value irom
array S5CR is placed, by statement FF63, in location I for temporary storage. Ignoring
statement FF64 for the moment, coefficients are interchanged by statements FF65,
FF66, and FF67 according to the value obtained from array SCR. For the example N = 8,
array SCR contains 1, 5, 3, 7, 2, 6, 4, 8; consequently location 5 would be interchanged
with location 2, since ordinal location 2 in array ScR contains the numerical value 5. It
should be noted at this time that ordinal location 5 in array SCR contains a numerical 2,
When the DO loop progresses to this point, the values in array x, locations 2 and 5,
would be interchanged for the second time, and the coefficients in these locations would
remain unscrambled. Statement FF64 prevents such an occurrence by requiring the
numerical value in array SCR to be greater than the ordinal location in that array. Hence

interchanging occurs only once for a given set of coefficients, and unscrambling is cor-
rectly executed.

13

10

JAMES R. FISHER

SUBROUTINE GNSCHIT)
COMMON SCR

INTEGER SCR«TsTMm
DIMENSION SCR{B197:)
SCR{1y=1

M=z |

N= 1

TM=Tr2

D0 9 J=1.M

N=n+1
SCR{NI=TMASCRO Y
IF(T-SCRINI 188410
M= M-ERM

TM=TMAZ2

GO To 11

RETURN

EnD

SUBROUTINE UNSCRIT X))
COMMON SCR

COMPLEX X.E

INTEGER Ta.aCR
DIMENSION SCRIBI92«XI1B192)
GO 9 J=1a7

P=5SCROL

IFLU-T) 94941G

FaxtJy

XiJi=x{l11

X{EPi1=FE

CONTINUE

QE TurN

[N

SUBROUT INE COSINE(C«BINY
DIMENSTON C1204%)

INTEFGFR BIN

AMNGE={ 3. 1418926536y / (BINAZY
INTR=BIN/S

CE=C05F { ANGY

SMNTSINF (ANG)

CtiY=1a

C{RINAaAtLY = O,

NO 9 J=t.1NTB

ClI+ 11 =Ct N #C5-CIBINAO+2—J) #5N
CIBINAG4 I~ JI=CLUIRSNFCIRINAG+2 - 1 ECS
QF TURN

£ND

Fig. 12 - Subroutines UNSCR, COSINE, and GNSCR

FE40
FFa1
FRaz
Fras
Fra4
FF&5
FFae
Fra7
FFag
FFay
FESO
FF51
FF&2
FES
FF&s
FE 5
FF56

FEST
FFSE
Frow
FFau
FESL
Fred
FF&.3
Frea
FFas
Froes6
FEET
FFEB
Fray
BETD

FERQ
FFaL
FFB2
FFg 3
EFsa
EF By
FFae
FEa?
FEas
FF Gy
FF9UL
FFQL
FRoZ
FEgd

NRL REPORT 7041 19

Subroutine COSINE

Subroutine COSINE is used to compute the values of the complex exponentials neces-
sary for reduction of the FFT to complex coefficients. The complex exponentialg re-
quired are of the form exp (-2#in/N), Where n varies from 0 to N/2 - 1. This is equiv-
alent to generation of a half cycle of both a sine and a cosine wave, since by Euler's
relationship exp (-27jn/N) = cos (27n/N) = i sin(2mn/N). Then by proper indexing tech-
niques as explained for subroutine FFOUR, we can perform the complex operations by
consideration of only real values of a discrete sine and cosine table extending from zero
to a half cycle, in increments of 27/N.

If the values of a sine or cosine wave are examined, it is obvious that the absolute
values in each guarter cycle are identical with the absolute values in any other quarter
cycle., Furthermore, if we consider a quarter cycle of the cosine wave y = cos X, where
y= 1.0 for X=0and y = 0 for X = »/2, we see that a sine wave can be obtained by
"reading backward" on the cosine wave. Thus when X = 7/2 in y = cos X, the value of y
at that point is equivalent to the value of y = sin X when X = 0. Consequently, only a
qguarter cycle of a cosine wave is computed and stored for use by subroutine FFOUR,
and indexing and sign changes perform the operations for the missing quarter cycle.

In subroutine COSINE the basic increment 27N is computed by statement FF83. €8
and SN in statements FF85 and FF86 are the cosine and sine values of the basic incre-
ments respectively. Since we are computing a guarter cycle of a cosine wave, the first
value will be 1.0 and the last value (actually the beginning value of the next quarter cycle)
will be 0, These two values are determined by statements F¥F87 and FF88. For a quar-
ter cycle of a cosine wave we would need fo compute N/4 values, and the DO loop in
statement F¥F89 would be from 1 to INTB = BIN/4. We can however reduce the DO loop to
half this value by use of statements FF90 and FF91, where the quarter cycle of cosine
wave is computed from both ends. Statement FF30 computes cosine values by the trigo-
nometric identity cos (9+®) = cos 6 cos ® - sin @ sin @, and statement FF91 computes
sine values by the identity sin(¢+@) = cos & sin @ + sin & cos ®, where ¢ is the previ-
ous value computed in each statement and ¢ is the increment value,

The advantages of this method of computing sine and cosine values are two: the
computer sine and cosine routines are needed only once each, thus saving considerable
computer time, and computing from both ends of the quarter cycle reduces accumulative
error in the computations by reducing round-off errors inherent in adding the increment
ANG in statement FF83 to itself many times,

ACKNOWLEDGMENT

The author is indebted to Gerald C. Drew for his efforts in developing a FFT For-
tran program for computing the power spectrum of a fixed data length,

REFERENCES
W.T. Cochran, J.W. Cooley, et al., "What is the Fast Fourier Transform ?" IEEE
Trans. Audio and Eleetroacoustics AU-15, 45-55 (June 1367)

4.W. Cooley and J.W. Tukey, "An Algorithin for the Machine Caleulation of Complex
Fourier Series,” Math. of Computation 19, 297-301 {(Apr. 1965}

D.A. Swick, "Discrete Finite Fourier Transforms: a Tutorial Approach,’' NRL Re-
port 85507, June 29, 1967

W.M, Gentleman and G. Sande, "Fast Fourier Transforms — For Fun and Profi¢,"

1866 Fall Joint Computer Conf, AFIPS Proc., Vol. 29, Washington, Spartan Books,
pp. 563-578, 1966

20

U5 GOVERNMENT PRINTING OFFICE: 1970-397-175/04

