
FR-7041

Fortran Program for Fast Fourier
Transform

James R. Fisher
Signal Processing Branch

Acoustics Division

April 16, 1970

DOCUMENT CONTROL DATA - R & D
S.>curir cfsssificacron Of fitle, body of abstract aid indexiril annotation -rasr be entered wh1e MOt ovrrall teport Is cIossfiled)

1 ORIGINATING ACTIVITY (Corporate author)>a. REPORT SECURITY CLASSI FICATION

Naval Research Laboratory Unclassified
Washington, D.C. 20390 2b. GROUP

3. REPORT rITLK

FORTRAN PROGRAM FOR FAST FOURIER TRANSFORM

4. DESCRIPTIVEC NOTES (lype of report and inclusive dates)

An interim report on a continuing NRL Problem
15. AU T HO R(SJ (Fia~st name, middle infit Ifaltn~~ nre)

James R. Fisher

6. REPORT DATE l7. TOTAL NO. OF PAGES 7b. NO. 0OF h :FS

April 16, 1970 24 4
e.. CONTRACT OR GRAN T NO, Q.. ORIGINATOR'S REPORT NUMSERJS)

NRL Problem S01-39
b. PROJECT NO. NRL Report 7041
RF 05-552-403-4069

C. b9. 0 T HER REPORT NO(S) (Any other numbers that may be assigned
this repont)

d. __ _
10. DISTFIBUTION STATEMENt

This document has been approved for public release and sale; its distribution is unlimited.

12. SPONSORING MILITARY ACTIVITY

Department of the Navy
(Office of Naval Research)
Washington, D.C. 20360

3 ABSrRACT

The recent development of algorithms for the rapid computation of Fourier transforms
has reduced the computation time of this powerful analysis tool by orders of magnitude, en-
abling previously uneconomic procedures to become commonplace.

In this report the fast Fourier transform (FFT) is derived from the basic equations and
presented in matrix form as a means of illustrating the stage-by-stage reduction of the input
data to Fourier coefficients by the algorithm.

Based on this development a Fortran IV program is presented, including a full description
of the statements, by relating it to the theoretical requirements. Thus a complete understand-
ing of the FFT algorithm and program can be obtained, eliminating the constraints imposed by
treating the FFT as a black box beyond the manipulative powers of the user.

DD FURTMU 473 (PAGE I)DD/ NOV 1473
S/N 0101 807- 6801 Security Classification

-�-jy

I

j

--. _...;. rleur- -- :~:- zn

21

Stcurity Classifitation
ia. ~ ~ ~ TI A LIN W S____
t4, ~~~~~KEY WORDSI LINK ALIIL NK C = hKr

5 ROLE II I ROLE I W I ROLE)__W

Fourier transformation
Fourier series
Computer programming
Computer programs
Fast Fourier transforms
Periodic functions
Signal processing
Fortran
Algorithms

DD D.M¶ % 1473 (RACK

(PAGES 2) Security Classification22

CONTENTS

Abstract ii
Problem Status ii
Authorization ii

THEORETICAL DEVELOPMENT 1

Introduction 1
Discrete Fourier Series 1
Decimation in Frequency 3
Coefficient Scrambling 4
Continued Reduction 5
Total Computations 8
Flow Chart 8
Coefficient Scrambling 10

FORTRAN IV PROGRAM FOR FFT 12

General 12
Subroutine FFOUR 13
Subroutine GNSCR and UNSCR 16
Subroutine COSINE 19

ACKNOWLEDGMENT 19

REFERENCES 20

i

ABSTRACT

The recent development of algorithms for the rapid
computation of Fourier transforms has reduced the compu-
tation time of this powerful analysis tool by orders of
magnitude, enabling previously uneconomic procedures to
become commonplace.

In this report the fast Fourier transform (FFT) is de-
rived from the basic equations and presented in matrix
form as a means of illustrating the stage-by-stage reduction
of the input data to Fourier coefficients by the algorithm.

Based on this development a Fortran IV program is
presented, including a full description of the statements, by
relating it to the theoretical requirements. Thus a com-
plete understanding of the FFT algorithm and program can
be obtained, eliminating the constraints imposed by treating
the FFT as a black box beyond the manipulative powers of
the user.

PROBLEM STATUS

This is an interim report on a continuing NRL Problem.

AUTHORIZATION

NRL Problem SO1-39
Project RF 05-552-403-4069

Manuscript received December 17, 1969.

ii

FORTRAN PROGRAM FOR FAST FOURIER TRANSFORM

THEORETICAL DEVELOPMENT

Introduction

The Fourier series is a powerful tool for the analysis of periodic phenomena ena-
bling conversion of a time related function to a more easily analyzed function of fre-
quency. The Fourier transform can serve as the kernel of computation for commonly
used processes in signal analysis such as algorithms for digital filtering, beam forming,
and power spectrum determination.

The fast Fourier transform permits the reduction of redundancy in the well-known
discrete Fourier transform by a factor of N2/N log 2 N for a data sample length N equal
to a power of 2, thus permitting a substantial reduction in computation time and permit-
ting analysis of previously uneconomic processes.

The program presented here was developed for use in the Naval Research Labora-
tory and utilized "decimation in frequency" (1), a variation of the familiar Cooley-Tukey
algorithm (2).

Although prepackaged fast Fourier transform (FFT) packages are available from
software firms, such programs are presented as black boxes, giving the programmer no
understanding of the inner workings of the computations. Such a situation imposes limi-
tations during the construction of new programs requiring subtle modifications of the
FFT. It is the purpose of this report, therefore, to describe the FFT by associating its
mathematical derivation with the actual computer program, complete with explanations
of the Fortran IV statements.

Discrete Fourier Series

A discrete finite series Xk resulting from sampling of a continuous function of time
can be represented as a finite sum of its frequency components (3) and expressed as

N- t

Xk = E Ar exp (2wj rk/N) , k 0 O, 1, N - I, (1)
0

where A, represents the coefficients of a Fourier series and

N-i

Ar E. X, exp(-2wjrk/N) r = 0, 1, ... , N - 1, (2)
N k=O

with Xk consisting of the sample points of the discrete time series.

For simplicity of presentation of the FFT in matrix equation form, the factor I/N
outside the summation sign in Eq. (2) will not be included in the following development,
and the notation

1

JAMES R. FISHER

Wz' - exp(-2vjn/N)

will be used in place of the complex exponential of Eq. (2) when matrix equations are
presented. Thus Eq. (2) becomes

(3}

N -I

A, = Y XkWrk

k-=

The representation of Eq, (4) would be the square matrix in Fig. 1, whose elements are
complex.

WOWO

WI

We

WO

WOW°

Wr Wr(N- 1)

W(N-I)(N-IIWN- I

Xo0

_XN-I

Fig. I - Matrix form of the discrete Fourier transform

As an aid to the understanding of the arithmetic manipulations involved in the FFT,
the process will be evaluated for an eight-point arbitraryly sampled time function, i.e.,
N - s. Consequently Fig. 1 is reduced to the eight-by-eight matrix of Fig. 2. Reduction
of Fig. 2 to Fourier coefficients would require N2 = 81 = 64 complex multiplications and
N (N - I) = 56 complex additions.

EA,] =

Ao

Al

A2

A3

A4

A6

A7

W° W0

Wer WO
WI W

2

We W° WO WO Wo

W3 W4 WS W6 W7

WO W2 W
4 W6 W

8 WIG W1
2

W1
4

W° W3 9J6 W9 W12 W1 5 WI8

- I W° W4 w8 W12 W16 W2 0 W2 4

YT W5 W1 0 wIS W2 0 W2 5 W30

WO W6 W12 W1 8 W24 W3 0 W3 6

WO w7 W1 4 W2 1 W2s w3 5 W4 2

W2 1

W28

W3s

W4 2

-Xp

xliI

X2

X3

X4

XS

X6

X7

Fig, 2 - Matrix form of the discrete Fourier transform
for the case N = a

I[A,] =

2

r � 0, 1, � ... N - I , (0

NRL REPORT 7041

Decimation in Frequency

By suitable pairing of Fourier coefficients it will be possible to reduce the number
of computations required by the discrete Fourier transform. From the basic Eq. (4) we
have

N-i
Al. E Xk exp (-2-uj rk/N), r = 0, 1, . N - 1 . (5)

k~ 0

It is to be assumed in this step and in those that follow that N is restricted to a power of
2, i.e., N = 2n, where n is any integer. Thus Eq. (5) may then be rewritten by halving
the index and using two terms under the summation sign:

N/2-1

Ar = E (Xk exp(-2r~jrk/N) + Xk(N/2) exp {-27j r [k + (N/2)] /N}) , r = 0, 1, . N - 1

k= 0
(6)

This can be further simplified to

N/2-1

Ar E1 [Xk+ Xk+(N/2) exp (-i r)] exp (-27Tj rk/N) , r = 0, 1 . N . N 1 (7)
k=0

It is the next step that yields the reduction in computation. By pairing the coeffi-
cients obtainable from Eqs. (5) and (7), we will split the N by N matrix of Figs. 1 and 2
in such a way that the sum of the computations from the new and smaller matrices is
less than that of the original matrix of dimension N by N. Proceeding, we pair the coef-
ficients Ar of Eq. (7) into odd and even parts. For even values of the subscript of A in
Eq. (7) we then have

N/2-1

A2r = L [Xk +Xk+(N/ 2)] exp (-4?rjrk/N) , r = 0, 1, ... N/2 - 1 (8)
kilo

In a similar manner the odd values are obtained:

N/2-1

A2 rt+ = [Xk -Xk+(N/ 2)] exp E-27Tj (2r + 1) k/N] (9)
k=g

N'2-1

= E Xk 7 Xk+(N/ 2l] exP (-27 jk/N) exp (-4-rjrk/N) r = 0, 1, . N/2 - 1 (10)
k=0

Although at first sight it might appear that a simple equation has been reduced to
two equations of increased complexity, an examination of the matrix equations indicate
what progress has been made to reduce the number of computations required to evaluate
the N coefficients of the Fourier series. The matrix representations of Eqs. (8) and (10)
are shown in Fig. 3. Assuming that x10 is added to x4? Xl is added to X., etc., in the
vector A2, and that (X0 - X4) W%' (X, - X5) WI, etc., is computed for vector A2 r,+i then the
operations for reduction of A2r to Fourier coefficients would require 16 complex addi-
tions and 16 complex multiplications if N = 8. The reduction of A2 r+t to Fourier coeffi-
cients would require 16 complex additions and 20 complex multiplications, again assuming

3

JAMES R. FISHER

WO W° W"

W2 U4 W4

W4 W8

W6 W12

W12

WI8

XJ

xi

X2

X3

+

WO W o 1O 401 LX4

W14 W2 W4 W6 xs

W
0 W4 WS W' 2 X6

WO W$6 W12 WiS Xi

We Wo WO

W2 W4 W6

W
4

WI W12

Wb W1 2 WI

-X0 X 4 SW°

X xo X L WO

X2 2 X6 w°

X3 I Xj tW

Wu WO 9,O Yc

W2 W4 W6 X[i

Wf4 W6 W l2 X2

w6 W2 will XI~ 1412 Wit Lx 3J

AIl W 4 W0 WC wj Xo * W° W°

SA3+ 1^3!mWC W2 W4 W6 f 9f°

A5 1 WL W4 WS W12 X2.W2 WO

A7 14W6 112 WIS X .13 WO

WO W0C WO XO

W2 W4 Wit
6 x

W4 W8 W' 2 X2

'6 1i2 i } J X3

FiO

140

WO

w10o Wo0 W X4.W

W2 W4 W6 xs 4W'

W4 W8 W1 2 Xe .W2i

W16 312 ISH X7 W3

WO We

142 W4

W4 we

W6 W42

Fig. 3 - The first stage of the FFT matrix reduction for the case N a; for this case,
r = 0, 1, . . . , N/2 - i becomes r = 0, 1, 2

N = S. A2,.+ is identical in structure to A2, except for the complex multipliers We', WI,
it2, W3; thus the reduction of A2r,1 to Fourier coefficients requires four additional mul-
tiplications compared with the reduction of A2r. The total number of operations for
A2, and A,2 , is then 32 complex additions and 36 complex multiplications. This com-
pares with 56 complex additions and 64 complex multiplications required for solution of
the N by N matrix, as previously mentioned.

Coefficient Scrambling

An additional consequence of the FFT process should be noted at this time and must
be incorporated into the final algorithm. If Eqs, (6) and (10) were processed as they now
stand, the Fourier coefficients A. would be obtained, but they would not be in the order
r -0, 1, 2,..., N - I as originally suggested in Eq. (2). Instead the coefficients would
be computed from the even and odd subequations (8) and (10) in the order r = 0, 2, 4,..

N - 2, 1, 3, 5,. . ., N - 1. This scrambling of the coefficients will continue in subsequent
stages of the computation and must be remedied at the conclusion of the algorithm when
the coefficients are desired in increasing order from zero through N - 1. Coefficient
unscrambling will be further discussed following complete reduction of the FF1T.

[A 2,]

ko

A2

A4

A6,

wo

W°

WO

W0

WO

W°

W°

rO

WO

LWO

LC, I

4

NRL REPORT 7041

Continued Reduction

Instead of computing the Fourier coefficients as suggested, the obvious next step is
to reduce the N/2 by N/2 matrices in Fig. 3 by proceeding in a manner similar to the
first stage when we progressed from Fig. 2 to Fig. 3. In preparation for this, we per-
form the sums indicated for A2, and the differences multiplied by the constants indicated
for A2 I,,. The new "data" values obtained will be labeled respectively x0, xl, x2
and for notational purposes the matrix operations indicated on the right side of A2 . and
A2 ,r I in Fig. 3 will be denoted by ,. and Cr respectively.

With these new data values we are now in a position to perform the next stage of
computation. For the simplified case of N - 8, this will reduce Br and Cr into two by
two matrix operations. Using the notation described,

N/'2-1

k=0

N/4-1

k=0

N/4-1

-zT

Xk exp (-47 j rk/N) , r - 0, 1, . N/2 - 1 (11)

{Xk exp(-47nj rk/N) + Xk+N/4 exp [-4ujr (k+ N/4)/N] i, r = 0, 1 , - N/2-1

(12)

[X + X(+N,4exp(-7njr)] exp(-4rajrk/N), r = 0 1. P4/2-i. (13)

N/4- 1

B2r =

k=O

N/4-1

B2 r+ = E1

k=O

[Xk + Xk'N,41 exp (-Srj rk/N) , r = 0, 1, . . , N/4 - I,

[Xk - Xk+N/4] exp [-47Tj (2r + 1) k/N] , r = 0, 1, ... NP/4-1

K - Xk+N/4] exp (-4nTjk/N) exp (-8wj rk/N) r = 0, 1, ... , N44-1 .

(16)

A similar development for Cr would yield

N/4- 1

C2 r = 2 [X + X+N,4] exp(-8ujrk/N) , Ir -0, 1 .. /4 NA - 1 ,
k=0

N/4-1

C2r+t = z. Nex- X7 tN,4 ep p(-'4nj k/N) exp (-Szj rk/N) , r = 0, 1,. , N/4 - 1,
kaO

(17)

(18)

where Xk indicates the data values of Cr in the previous stage. The matrix form of Eqs.
(14), (16), (17), and (18) for the case N s 8 (Fig. 4) shows the simplification resulting
from the reduction of B, and Cr.

N/4-1

=
k=0

(14)

(15)

5

JAMES Rr FISHER

w0
G WU x 0 W0

F 4 0 W4 lx;

t W° ri + XII IK 4 L Lxii Y W
4
J LX'-

:%±x; w wWJ

fB0 2w +L] 7X1+F° 0 x
W

0
W

4 JS° W'42 LU ?

LA O rwo W~r o H0
W FXW2

- w 0
wx
4 f x'w Iwo W F 4 1 IFx'

K wr Lx'WI .61 W~ w0 xW
1NK Wi L4 X w2 X w J L2 w

L: VAlr wloxf [X *wO1o w°1 V X-
WA W X41XS W 0 L WC X

W0W 4 X'±X W0 W

FW4 WX kX7 0~ X6W4 CX ;1 VA WO Wa X'W W0 W X'W

LWO W4 X *W2 _ X, - WO WO JVLO

F~ ~~~ 16F
W4 X . i [x;.wjW W

L~~~d IFS d e

Fig. 4 - The second stage of the FFT matrix reduction for the
c Wase N = 8; for this ease, r ,. . . ,N 4 -6 becmes T -I, 1

The above process would be repeated for an rbitrary N - 2" until thie Inatrices- are
reduced to the degenerate form of the last stage, to be describedt later. The total num-
ber of stages required for comnputaltion of thle FFT isf of courseX a functionl of thie input
data length and is determined by the power of 2 requiredt for a given N; i.e., the number
of stages required would be -og2 N.

As in the preceding stagese only those operations necessary for simplhication of the
matrices are performed. Thusl as indicated in Fig 4, the sum (- un Xti is replaced ar
Xmar (Xs + X) is replaced.by x, eac. For D F we then have

N14-1

Dr = L Xk exp (-8tj rk/N) r = 0, .. N/4-1 (19)
k=0

6

NRL REPORT 7041

{XkT exp (-8ijrk/N) + Xk,4/8 exp [-8Tjr(ki+N/8)/NIN , r = 0. . . , N/4 - 1,

(20)

[X + X+N/8 exp (-vj r) exp (-8rrj rk/N), r = z , . . . , N14 - I, (21)

N18-1

D2r - YL
N-o

N 8-1

D2r+1 = T
kNO

N,'8-1

k=O)

fXi + Xi'N/81 exp (- 167T] rk/N) , r = 0. . . . N/S - 1,

LXk - Xk+N/8I exp [-8-n; (2r+ 1) k/N, , r z 0 . . , N/8 - 1

X - Xk,+N/SI exp(-87jk/N) exp(-i6rTjrk/N), r = 0, ... , N/8 - 1 .

Similar developments would simplify Er, F,, and G,.
tion to the final stage for N = 8 are shown in Fig. 5.

(22)

(23)

(24)

The results for this reduc-

D2r = [AO] = Lw°] [X3) + [W0) [Xl)

D2,+1 = (A 4 1 = [W° liX? W0) - LwO) [xi . W°

E2r = [A2] = [W0'] [X + LW°) [X3J

E2,1 = [A6) = [W°] In*2 W° - LW0] [X; . WO]

F2 = [Al - [WO] t X;] + [w°] [X']

F2,+1 = [A5] = IWO] I X 4 W] [WJ [X; W]

G2, L [A3] - [WO] X'6] + [WO] LX;]

G2,11 = [IA7 I = [W I [X6 ' WI] - [WI'] [x X W°J

Fig. 5 - The last stage of the FFT matrix
reduction for the case N = 8; for this case,
r = 0 . . ., N/8 - i becomes r = 0

N 8-1

- =L
k- G

k=0

7

8JAMES R. FISHER

Total Computations

We are now in a position to compare the computational savings produced by the FFT
as compared to reduction of an N by N matrix of Fig. 2 and Eq. (2). From Figs. 3, 4, and
5 we obtain from each stage (assuming N = 8) four complex multiplications and eight
complex additions. Thus 12 complex multiplications and 24 complex additions suffice for
the entire FFT process. This compares with 64 complex multiplications and 56 complex
additions for the standard reduction of Eq. (2). In general the fractional computation
time is given by (N log2 N)/,N2. For example the computation in the case of 8192 data
points can be performed in 0.0016 of the time required by the regular method - a saving
of more than 99% in computer time.

Flow Chart

An alternative view of the FFT can be embodied in the flow charts of Figs. 6 and 7.
These show FFT's of eight points and 16 points respectively. In Fig. 7, for example, the
original time sampled values are represented on the left as X, thru Xi, and are complex
valued. The figure shows the four stages of computation with the complex operations re-
quired for each stage. When two lines connect at the same point in a stage (shown by the
enlarged dots), a complex sum is indicated. The lower half of stage 1 requires complex
multiplication by complex constants. This is indicated by the value WI, equivalent to the
values discussed in the preceding sections. Thus at the last data location in Fig. 7, input
data value XIL is transferred to stage 2 after it is multiplied by -W7 and added to the
product of data value X7 and W7.

DIRECTION OF COMPUFATION

000 X U

Cot X1

010 X2

Oil X13

100 X4

101 a 5

1to X6

lII X7

DIN AR Y
LOCA1l1N

INPUT
DAT A

-w
3

_W¶
2

-A 6

STAGE STAGE STAGE
I 2 3

AO

A4

A2

A6

A1

As

A3

A7

FOURIER
c0EFFRIENTS

Fig. 6 - Flow chart of an eight-point FFT, showing coefficient scrambling.
As an example in interpreting the chart, the dot directly above the label
Stage i indicates the complex operation x,3 W3

- x7 . N,3

8

DiRVCTIOiN 01 COMI'1.'ATION

0000 xl \ AO

0001 X 1/\\//- As

A40010 X- 2 A 2

0100 X4 > t ;zX X g 5 A2

0101 x

0110 X 4 A6

a3 ill "3 _4

1000 X / Al

1001 -W Al

1011 X1 1
-O A

1100 x4W A3

1101 xA 3 't

1110 x 14 A7

1tll A 5 - -w' -r 1
BINARY INPUT STAGE STAGE STAGE STAGE FOURIER

LOCATION DATA 1 2 3 4 cOEFFICIENTS

Fig. 7 - Flow chart of a 16-point FFT, showing coefficient scrambling

t1]
'V
tC
It

C

CO

JAMES R. FISHER

The flow charts of Figs. 6 and 7 indicate the process known as decimation in fre-
quency and is the method described by Gentleman and Sande (4). The form of computa-
tion known as decimation in time is the method originally described by Cooley and Tukey
(2). Comparison of both methods as well as variations to eliminate coefficient scram-
bling are described by Cochran, Cooley, et al. (1).

Coefficient Scrambling

As previously indicated the coefficients have been computed in a scrambled sequence.
To arrange the coefficients in the order from the lowest frequency component (the dc
term) to the highest, it is necessary to select the coefficients according to their scram-
bled position in computer memory. As seen from Fig. 6 coefficient A, is correct, but
Al and A4 have been interchanged, A, and A, have been interchanged, etc.

The scrambling, of course, has been the result of computing even-coefficient groups
before odd, thus taking advantage of the symmetry relations of the FFT. In base 2 nota-
tion we see this to be the reversal of the binary number representing the subscript of the
Fourier coefficient. Consequently, for an FFT of N = 8 length, coefficient A, z A,,1 can
be found in location 1002 = 4, since 1002 is the binary reversal of 001,. Similarly,
As - A,,, can be found in location 0112 = 3, and so on for all coefficients.

The reason for this scrambling can more easily be understood by consideration of
the basic equation (Eq. 4) in its binary notation for the case N - 8. The indices r and k
can be written in binary form as

r = r2(22) + r,(2') + r(20) (25)

and

k = k2 (22) + kl(21) + k ,(2°) (26)

where r2, r2 , r0, k2, k1 , k0 = O, 1. Thus Eq. (4) becomes

Afr2.rlyr) ~ EL E X (k 2.kiIka)
Fort kI=O k2=0

(w4r,+2r, +T1 >(4k2+2k1+kO)3 (27)

The exponent of w can be simplified by performing the multiplications suggested. Equa-
tion (27) thus becomes

A(r2,rj'r0= j E L X(k 2 ,k, 1 k,)
k0d= k1 O ki 2{

. [W (4y2 +2 ri + ,)54k2 W(4C2 +2 ri~ro)2k, W(4r2 +Zrj +w t)k,3(8

For simplicity of notation, let us consider at present the first W term of the above equa-
tion: w(4 r2 +2r + ro)4k2 . This is easily reduced to

10

NRL REPORT 7041

W 22 W 1 k2 w4r 2 - W 4 rk 2

Since Wn -exp I-271j(n)/NJ and Wt6n W8- 1, Similarly W(4
T21 2rc +, 052ki can be reduced

to

W 8skiW 4 rsklW 2rok1 7 W(2rr+rO)2k,

Equation (28) could thus be written

A(r 2 . rI, r0) iE 21 X(k 2 'klk 0)
k,,=0 ko=0 k2=0

[4r 0k2 W(2rltro}2k, w(4r 2 +2r,+ro)k1

- E I E X(k 2 1 kl,k 0) Wawwl . (29)
k 0 k I-0 k2 -

If we examine the sequence of calculations in obtaining the Fourier coefficients, we
find that the coefficients are obtained in a binary reversal sequence as suggested previ-
ously. This is easily seen by consideration of the summations one at a time. The inner
sum including wa is a function of r0, <kI, and k ,. Thus we have

A(r 2 ,rlr 0 = , L fI(r 0,k 1,k0)W 2 W, (30)
k0=0 k1 =O

We now see the new inner sum including W3 as a function of r0 , r1 , and kO. Thus

A(r2 .r1 ,r,) 2 1 f2(r r1 , k 0)Ws
k'0

But this sum including Ws is a function of r0 , r 1 and r2 Thus

A(r 2 ,r 1,r,) = f3(,r0,rr,)

which we see to be nothing more than the binary reversal previously suggested.

The problem of unscrambling can be handled in several ways. Modifications of the
FFT procedure can be derived which require no unscrambling but at a sacrifice of re-
quiring increased computer memory for a given number of input data values. Essen-
tially, the storage requirements of such programs would be twice the value for scrambled
algorithms -effectively halving the resolution obtainable from a given memory size,

An alternative method would require the input time samples to be stored in computer
memory in scrambled positions according to the binary reversal code. Thus, on conclu-
sion of the FFT process, the coefficients would be in correct order. Consequently, the
previously developed algorithm could be used and no additional memory locations would
be required. This would be the natural method to use in special purpose computers de-
signed only to perform Fourier transforms, in which input data can be buffered directly

11l

JAMES R. FISHER

into the memory for processing by the arithmetic unit. The buffer device would be
hardware-wired to perform the binary bit reversal and would not require additional com-
putation time.

For general purpose computers in which input data must be handled by decisions in-
volving the central processing unit, either input or output values must be scrambled by
suitable programs. In the program described in the next section the frequency coeffi-
cients are unscrambled by the subroutine UNSCR in conjunction with subroutine GNSCR.

FORTRAN IV PROGRAM FOR FFT

General

The Fortran IV program consisting of subroutines YFOUR, COSINE, GNSCR, and
UNSCR, is constructed in such a way that complex numbers can be computed by complex
operations without recourse to considerations of the real and imaginary parts as sepa-
rate quantities. In some operations however it is necessary or convenient to perfiarnt
operations on the real or imaginary parts individually. This is illustrated by Fig. 5,
where the general construction of the data block in computer memory is shown. The
complex values are associated with array X, the real values are associated with array
Y, and the two arrays are equated by an equivalence statement in the Fortran program.

CJ IM X3 N IH %I7 Ni I)Fi Y .n Lt E:

~~~~ '~~~~~~~~~~Y ~ ~ ~ ~ ~ p'

Fig. 8 - Computer memory block equating complex values with their real components

Before execution of the program begins, these arrays are filled with the data values
such as might be obtained from the output of an analog-to-digital converter. If the input
values are real, as is normally the case, they are placed in the odd values of the Y array
(the real part of x). The even values of Y are set to zero, indicating no phase component.

During computation of each FFT stage the computed results are stored "in place";
i.e., the results of computation of each stage replace the results of the previous stage.
Consequently no intermediate storage locations are required, and on completion of comn-
putation the complex Fourier coefficients remain in array X.

Subroutine FFOUR is the main subroutine, which computes the Fourier coefficients,
stage by stage, according to the flow charts in Figs. 6 and 7. At the conclusion of sub-
routine FFOUR subroutine UNSCR is called to unscramble the coefficients and place them
in correct order in array x. As shown in Fig. 9 the main program should be constructed
with subroutines COSINE and GNSCH outside the FFT loop. Subroutine COSINE generates
the complex constants wn required for the FFT processing and need be computed only
once when many FFT's of similar length are to be processed in sequence. Similarly
GNSCR, which generates the computer addresses needed in unscrambling, should be cal-
culated only once when the data length remains unchanged.

1 2



13NRL REPORT 7041

BIN =8192

T = BIN

CALL COSINE (GRIN)

L_ CALL GNSCR (T)

PROGRAM TO LOAD
X ARRAY

CALL FFOUR (CTX,BIN)
I

r -~~~~~~~~~.r- - - _ - - - - - - - - - -
ISUBROUTINE FFOUR {C,T,X,BIN>i

l ... l

I CALL UNSCR (TX)

COEFFICIENTS

PG RAMI T P

Fig. 9 - Flow chart for repetitive
FFT operation

The FFT length is specified by the
ment that must be modified if FFT's of
gram. A typical deck structure for the
of 8192 values is shown in Fig. 10.

statement BIN = N - 2n. This is the only state-
different lengths are desired in the same pro-
NRL CDC 3800 computer assuming a data length

Subroutine FEOUR

Subroutine FFOUR (Fig. 11) is the basic subroutine that computes the Fourier coef-
ficients from the input data. When needed the subroutine calls on the results of addi-
tional subroutines which have the task of computing the complex exponentials associated
with the Fourier transform (subroutine COSINE) and performing the coefficient unscram-
bling (subroutine GNSCR in conjunction with subroutine UNSCR). As shown in the param-
eter list, subroutine FFOUR requires values in array C for complex constants and the
array X for access to original data values at the beginning of the subroutine. The data
length is established by parameters T and BIN.

In addition to the dimensioned arrays C and X, subroutine FFOUR also requires the
dimensioned array CSF, which is equated to the complex storage location E; location E
may be accessed by a complex operator or by successive operations on the real part of
E, namely, CSE (1), and on the imaginary part of E, namely, CSE (2).



JAMES R. FISHER

SPECWFICATiON

(Only card needing
chaage When the1
nuLMbe of data poiYntS
changes)

Fig, 10 - Deck structure for computing one FFT using the NRL CDC 3800 computer

14



NRIl REPORT 7041

SUBROUTINE FFOURICCTsX,131N) FF1

COMPLEX E.X FF2
PEAL CSE*C FF3
INTEGER T.TINC, THTAtBIN FF4
DIMENSION CSE(2) ,C(2O491 X18192 FF5
EOUIVALENCE(EvCSE) FF6
TINCB-RIN/T FF7
L-INC=T/2 FF8

10 LOC=LINC FF9
40 THTA-O FFIO
SC CSE11)=C(THTA+H FFI 

CSE(2)=-C(IN/4+I1-THTAI FF12
60 LOC=LOC41 FF13

LOC I -LOC-L INC FF14
E=E*(X(LOCl -X(LOC)7 FF15
XCLOC1) X(LOCl1+X(LOCI FF16
X (LOC=F FF17
THTA= THTA*T INC FF i U
IFlTHTA- IN/2120.30,30 FF1 Y

20 IF t THTA-HIN/4 )BO .50 50 FF20
50 CSEIl)=-CftlN/2+1-THTA) FF21

CSE(2iB-C(THTA-(EIN/4-1)) FF22
GO TO 60 FF23

10 IFCLOC-T190,91.9i FF24
90 LOCLOC4LINC FF25

GO TO 40 FF26
91 IFt2-LINC792s93,94 FF27
92 LINCLIENC/2 FF28

TINC=TINCtTINC FF.29
GO TO 10 FF30

93 00 100 LOCt2.Tt? FF31
LOCILOC-I FF32
E=XtLOC1 )-X(LOCj FF33
X(LOCI i-XtLOCl I)1XtL0C) FF34

10O X(LOC7=E FF35
94 CALL UNSCRTITX) FF36

RETURN FF37
ENO FF238

Fig. 1i - Subroutine FFOUt

-Jtar TINC



JAMES R. FISHER

whose argument changes by fixed amounts, its value in quadrant II can he determined by
changing only the argument of Z in quadrant 1. Consequently, in subroutine FFOUR ac-
cess is made only to quadrant I, with corresponding sign changes for quadrant II.

The test for membership in quadrant I or II is made by statement FF20. If the vec-
tor belongys to quadrant I, the program returns to statement FF11 to repeat operations on
succeeding values in the x array; should membership be in quadrant 11, the real part of
the vector is changed in sign in statement FF21 and then returns to FF13 for repeated
operations provided the program has not arrived at the end of a stage or substage.

If we have arrived at the end of a substage (such as computing the last values in D,
and E, in Fig. 4) we test by statement FF24 if this is the last substage in a given stage,
If it is not, the storage locations of the beginning of the next substage (such as F, and G,
in Fig. 4) are computed in statement FF25 and the complex vector is reset to its initial
value in statement FF10 and the process is repeated. Should FF24 indicate that the last
substage has been computed, statement FF27 is tested for determination of which stage
is next to be computed. This process will be repeated until all stages except the last are
computed.

The computation time of the last stage may be considerably reduced by performing
it in a different manner from the preceding ones. Since the vector in this stage always
equals I or -1, no complex multiplications are required. Such an operation involving
only sums and differences is performed in the DO loop indicated by FF31 through FF35.

We have now completed the computation of N complex Fourier coefficients. How-
ever, they are in scrambled order and must be rearranged by subroutines UNSCR and
GNSCR.

Subroutines GNSCR and UNSCR

Once the Fourier coefficients have been computed, appropriate measures must be
incorporated for presenting them in sequential order. As explained previously, the coef-
ficients will be in computer memory according to the bit reversal in binary notation no
sociated with the order of the coefficient, upon completion of subrn.'" 

The binary numbers sir. '
Puter bm at



NRL REPORT 7041

Continuing in the same manner we see that the next two scrambled values are 010 = 2
and 110 = 6 respectively. These values can be obtained by adding N/4 to the previous
values obtained (in this case 0 and 4). Combining the previous values and the present
values we now have the sequence 0, 4, 2, 6. The next set of scrambled values are ob-
tained by adding N/8 to the previous values, and we obtain the complete scrambled se-
quence 0, 4, 2, 6, 1, 5, 3, 7.

In summary, for any power N of two we can obtain the binary reversed sequence by
considering the first value to be zero (zero of course is its own reversal) and then ex-
tending the sequence by adding diminished powers of two to the previous values obtained.
In the computer program the scrambled values are used as address values for obtaining
the Fourier coefficients in correct order. In Fortran notation they would be considered
the subscripts of a dimensioned array. One additional factor must be accounted for: the
Fortran language does not permit a dimensioned subscript of zero. Thus we must in-
crease by one the scrambled address values we wish to obtain. For N = 8 we would then
have the values 1, 5, 3, 7, 2, 6, 4, 8.

Subroutine GNSCR computes the scrambled values defined above for N data values.
This subroutine is shown in Fig. 12. The formal parameter T specifies the data length
being computed and is equal to the number of coefficients in the FFT; its value is ob-
tained from the main program as shown in Figs. 9 and 10. As the scrambled values are
computed, they are stored in array SCR. The first scrambled value is the reversal of
itself, and the value in location 1 is identically equal to 1 as indicated by statement FF44.
Location M in the subroutine defines how many elements are in the sequence previous to
the "add" cycle. Thus for T - 8, after location 1 in array SCR is set to one by statement
FF44, statement FF45 tells us that the sequence consists of one element. During each
cycle of additions to previous values, the value M will be used to define the DO loop in
statement FF48. Statement FF52 increases M upon completion of the DO loop in prepa-
ration of the next add cycle.

The value TM defines the algebraic quantity to be added to previous values during
each add cycle. This will be N/2 for the first cycle, N/4 for the next cycle, N/8 for the
next, etc., where N is the data length. In statement FF47, TM is set equal to N/2 as re-
quired at the beginning of the first add cycle: statement FF53 modifies TM for the begin-
ning of the next cycle. The above process is repeated until the full sequence of N values
has been computed. The termination of the subroutine is executed by statement FF51
when the last scrambled value has been computed. (The last value computed is the bi-
nary reversal of itself and is equal to N = T).

Having computed the coefficient scrambling order, it is now possible to rearrange
the scrambled coefficients in array x in their proper sequence of increasing ordinal
number. This is performed in subroutine UNSCR, in which the scrambled value from
array SCR is placed, by statement FF63, in location I for temporary storage. Ignoring
statement FF64 for the moment, coefficients are interchanged by statements FF65,
FF66, and FF67 according to the value obtained from array SCR. For the example N = 8,
array SCR contains 1, 5, 3, 7, 2, 6, 4, 8; consequently location 5 would be interchanged
with location 2, since ordinal location 2 in array SCR contains the numerical value 5. It
should be noted at this time that ordinal location 5 in array SCR contains a numerical 2.
When the DO loop progresses to this point, the values in array x, locations 2 and 5,
would be interchanged for the second time, and the coefficients in these locations would
remain unscrambled. Statement FF64 prevents such an occurrence by requiring the
numerical value in array SCR to be greater than the ordinal location in that array. Hence
interchanging occurs only once for a given set of coefficients, and unscrambling is cor-
rectly executed.

17



JAMES R. FISHER

SUBROUTINE GNSCN(T) FF40
COMMON SCP FF4 1
INTEGER SCRT.ITM FF42
DIMENSION SCR(8192N FF4-
SCRI 1 1=- FF44
M= I FF4t
N= I FF46
TM=T/2 FF47

I DO 9 31=.tM FF4b
N=N+ 1 FF49

9 SCR(N)=TM+SCRJIJ FF50
IF(T-SCp(NI j)8'8 10 FF51

1°0 T?=M+/ FF52
TM=TM/2 FF 62
GO TO I1 FF54

8 RETURN FF5t
END FF56

SUBROUTINE UNSCRWT.X) FF57
COMMON SOP FF58
COMPLEX X.F* FF59
INTEGER T.r*SCR FF60
DIMENSION SCR(8192. Xt 192) FF61
DO 9 3=1.1 *- T bFc
E =SCR( 3) Fl- b1
IF(J-t1 9.g. 10' FiF 64

1C F=X(Jl FF65
XI( Jl =X ( I I FF66
Xl E )=F FF67

9 CONTINUE FF63
RFTURN FF 69
END FF 7J

SUBROUTINE COSliNEiC.BIN} FF80
DIMrNSTON C1 20491 FF81
INTEGFR PIN FFB2
ANG(3. 141F926536/(/BIN/?) FF$S
I NTE=B IN/8 F F-64
CS=COSF ANGt FF8E
SN=S INF t ANG) FF86
CIIl =1~ * FF51
C(BIN/4+1 1* r.,FFB8
0 9 J=,I>.INTB FF89

C (j+ 1 1-CIJ*CS-C(BIN/4+2-J)*SN FF90
9 C(BIN/4+1-J)=CCJU*SN+C(IIN/4+2-J1*CS FF91

RE TUJRN FF92
END FF 93

Fig. 12 - Subroutines UNSCR, COSINE, and GNSCR

18



NRL REPORT 7041

Subroutine COSINE

Subroutine COSINE is used to compute the values of the complex exponentials neces-
sary for reduction of the FFT to complex coefficients. The complex exponentials re-
quired are of the form exp (-2Thjn/N), where n varies from 0 to N/2 - 1. This is equiv-
alent to generation of a half cycle of both a sine and a cosine wave, since by Euler's
relationship exp(-2rjn/N) = cos (27Tn/N) - i sin(2Tnn/N). Then by proper indexing tech-
niques as explained for subroutine FFOUR, we can perform the complex operations by
consideration of only real values of a discrete sine and cosine table extending from zero
to a half cycle, in increments of 27n/N.

If the values of a sine or cosine wave are examined, it is obvious that the absolute
values in each quarter cycle are identical with the absolute values in any other quarter
cycle. Furthermore, if we consider a quarter cycle of the cosine wave y = cos X, where
y = 1.0 for X = 0 and y - 0 for X = n/2, we see that a sine wave can be obtained by
"reading backward' on the cosine wave. Thus when X = 77/2 in y - Ces X, the value of y
at that point is equivalent to the value of y = sin X when X = 0. Consequently, only a
quarter cycle of a cosine wave is computed and stored for use by subroutine FFOUR,
and indexing and sign changes perform the operations for the missing quarter cycle.

In subroutine COSINE the basic increment 2T/N is computed by statement FF83. CS
and SN in statements FF85 and FF86 are the cosine and sine values of the basic incre-
ments respectively. Since we are computing a quarter cycle of a cosine wave, the first
value will be 1.0 and the last value (actually the beginning value of the next quarter cycle)
will be 0. These two values are determined by statements FF87 and FF86. For a quar-
ter cycle of a cosine wave we would need to compute N/4 values, and the DO loop in
statement FF89 would be from 1 to INT = B1IN/4. We can however reduce the DO loop to
half this value by use of statements FF90 and FF91, where the quarter cycle of cosine
wave is computed from both ends. Statement FF90 computes cosine values by the trigo-
nometric identity cns (0 +-r) = cos 0 cos 6 - sin 9 sin q$, and statement FF91 computes
sine values by the identity sin (0 I-C) = cos 0 sin e + sin 0 cos *D where 0 is the previ-
ous value computed in each statement and D is the increment value.

The advantages of this method of computing sine and cosine values are two: the
computer sine and cosine routines are needed only once each, thus saving considerable
computer time, and computing from both ends of the quarter cycle reduces accumulative
error in the computations by reducing round-off errors inherent in adding the increment
ANG in statement FF83 to itself many times.

ACKNOWLEDGMENT

The author is indebted to Gerald C. Drew for his efforts in developing a FFT For-
tran program for computing the power spectrum of a fixed data length.

19



REFERENCES

1. W.T. Cochran, J.W. Cooley, et al., 'What is the Fast Fourier Transform?" IEEE
Trans. Audio and Electroacoustics AU-15, 45-55 (June 1967)

2. J.W. Cooley and J.W. Tukey, "An Algorithm for the Machine Calculation of Complex
Fourier Series," Math. of Computation 19, 297-301 (Apr. 1965)

3. D.A. Swick, "Discrete Finite Fourier Transforms: a Tutorial Approach," NRL Re-
port 6557, June 29, 1967

4. W.M, Gentleman and G. Sande, "Fast Fourier Transforms - For Fun and Profit,"
1966 Fall Joint Computer Conf. AFIPS Proc., Vol. 29, Washington, Spartan Books,
pp. 563-578, 1966

20
*U.S. GOVERNMENT PRITINTG OFFICEi 19?039JT1S1/8

- _9�


