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ABSTRACT

The compressive strength of bulk glass is limited by the tensile
strength of the surfaces of internal cavities, especially clusters of
cavities closely spaced so as to have strongly interacting stress fields.
The tensile stress on the surfaces of single ellipsoids were taken from
a previous report, and predictions of probabilities of failure were made
based on an assumed Weibull distribution of strengths. Numerical
values for Weibull coefficients were used which were believed to be
representative of pristine glass but not homogenized by extended heat
treatment. The predictions are thought to be somewhat conservative
but could easily be adjusted in the light of better experimental data if
and when they become available. The assumed n coefficients are be-
lieved to be realistic but the assumed i.e., the strength of pristine
bubbles of unit area at a probability of failure of 0.63, may need future
revision. All predicted strengths are proportional told c Predicted
strengths are shown graphically for probabilities of failure ranging
from 10- 6 to 10 - .
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PREDICTION OF THE STRENGTHS OF INTERNAL CAVITIES
IN GLASS UNDER COMPRESSIVE LOADS

INTRODUCTION

Bulk glass is now in widespread use for flotation spheres and for microballoons in
syntactic foam. Manned capsules for deep submergence are in development but require
a very high degree of reliability and high compressive strength. The case for glass
pressure hulls and plans for their development have been set forth in considerable detail
by H. Perry (1). A considerable amount of effort has been expended on the fabrication of
large glass hemispheres (2).

Bubbles are difficult to eliminate entirely in bulk glass, and their surfaces experi-
ence tensile stresses nonuniformly distributed when the shell is under hydrostatic com-
pression. Maximum values for tensile stresses on the surfaces of various ellipsoidal
cavities in typical compressive loading situations were described in Ref. 3. The break-
ing strength of the bubbles is expected to depend on size, although the stress does not.
The bubble strength is expected to be higher than the tensile strength of external surfaces
of test specimens such as those in the concentric-ring test. The reasons are closely re-
lated; first, the surface of the cavity should have much less severe flaws, and, second,
the size effect on strength is in favor of small bubbles. The effects of size and of sur-
face quality are examined here in order to predict which single bubbles should be rejected
as unsafe and which should be acceptable for an arbitrarily selected risk of failure.

Although the internal surfaces of bubbles are not subject to scratches or impact
damage, there are always local variations in composition including seeds or crystalline
particles which may introduce scatter in the tensile strength of the material. Statistics
for bubble strengths are apparently not available; however, statistics for pristine fibers
in liquid nitrogen are available although not yet published. Carefully homogenized
E-glass fibers tested in liquid nitrogen exhibit a coefficient of variation of 8.7 percent,
corresponding to a Weibull m coefficient of 14.* Glass fibers of the same composition
but not homogenized exhibit a coefficient of variation of 15.9 percent, corresponding to
m = 7.5. The extent to which moisture may increase the scatter or decrease m is not
discussed in this report, although it is conceivable but not proved whether or not water
dissolved in glass can affect fracture behavior. It is to be expected, on the basis of the
foregoing, that the strengths of internal cavities in glass will exhibit a size effect. The
strength is a function of the probability of failure. The numerical predicted strengths of
single bubbles in this report are thought to be somewhat conservative, but for clusters of
bubbles with stress fields interacting, the strengths would be much less.

STATISTICAL CONSIDERATIONS

Figure 1 shows the probability of failure in glass lantern slides vs applied stress at
two different crosshead speeds. It is obvious that strength is a function of the probability
of failure and of the testing speed. The effects of moisture in the environment are also
important but are not separately expressed here. Following the notation of Weibull, the
probability of failure s in glass may be expressed as

*Unpublished data.
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Fig. 1 - Applied stress vs probability of failure
under rising load for two rates of crosshead
motion. The specimens were lantern slides
between concentric rings.

S - exp - (J ) dA

K"9

(1)

where A is a small unit of area. The exponent is dimensionless. The integration is
over that part of the area which is in tension. It is assumed that all effective flaws are
on the surface and that a, the lower limiting strength, is zero.

If the stress a is constant over the area and A is taken as unity,

S = 1 - exp - (-) T A (2)

Using natural logarithms yields

lo log 1 I S = m log - m log eg log A. (3)

The constant TO is evaluated by setting s = 0.633 or log l( 1-s) = 
i/(l -S) = o . Then

and og log

= A ot
a = A 

where is the stress corresponding to S 0,633, and m is the Weibull coefficient.
The constant o0 is a characteristic for the glass surface and is independent of size.

(4)
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In making concentric-ring and other tests on glass plates, the values of aO and of
are not expected to be representative of the corresponding coefficients for the internal
bubbles. Higher values are to be expected for both in the bubble. For purposes of pre-
dictions based on tests of exposed surfaces not prestressed in any way, it is necessary
to make a correction such that an artificially high strength is assigned to the test piece
8o that it represents the quality of the bubble surface. If the values of m and a0 are up-
graded and the probability of failure is left unchanged, then for the test specimens one
may write for any given probability of failure

( ° )I1 ( G 2 )2 
(c7 o 02 ) (5)

where a2 is the calculated strength of the test piece if 2 and a 0 2 are the coefficients
instead of the actual m anda 0 1 . It follows that

a 2 = 2 (-) 1 ' (6)

The values of 01 and ao 2 are independent and must be known or inferred from in-
dependent experiments. Sanford (4) has determined a0 and a02 representing as-
received soda lime glass plates and plates etched by hydrofluoric acid. The area under
uniform biaxial tensile stress was 1 sq in., and the values of , were

ao 1 = 40,000 psi, untreated,

U0 2 = 250,000 psi, etched,

and represented a separated distribution.

Representative values of n determined by Sanford were approximately

ml 1.9 for as-received glass

In2 = 3.6 for the glass after etching.

Both the values of m were lower than those found by Schmitz for carefully handled glass
fibers (5). Schmitz-tested glass fibers received from the bushing and wound on a holder
so that no contact of glass to glass is permitted have exhibited values ranging up to
100. It was noted in that study that no single m value could be selected as representative.
A simple way of determining m for fibers is by studying the effect of length on strength.
Otto (6) provided the size-effect data shown in Fig. 6 of Ref. 5, from which one may de-
duce m 8.6 for pristine E-glass fibers.

The Weibull coefficient m is an approximate measure of the standard deviation as
shown by Irwin (7),

/n I (7)

where is the relative standard deviation from the mean strength.
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THE SIZE EFFECT

When m and a are constants independent of size, it follows from Eq. (1) that for an
equal probability of failure,

A = constant

and (8)

d loga 1

also, for sizes I and 2, the ratio of strengths is

92 (Al (9)

for any given probability of failure.

If the m and values are different between the test specimen and the object for
which a prediction is made, Eq. (6) must be employed and also an effective size or area
must be used if the stress distribution is not uniform.

The effective area of an object is given by

A

A eff -~t jA )U am JA (10)

The integration is over that part of the area on which a tensile stress exists. The effec-
tive area is also defined as the area of another specimen having equal probability of fail-
ure under a uniformly distributed stress a a,, m where ax is as given in Eq. (10).

From simple beam theory, the effective area of a rectangular beam in three-point
loading is accordingly ,ff = ( + m 4i). (U)
where is the span and b and are the width and depth, respectively.

For a circular cross section of radius r the effective area of a beam in three-point
loading is

A = 2rL 2 x 4 x 6 x *.*. (m - lfl if m is an odd integer (12)
(1 3 5 in)

and

A, = f WrL [1 x 3 x , ( - I if m is an even integer. (13)A, - (m + ) (2 4 6 .. , m

I
��M I

4



NRL REPORT 7020

In predicting the strength of an object based on tests of specimens of different sizes,
it is not necessary to use effective sizes if the specimens are geometrically similar and
are similarly loaded. In that case the ratio of gross areas is the same as the ratio of ef-
fective areas. When predictions are made based on comparisons between geometrically
dissimilar specimens, effective areas must be used in Eq. (9).

EFFECTIVE AREAS OF ELLIPSOIDAL CAVITIES UDER
COMPRESSIVE LOADING -SPECIAL CASES

Sample problems representing worst cases are presented in this section for pur-
poses of demonstrating the method of calculating and for making quantitative strength
predictions based on assumed values of and .

Uniaxial Compression, Spherical Cavity

For uniaxial compression it was shown in Ref. 3 that a spherical cavity was the
worst-case shape for prolate ellipsoids aligned with the prolate axis parallel with the
applied stress. The tensile stress on the surface of the cavity can be represented to a
good approximation by

a a x Cs 20, (14)

where is the angle between the pole of the sphere and the element of area in the spher-
ical cap. When 0 , = Ue and when 0 =/4 - 0 . The element of area dA is
R2 sin do d.

The effective area of the spherical bubble is then

Aeff = 8 ( L ) f J u7e (cos 2)' R sin do dp

or (15)

4

A ef = 45 R2 (cos 2) sin 0 d.

A plot of A ff/(44?) vS m is shown in Fig. 2. In Ref. 3 the spherical cavity was
shown to develop ma = 7]t applied for Poisson's ratio = 0.45 and for an applied uni-
axial compressive stress. For v = 0.25, aa = 0.58 a applied. These factors will
be taken into account later in estimating the compressive strength of a block of glass for
fracture initiating at an internal bubble.

Needle-Shaped Cavity, Parallel with Shell Axis, in a Cylindrical
Shell Under Hydrostatic Pressure

In this case of a needle-shaped cavity in a cylindrical shell under hydrostatic pres-
sure, the prolate axis is parallel with the cylindrical shell axis.

In accordance with Ref. 3, a good approximation for the tensile stress on the cavity
surface is

5
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Fig. 2 - The ratio of effective area to total
area for a spherical cavity in an infinite
medium under a uniaxial, compressive
stress. This is a function of the Weibll
coefficient m.

a = aMx cos 20. (18)

The element of area is

dA = R dO dLS

where dL is an increment of length of the cavity and R is the minor semiaxis. The ef-
fective area is

Ae a /4 LA1 1f =4('.) f or 0 mR ddL

(1?)

Af/4
A -s=4R1 (2 cos 

2
9 - 1)m dO.

A Plot Of A 1 /(2ffRL) vs m is shown in Fig. 3.

The needle-shaped cavity was selected here as being the prolate ellipsoid shape
which would see the highest tensile stress for the given orientation. For the case se-
lected, the value of is the same as the magnitude of the compressive membrane
stress for all values of Poisson's ratio. shapes approaching the spherical had been
selected, the values of a. would have been dependent on Poisson's ratio as shown in
Ref. 3. The tensile stresses are not in a perfect biaxial relationship, as they are for the
preceding case.
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Fig. 3 - The ratio of effective area to total
area for a needle-shaped cavity in the wall
of a cylindrical shell under hydrostatic
pressure. The prolate axis is parallel
with the cylinder axis. A further correction
is to be made to account for the uniaxial
stress when a prediction is to be made
based on a biaxial test.

To make the adjustment so as to calculate the effective area for uniaxial stress, we
assume that for every direction there is the same distribution of flaw density and sever-
ity and that the stress a is normal to the same number of flaws in each category of size
for the 1:1 stress situation. For uniaxial stress let a = resolved normal stress for
any flaw; then

a m=u x CosO.

Assume that the flawed area in question is made up of circles which are nested to
ill all of the area and that each is representative of the whole. For any circle a is
nidirectional. The area element is p2 d/2 .

By definition

A a _ f (e) dA
Max

or

Ae -lax (Cos O)m p2 d
ff max M 2

for any circle.

7
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In the original Weibull concept, only uniaxial stress was considered or at least spec-
ified; however, we now find it convenient to have areal comparisons on the concentric-
ring test. In Eqs. (11), (12), and (13) the calculation of effective area has used only one
component of stress and assumed that the greatest principal tensile stress was the only
one to be included. For a concentric-ring test -= a= . for all values of o . So by defi-
nition, A f f = Atota 1 for the concentric -ring test and

f = 2 (cs O) d?, (18)

where f is the ratio of the effective area for uniaxial stress to the effective area for bi-
axial stress on a circle of any radius. A plot of Eq. (18) is shown in Fig. 4.

V)
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3 0.

C)

In

1,4
d 0

:' M

" O.

to
M

t00

Fig. 4 - The ratio of the effective area under
uniaxil stress to the effective area for a bi-
axial tensile stress as a function of the Weibull
coefficient m

An arbitrary selection of L = 2R was made for purposes of illustration in the fig-
ures for needle-shaped cavities. However, for other L values the predicted strengths
'-2 for L = L 2 would be given in terms of a i already computed as

(LI A /02
a =2 a rb -2) (19)

This assumes that R is constant and L varies.

For m2 = 12 the effect of doubling the length of a cavity would be to reduce its pre-
dicted strength by 6 percent.
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Needle-Shaped Cavity Parallel with a Spherical Shell Wall
Under Hydrostatic Pressure

The prolate ellipsoid seeing the highest tensile stress is the needle-shaped cavity.
The surface stress is equal in magnitude to the compressive membrane stress, whereas
a spherical cavity would experience a tensile stress about half as large.

As a good approximation of the surface tensile stresses in the needle-shaped cavity
in the wall of a hollow sphere, we write

= a cos 3. (20)

The element of area is

dA = R do At

and the effective area for hydrostatic compressive loading is

I/6
A f 4RL (cos 3)A do

or (21)

a! 6
Aeff = 4RLf{ (4 cos 0 - 3 cos 0) d.

The ratio of the effective area to the total area of a long cylinder is plotted in Fig. 5 as
a function of the Weibull coefficient m . Here as in the preceding case the tensile stressesare essentially uniaxial.

0.35

0.30

0.25 

'0 0 \20

V0.15 \s

1 2 3 4 5 6 7 8 9 0 20 30 40

Fig. 5 - The ratio of effective area to total
area for a needle-shaped cavity in a spheri-
cal shell. The prolate axis is parallel with
the shell wall. A further correction is to be
made to account for uniaxial stress when a
prediction is to be made based on a biaxial
test.

0
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Spherical Cavity in a Spherical Shell Under Hydrostatic Pressure

The magnitude of the maximum tensile stress on the surface of the cavity is about
55 percent of the membrane compressive stress in the shell, instead of being 100 percent
as for the needle-shaped cavity. This case is included here because it is likely to occur.
The maximum tensile stress generated is nearly uniaxial, is normal to the surface of the
spherical shell, and is constant for all positions In the shell. The tendency is to cause
splitting, which resembles delamination or spallation of the shell. Figure 6 shows the
effective area of the spherical cavity as a function of the Weibull coefficient m for this
case.

02 

0.1g 

I 10 100

Fig. 6 - The ratio of effective area to total area of a
spherical cavity embedded in a spherical shell. A
further correction is to be made to account for the
uniaxial stress when a prediction is to be based on
a biaxial test.

PREDICTED FRACTURE STRENGTH OF INTERNAL CAVITIES

The effects of size on strength and the estimated tensile stresses in cavities are now
combined in order to predict the breaking strength for fractures spreading out from the
walls of the cavities. The mathematical model employed here predicts bubble wall
strength in terms of the strength of plates tested between concentric rings. It is as-
sumed that a and m are different for the bubble and for the test piece.

Let a 2 be the idealized strength of the plate whose actual strength is a X. The
idealized strength representing bubble-surface quality was given in Eq. (6). It is as-
sumed that a,2 and m are Weibull constants representative of the bubble surface as
well as the idealized test specimen and that a 1 and mI are representative of the actual
test plates. Let a be the predicted strength of the bubble at an arbitrarily selected
probability of failure.

If we refer to Eq. (2) and set the probability of failure at some arbitrary value, then

(a )' Al eff = (S.2 ) 2 ff= (r2) M2A (22)

��l
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where A, ,, is the effective area of the bubble. Since the inner circle of the test piece
is under uniform stress, both the effective areas A ef fand A2 eff are the actual area
AI of the inner circle of the test piece. Then

a72 (A ci ) 1 ~ (23)'2 4

Substituting from Eq. (6), we have the predicted bubble strength at the selected equal
probability of failure as

b = '02 =1 m/ 2 I (24)
e1 I/ li

2

To make numerical estimates of the bubble strength a b, we must specify a0 2 and
2. In lieu of such direct experimental knowledge and for purposes of illustration, we

now assume that the bubble is represented by ea02 = 250,000 psi as it was for the Sanford
tests of etched plates. In the Sanford tests the effective area was 1 in. 2 and in accord-
ance with Eq. (4), a* = ro etched.

In using the mathematical model given in Eq. (24), we further choose ml = 1.9 for
the test specimens as found by Sanford.

Solutions of Eq. (24) are shown graphically in a series of figures according to bubble
shape and shell type.

Spherical Cavity Under Applied Uniaxial Compressive Stress

Selected values of predicted strength for various cavity sizes and probabilities of
fracture are shown in Figs. 7 and 8 Figure 7 shows the maximum tensile stress in the

-j
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Fig. 7 - Predicted strength of a spherical cavity
in a field of uniaxial compressive stress as a
function of probability of failure. For a Poisson
ratio of 0.25, the applied compressive stress is
1.82 times the maximum tensile stress in the
cavity. R is the minor semiaxis of the cavity.
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Fig. - The effect of spherical cavity size
on predicted strength for four selected lev-
els of probability of failure predicted under
applied uniaxial stress. All strengths are
proportional to the Weibull constant o 2.

t 200 ~chosen here as 250 ksi, as obtained from
tests on soda lime glass etched by hydro-

,,t 140 fluoric acid.

X I I II illu I I illS I i I I j II
L o 10' I-2 So-l

RADIUS OF SPHERICAL CAVITY (INCH)

cavity plotted against the probability of fracture for three cavity sizes with a probability
of S = 1 X 10 5, the lowest risk value shown, and for m = 12 only. For risk vales
smaller than 10- the strengths are only slightly lower. The maximum tension on the
cavity wall is numerically equal to the applied compressive stress for Poisson's ratio
v 0.45, but for glass, when v = 0.25, the stress on the bubble a b is only 55 percent of
the applied compressive stress. For a cavity having a radius of 0.1 in. or less, the pre-

A icted gross stress in the glass at failure is then at least 245 ksi. For an expected shell
membrane stress, a safety factor on stress is accordingly 2.45 with no allowance for
long-term degradation by static fatigue of the cavity wall. Figure 8 shows more directly
the effect of cavity size on strength. All strengths shown are directly proportional to
the Weibull constant a.0, herein specified as s 2 = 250 ksi, which is assumed as char-
acteristic of the cavity wall at = 0.633.

Needle-Shaped Cavity in a Cylindrical Shel Under
Hydrostatic Compression

The prolate axis is parallel with the axis of the cylinder in the case of the needle-
shaped cavity in a cylindrical shell considered here.

The needle-shaped cavity experiences the highest tensile stress of any prolate el-
lipsoid. The maximum stress is uniaxial and directed normal to the surface of the shell.
The tendency is to produce spalling or what would appear to be delamination. The stress
is independent of Poisson's ratio in this case. In calculating effective areas, Eq. (17)
and Fig. 3 are used. In addition, a further multiplying factor given by Eq. (18) and shown
in Fig. 4 is applied to allow for unlaxial stress in the cavity. This factor is included be-
cause the strength predictions are to be made on the basis of biaxial stress tests of
plates between concentric rings. An equivalent statement is that the effective area of
the test piece under biaxial stress is greater than its actual area for purposes of pre-
dicting the strength of another area under uniaxial stress The effective area of the test
piece for the purpose is then A f A/f, where

f =2 cosm Od .

The predicted cavity strength is shown in Fig. 9 as a function of the probability of
failure, and in Fig. 10 the effect of cavity size on fracture strength is shown for four

12
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Fig. 9 - Predicted strength of a needle-shaped
cavity in a cylindrical shell as a function of the
probability of failure. The maximum tensile
stress in the cavity wall is equal in magnitude
to the applied hoop stress in the cylinder. The
prolate axis is parallel to the cylinder axis.
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Fig. 10 - The effect of size of a needle-
shaped cavity on the predicted strength
for four selected probabilities of failure
in a cylindrical shell under hydrostatic
compression
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14 IES, SANFORD, AND MULVILLE

selected probabilities of failure. For the needle-shaped cavity, the predicted strength is
independent of Poisson's ratio and is numerically equal to the applied compressive hoop
stress in the cylinder for the cavity orientation being considered.

Needle-Shaped Cavity in a Spherical Shell

The predicted cavity strength is shown in Fig. 11 as a function of probabilty of fail-
ure, and the effect of cavity size on strength is shown in Fig. 12. The maximum tensile
stress in the cavity is independent of Poisson's ratio and is equal in magnitude to the
compressive membrane stress in the shell. The needle shape is the worst case.

C`'E 10 5 10-4 ID-3 10-2
S-PRO8ASlLITY OF FRACTURE OF CAVITY WALL

Fig. 11 - Predicted strength of a needle-shaped
cavity in a spherical shell as a function of prob-
ability of failure. The applied membrane stress
is equal to the predicted strength in magnitude
and is independent of Poisson's ratio.
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R-SEMI IMMOR AXIS OF NEEDLE SARED CAYMTY (NCH)

Fig. 12 - The effect of needle-shaped
cavity size on strength for four selected
probabilities of failure in a spherical shell
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Spherical Cavity in a Spherical Shell

The predicted cavity strength is shown in Fig. 13 as a function of the probability of
failure and in Fig. 14 as a function of cavity size for four selected probabilities of fail-
ure. The ratio of the stress in the cavity to the applied membrane stress is somewhat
dependent on Poisson's ratio for the spherical cavity. In this case the maximum tensile
stress is directed in such a way as to tend to produce a splitting that resembles delami-
nation in the shell. It is of constant magnitude around an equatorial belt of the cavity.
The ratio of maximum tensile stress y Max to applied membrane stress P was computed
to be

y max =- T7 (25)

where v is Poisson's ratio. For v = 0.23, ay mx -0.513P. In other words the mem-
brane stress necessary to cause fracture failure in the bubble is 1.95 times the bubble
strengths indicated in Figs. 13 and 14 for glass.

- 000
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S = PROBABILITY OF FRACTURE OF CAVITY WALL

Fig. 13 - Predicted strength of a spherical
cavity in a spherical shell as a function of
the probability of failure. The applied mem-
brane stress is 1.95 times the maximum
tensile stress in the bubble for a Poisson
ratio of 0.23.

CONCLUSIONS

1. All of the foregoing predictions of strength are intended as illustrative examples
dependent on the mathematical model as described. Selected but hopefully reasonable
values of the Weibull m and a coefficients were used in order to arrive at numerical
predictions.

2. The predicted strengths are directly proportional to a0 set here at 250 ksi It
would be well to establish this coefficient for surfaces more truly representative of in-
ternal cavities. This would require several hundred tests. Ernsberger (8) recently
measured the tensile strengths of internal cavities and obtained values as high as 1600
ksi, but statistical distributions were not included.
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R2 S C-I
R-RADIUS OF SPHERICAL CAVITY (INCH)

Fig. 14 - The effect of size on the strength
of a spherical cavity in a spherical shell
for four selected probabilities of failure

3. The predicted strengths shown in the figures are for the maximum stresses on
the walls of the cavities. In some cases these are equal in magnitude to the applied
compressive stress in the shell and in other cases the tolerable applied membrane
stress would be nearly twice as much as noted in the text.

4. For manned vehicles extreme reliability is required so that the probability of
failure should be less than 10-I or perhaps 10 -. Indicated tensile strengths of cavities
for this low probability of failure are all above 100 ksi for bubbles of 0.1-in. radius or less.

5. AU predictions were based on the assumption of the Weibull coefficient m = 12.
Although m = 12 has in the past been found representative of pristine glass filaments,
we do not have a direct determination for bubbles. The results are not highly sensitive
to m in the range of m = 12 to 20, as is illustrated in Fig. 15. Therein the predicted
strengths of bubbles are plotted vs m for three different bubble sizes embedded in a
spherical shell.

5 10 15 20 25 30 35 40 45
m

Fig. 15 - The effect of the Weibull m co-
efficient on predicted strength for three
sizes of bubbles and for a selected prob-
ability of failure of 3 x 10 - 6
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6. In view of the foregoing calculations and considerations, it seems reasonable to
conclude that for single spherical cavities of 0.1 in. or less in radius and for single
needle-shaped cavities whose cross-sectional radius is 0.1 in. or less the probability of
failure is less than 10 6 for imposed compressive membrane stresses of 100 ksi or less.
In the course of hydrotesting glass spheres, fracturing initiating at single cavities has
been rare but spallation starting from clusters of cavities has been frequent.

7. For clusters of cavities in which a small satellite bubble is near a larger bubble,
a superimposed tensile stress multiplier of about 2 would be imposed. This indicates
that for a 10-6 probability of failure the membrane stress should be kept at 50 ksi or
less. Stresses and predicted strengths for clusters of cavities remain to be calculated.

8. The effects of a long time under load have been neglected in this report for the
reason that environmental attack, as by moisture in bubbles, is expected to be nonexist-
ent. If moisture present in the glass can migrate to the cavities, then this assumption
may not be valid. Long-time compressive loading tests on glasses containing bubbles
are to be desired.

9. It should be carefully noted that suitable fracture mechanics formulas for the
cases discussed are not available (9). In each of the cases the effective driving force §
or the stress-intensity factor would at first increase with crack depth as a crack pro-
gresses into the material starting at the cavity wall. As the crack deepens, however,
the tensile stress field would decrease and a limit on the extension of the crack should
be expected. A prediction of how far a crack would propagate before arrest has not been
made.
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