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SYSTEMATIC SPLITTING OF WAVEFIELDS INTO UNIDIRECTIONAL t
MODES: LONG-RANGE ASYMPTOTIC METHODS FOR WEAKLY

NONUNIFORM MEDIA

1. INTRODUCTION

This work aims to produce a unified understanding of the three analytic approximations -
WKB, parabolic, and Born - that are most widely cited to justify approximating wave propagation
through media with only "weak" nonuniformities as a purely one-way phenomenon. The particular
focus is on backscatter - how to neglect it in a consistent way, and what impact this neglect
has on the remaining forward-propagating component. To limit the complexity of the problem
and yet retain most of the essential features, attention is restricted to waves in a single spatial
dimension. The subject is introduced in section 2 in the context of the prototypical example -

vibrations of a nonuniform string. This section explores the difficulties inherent in any attempt to
generalize forward/backward mode splitting beyond uniform media, where it is a trivial matter, to
nonuniform media, where it can generally be done only approximately. In section 3, the initial-
value problem for the Helmholtz equation is first recast in first-order form and then transformed
by a rotation into the "d'Alembert" representation where questions of mode coupling are more
naturally addressed. Section 4 discusses the effect of such state-space transforms on the equation
of motion - especially the class of "pseudo-unitary" rotations that strictly conserve the wave
energy. A pseudo-unitary rotation is used in section 5 to go to the "Bremmer" representation,
where it is evident what will be required to decouple the counter-propagating wave modes to
first order. Section 6 introduces a scheme of successive pseudo-unitary Pauli-space rotations that
reveals the conditions for decoupling the modes to any desired order, giving operational meaning
to the phrase "weakly nonuniform medium". In section 7, this weak nonuniformity is invoked, and
the resulting asymptotic approximations are obtained for the long-range wave field through order
m = 6. The phase in this expression is seen to agree with the WKB result through order m = 3,
with differences appearing at m = 4. Endpoint amplitude effects are also discussed, and it is shown
that these begin to differ from the WKB approximation at third order. Finally, section 8 presents
an illustrative example involving a specific environment. Beginning with section 3, Pauli matrices
are used to facilitate the analysis. Appendix A reviews their properties - particularly the fact
that, when used as the infinitesimal generators of state-space transforms, the Pauli matrices just
induce rotations. The relation of this work to the Born series approach is discussed in Appendix B.

2. BACKGROUND

This section sets the scene. The Helmholtz equation for continuous wave (cw) motion and its
ancillary relations for efiergy density and power flux are obtained for one-dimensional nonuniform
media, and the basic requirement for approximate mode splitting is identified.

Manuscript approved November 14, 1995.
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Consider the transverse motion of a string stretched along the x coordinate under tension r.
Suppose the string has a density p(x) and consider its displacement w(x, t) in the transverse y
direction. Within the linear-response regime, w will obey the familiar linear wave equation. If the
x dependence of p is only a gradual one relative to the wavelengths involved, the solution to be
expected on physical grounds should consist of a pair of waveforms that travel in opposite directions
along the string, changing only gradually with x and only weakly coupled to one another.

Uniform Medium

If r and p are just constants, the displacement obeys a simple form of the wave equation

P0t2w - -2W=0, (1)

where the phase speed c = V/7rh is constant. (See various elementary books, e.g. Ref. 1.) The
shorthand notation 09J = otr/oEq, dqr = dr/dq is used for derivatives throughout this work.

The kinetic energy is an inherently local quantity (because the mass is) with a density
K, = (p/2)(Otw)2 . The potential energy can also be regarded as localized, with a density
V.. = (r/2)(O9W)2. The total energy density for the wave motion is just their sum,

E. = P (OtW)2 + 'r(CgW)2 (2a)
2 2

The power flux, also known as energy current density, is

Pw = -Tr(OW)(0tW). (2b)

Since the medium is passive and lossless, wave energy is conserved,

OP. + E~tE. = (Otw)(p rw-Tr8W) = 0. (3)

Consider the distribution of energy in a wave field that is a superposition of two others: w =

a+,/. Since the total wave energy is conserved, one might naively expect that P<1+3 and Eoa+: would
simply reduce to P,, + P# and E,, + Ep, but this cannot be true in general; linear superposition does
not apply to energy quantities because they are quadratic in the wave field. Thus, the differences

Eel f E.+p - (Ea + E,3) = p(Ota)(o9tf) + T(&a)(&/3) (4a)

p ' Pe s 3 - (P. + P,#) = -T(Oxa)(8t,3) - r(x13)(t a) (4b)

do not vanish identically. However, there is one important case where this energy superposition
does hold. When d'Alembert's decomposition into left/right-going waveforms is used, i.e.,

w(X,t) = a(0) +/3(in), (5)

where x = z-ct and q = x + ct, then

Ec, = r( )2 0 Pa = +cE 0 > 0
Ep( =r(O,)2 >0 P3 = -cE 3 < O (6)

E.+p = Ea + Ep > O Pa+3 = Pa + Pp

2
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4. 

so that both Eat and Pats vanish.

It is also well known [1] that w satisfies Eq. (1) if and only if d'Alembert's decomposition
holds, i.e., that this decomposition provides the general solution for the wave equation in a uniform
medium. Any wave field in such a medium is simply a pair of counter-propagating waveforms,
the d'Alembert modes, and these partition the total energy. Energy superposition applies, and
each mode separately transports its share of the total. These modes move at constant speed,
propagate without distortion, and partition the energy exactly. Because there is no environmental
inhomogeneity to couple the modes, there can be no backscatter. If the field is initialized with only
one of these modes excited, the other one can never arise anywhere. The aim of this work is to
extend this result in a controlled, approximate way to media with weak inhomogeneities, providing
a generalized form of d'Alembert decomposition.

Nonuniform Media

The energy expressions in Eq. (2) remain valid even when r and p are not simply constants.
The Lagrangian density L(w, 9&w, Dtw) = K,,,- V,,, is still governed by the appropriate Lagrange
equation

O [D L 1 a 9L 1 L
Di DD~aw)]JDx + IDz LaazW)] - =0, (7)

i.e.,

at (patw) + ax (-ra-w) = 0. (8)

With p = p(x) and even r = r(t), this would reduce to Eq. (1) again. A time-dependent tension,
however, would introduce a source term on the right-hand side of Eq. (3), so we will confine ourselves
to cases with constant r. In these static nonuniform environments, wave energy is still conserved
- Eq. (3) remains valid - but d'Alembert's decomposition no longer holds in the original form.
It must be generalized.

Complex Representation

This generalization will be easier to produce using a complex representation. Physically, the
wave field is certainly a real-valued quantity. But since the wave equation is linear and has real
coefficients, there is no harm in adding on some imaginary part to extend the physical field wre to
complex values: w = Wre + iwim. Naturally, both wre and wim must satisfy Eq. (1), and the same
is true of w and w*. Also, the aDw, atw factors in the energy expressions now refer to ADwre, atwre
so that

El= [2(atW + atw*)2 + 2(D.w + aw*)2] /4, (9a)

Pl = -r(D.,w + aw*)(Otw + itw*)/4. (9b)

As a result,

O.P. + atE. = (tgw + atw*) [(Patw - rDzw) + (pD2w* -arD2W*)] /4 = 0, (10)

as expected.
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For the superposition field w = a + /3,

E.,# = [p(Dta + iata*)(D9tO + at:*) + r(,9.a + ,a*)(9zp + O.i5*)] /4, (11a)
PC* US = [-,r(Da + oza*)(DtI + Ot,8*) - r(913 + asp*)(Dta + a9ta*)] /4, (lib)

but the right-hand sides fail to vanish because there is no d'Alembert decomposition to separate the
field exactly into counter-propagating modes. However, there is a workable approximate approach.

CW Fields

It might be possible to deal successfully with fields whose time dependence is quite general.
Narrowband fields, for example, could be handled using analytic-signal methods. Since this would
be too great a diversion from the present purpose, however, the scope of this work is confined to
continuous wave (cw) fields.

Since the medium itself is not time-dependent, each frequency component can be treated
separately. With only a single frequency w in its spectrum, the wave field can only be si-
nusoidal in time: Wre(xt) = F(x)cos(wt - v(x)). If the imaginary part is chosen to be
Wimm(X, t) = -F(x) sin(wt - o(x)), then the complex representation of the wave field is

w(x,t) = u(x)e , (12)

where u(x) = F(x)eiW(x). Thus the wave equation for Wre = (w + w*)/2 reduces to

e-it(uII + k2u) + e+iwt(u*'t + k2u*) = 0 (13)

where the primes denote z-derivatives and k(x) = w/c(x), so both u and u* must satisfy the
one-dimensional Helmholtz equation

ulf + k2u = 0. (14)

The field's power flux is then

P = P+ + P ; + P; (15)

where

P = -e+i t(U*iu*)iwr/4 (16a)

P; = +e-i2-t(u'u)iwr/4 (16b)
PO = (uu"" - u*u)iwr/4, (16c)

and its energy density is

E. = E.+ + EwO + E; (17)

where

Ew = e+i2wt(U*12 - k2 U*2 )r/8 (18a)

E- = e'i2wt(u'2 - k2u2)r/8 (18b)
E, = (k2 u*u + u*Iu')r/4. (18c)

4



Systematic Splitting of Wavefields 5

Here we apply time averaging (denoted by a bar). This effectively kills off the time-dependent '+'
and '-' terms, leaving only the constant '0' terms. Thus

FW = W(u, u*) iwr/4 (19a)
= (k2u*U + u*Iu')r/4 (19b)

where W is a Wronskian. 1 It is clear from Eq. (19) that, although E2 can depend on x, P. cannot.
That is a statement of conservation of wave energy for the cw case.

Each component of a superposition field w = a +,l/ can be represented in complex form,
a(x, t) = a(x) exp(-iwt) and /3(x, t) = b(x) exp(-iwt). Then,

P3 = P+ +P + Poo+ P-, (20)

where

P+ e+i2wt (a*Ib* + a*b*') iwr/4 (21a)

P-= + 2-t (a'b + ab') iwr/4 (21b)

P° 0= [(a*'b + ab*I) - (alb* + a*b')] iwr/4 , (21c)

and thus

P.,# = [W(b, a*) + W(a, b*)] iwr/4 . (22)

This clearly shows what would be needed to partition the power between two modes a and /. Since
a and a* must be solutions to Eq. (14), Po, cannot depend on x. The same is true of b and b*, so P13
cannot depend on x either. Finally, in order for Pa,# to vanish identically, there must be a linear
dependence between a and b* (and thus between a* and b):

a o b* . (23)

Similarly,

Ea3 = E,,+ + E° ,# + Ec , (24)

where

E+,# = e (a*'b*' - k2a*b*) r/4 (25a)

Eo3 = e2wi (atbi - k2ab) r/4 (25b)

E°o,,a= [(alb*l + a*'b') + k2(a*b + ab*)] r/4 . (25c)

Again, under time averaging, the '+' and '-' terms vanish, leaving only

E., = W {a'b*' + k2ab*} r/2 . (26)

'Recall that W(u, v) = uv'- vu' is independent of x when u and v are solutions to Eq. (14), and vanishes whenever
these solutions are linearly dependent, i.e., when v oc u.
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From Eq. (23) it is clear that b* = Ca where ( is some complex x-independent quantity. Thus,

Efo!, = R [((a,2 + k2a2)] /2 . (27)

At the same time,

t= [a'(a`" + k2a*) + a*'(an + k2a)] r/4 (28a)

= [b'(b*t + k2b*) + b*'(bII + k2b)] r/4 . (28b)

This is where difficulties appear in this attempt to separate the field exactly into counter-propagating
modes that simultaneously obey the Helmholtz equation and partition the energy. Because a, b,
a*, and b* are all solutions to the Helmholtz equation, both E. and Eib vanish identically, leaving

E<> and Ep independent of x. This cannot be right; Ew itself did not have to be independent of x.
Furthermore, EGp can vanish only when a' = ±ika. That implies a functional form for a,

X

a(x) = a(xo) exp i j dx k(X)] (29)

Unfortunately, it also implies that

a"- k2 a = +ik'a. (30)

Since the right-hand side must vanish, it is essential that k' = 0. Clearly, the exact mode separation
of the field can be done only in a uniform medium, where it is nothing more than the familiar
d'Alembert representation. It cannot be done in nonuniform media - at least not in an exact way.
Equation (30), however, suggests that mode separation might be achieved in some approximate
sense based on the condition

Ik'I/k 2 < 1 (31)

The remainder of this report is directed toward realizing that possibility.

3. INITIAL REFORMULATION

This section transmutes the whole wave motion problem into a form where the effects of envi-
ronmental inhomogeneity on mode splitting are clearer and easier to begin dealing with. Initially,
the Helmholtz equation and its power flux and energy density relations are recast in first-order form
involving Pauli matrices. Then the Helmholtz equation's Picard series solution is presented and
the reason for its generally slow convergence is underscored. Finally, the problem is transformed to
the "d'Alembert" representation - an optimal starting point for subsequent perturbation analysis.

The one-dimensional Helmholtz equation has the form

d2u + k2 U = 0

where the wavenumber k = w/c may be x-dependent. The complex field is w(x, t) = u(x) exp(-iwt)
and the relevant energy quantities are

Pu,, = (-iwr/4) (u*dxu - udxu*)

Ew = (r/4) [k2u*u + (dxu*)(dxu)]

6
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First-Order Form

It is convenient to adopt some constant density value po as a standard and then use the
corresponding phase speed co = V,/77ip to define a reference wavenumber ko = w/co. The spatial
coordinate will be rescaled to kox (so that distances are measured out in reference wavelengths),
but this nondimensional coordinate will continue to be written as x. Thus the Helmholtz equation
becomes

d2u + n2U =0 (32a)

where n = co/c = k/ko = Vrp/lp-o is the refractive index and, with constants lumped into 7 =

w2po/4, the energy terms are

Pw, = -icot (u*dzu - udxu*) (32b)

E. y z[n2u*u + (dzu*)(du)] . (32c)

Since Eq. (32a) is linear, the familiar trick of swapping order for dimensionality [3] can be used
to convert it from a second-order one-dimensional form to a first-order two-dimensional one. To
facilitate dealing with the complex 2-by-2 matrices that the latter form entails, we invoke the Pauli
spin matrices whose properties are reviewed in Appendix A.

Initial Representation

The simplest way to produce a first-order form i's to let the dependent variables be u and
i = d.,u (the displacement of the string and the slope of its tangent) so that the state of the system
is specified by the vector

Then the Helmholtz equation takes the form

dzu= G u (33)

where

G [ 2 ] ( 2)) 2 + (2) (34a)

is the generator of the system's evolution along the x coordinate.

This is equivalent to the Schr6dinger equation, idxu = H u, for a two-state quantum system
with a Hamiltonian H = iG where x plays the role of time (in a system of units where h = 1).
The Hamiltonian's eigenvalues, +n, correspond to time-dependent energy levels. The power flux
and energy density are "matrix elements" (in the quantum mechanical sense)

P(M) = co 7 ut P U
E(u) =-yutEu
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of a pair of Hermitian operators,

p [ -l ] r (34b)

E [2 0 + ] ( 2 ) ( 2) O) (34c)

The only peculiar aspect of this as a quantum mechanics problem is that, except for the degenerate
n = 1 case, H is non-Hermitian. The work below is generally done in terms of G. with H appearing
only when analogies to quantum mechanics are pursued.

In a certain sense, the solution is already in hand. When Eq. (33) is combined with any
initial condition u(xo) (forming an "initial-value" or "one-point boundary value" problem), the
state vector at any x is simply

u(x) = K(x,xo)u(xo)

in terms of the propagator. matrix K(x, xo). This matrix operator is defined by a Dyson-ordered
integral [2] (also known as a "product integral" [4]) and is variously called a "matricant" [5] or
"matrizant" [6]. It is the solution to the same ordinary differential equation with unit-matrix
initial values:

d.K(x, xo) = G(x) K(x, xo) ... K(xo, xo) = 1, (35)

or, equivalently, the integral equation

K(x, xo) = I +j| d G (() K(, xo)* (36)

Under fairly general conditions, 2 this has a unique solution in the form of an infinite series

00

K(x,xo) = ZK,(x,Xo) (37a)
j=0

that begins with

Ko(x, o) = 1 (37b)

and continues by Picard iteration

Kj+1(X, o) = j dG(C)Kj(,z o) , (37c)

converging uniformly and absolutely [5,6]. This Picard series3 is satisfying but less useful than it
may appear, especially in nonuniform media, because the convergence is typically quite slow.

2Sufficient conditions are that, in an interval containing x and Zxo, n2(x) be single-valued, bounded, and integrable
and that dzn 2 (x) be piecewise continuous and bounded [6].

3 It is also associated with the names Liouville and Neumann.

8



Systematic Splitting of Wavefields 9

To see why that is, let

e (n 2 1)/2 (38)

measure the deviation of the refractive index from its reference value, 1, so that the three operators
of Eq. (34) are

G = -eol + i(1 + e)a2 (39a)
P = O'2 (39b)
_E = (i + e)1 + e 3 . (39c)

The generator G has a constant term as well as e-dependent ones. Thus K., a multiple integral of
a product of the form

G(Xj) G(Xj-1) ... G(X2) G(zI) ,

contains contributions of multiple orders in e(x). The integrand for i3, for example, is

G(x3 ) ~(x2) ~(xi) [ (1 + 2e(x3))(1 + 2e(xl)) 0 ] (4)

which has contributions of orders 0, 1, and 2 in c. The convergence of Eq. (37) is slow because
Kj generally contains terms in c0, eC, , ..I EjI. Although it is mathematically allowable to
expand all the terms and re-order the series so that the jth term contains only ej, no method is
known for doing that with any generality. There is, however, a way to finesse a solution by applying
Pauli-space rotations.

d'Alembert Representation

Before pursuing that option, it will be convenient to change the representation to one in which
the generator G is diagonal wherever the inhomogeneity e vanishes. This is done by applying the
unitary operator

U =[. ii (41)

to transform state vectors and operators according to u = Uu and V = UVU 1I, respectively. The
form of the problem remains the same,

du = Gu (42a)
P(u) = coyut Pu (42b)
E(u) = 7utEu (42c)

in terms of the transformed state vector

[ u -+iU]

and transformed operators G, P, E in this new "d'Alembert" representation.
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Equation (41) can be written as U = exp {-iS} in terms of an operator S = Sol + S-,
that has a scalar part So = -7r/4 and a Pauli-vector part S = Sh with magnitude S = 7r/3 and
direction S = (i - 62 + 63)/v. Thus, U transforms operators into the d'Alembert representation
by simply rotating their Pauli-vector parts about the (1, -1, 1) direction through the angle -2S =
-27r/3. That rotation amounts to a cyclic permutation of (S2 , -es3, -), i.e., to the replacement
(e1, 62, e3) (-62, -e6, e), which means that the effect of U can be found by inspection. In
particular, the three operators of Eq. (39) become

G = -i(1 + e)0r3 + eu2 (43a)
P = -0r3 (43b)
E = (1 + e)1 + eo- * (43c)

Their scalar and Pauli-vector parts are

Go = G=-i(1+e)5 3 +e52
Po=0 P=-e3
Eo=1+e =ae ,

and, with the positive sign chosen for square roots, the magnitudes and directions of the vector
parts G = Gg, P = Pp, and E = Ee are

G=in 9=-[(1+C)S3 +ief2]/n
P=1 p-e3
E=e e=ei 

On first inspection, the initial-value problem seems no better behaved than before, since the
generator in Eq. (43a) will also produce e-ordering problems in the Picard series for its propagator.
The advantage of this representation is that, within any x-interval where k = ko, the generator
reduces to a diagonal form: G -* -ia 3 . Since the forthcoming solution will emerge from a
perturbation process for lej « 1, it is naturally simpler to begin in the d'Alembert representation
where the unperturbed e = 0 problem is diagonal.

Mode Separation

At this point, it is worth noting that wherever k = ko, the d'Alembert generator's eigenvectors
are 1K) with corresponding eigenvalues -si, where s = ±. This means that the state vector separates
exactly into a sum of counter-propagating modes

u(x) = a(x) + b(x)

where

a(x) = u_.(xo) exp [+i(x - xo)] |-) (44a)

b(x) = u+(xo) exp [-i(x - xo)] 1+) . (44b)

It is easy to confirm that these modes partition both the power flux and the energy density,

P(a + b) = P(a) + P(b)
E(a + b) = E(a) + E(b),

10



Systematic Splitting of Wavefields 11

that their individual energies are separately conserved,

fP(a(x)) = P(a(xo)) = +coy Xuixo)12

P(b(x)) = P(b(xo)) = -colu+(XO)l2

and that their energy densities are spatially uniform,

R(a(x)) = 2(a(xo)) = 7Iu_(xo)l2
E(b(x)) = 2(b(xo)) = 'vlu+(xo)12 -

This is d'Alembert's decomposition again - an exact result for uniform media, but only approxi-
mate otherwise.

4. STATE-SPACE TRANSFORMS

Later on, the convergence of Picard-series solutions will be improved by the application of well
chosen transforms. This section previews the properties of such transforms - particularly those of
the wave-energy conserving "pseudo-unitary" class.

The challenge is to find some expression for the solution to the d'Alembert initial-value problem,

d.K(x,xo) = G(x)K(x,xo) ... K(xo,xo) = 1, (45)

that is better behaved than Eq. (37). The general idea is to do this by transforming to still other
representations where the generator assumes more tractable forms. A perfectly diagonal form would
seem ideal, but it is not generally attainable. Instead, we apply a series of transforms that improve
the diagonality incrementally with each step.

The first step is along the general lines of the work by Keller and Keller [6]. The essence of it
is to find a change of representation that converts the generator G into the form

G = A+R, (46)

where

• A is diagonal and proportional to a suitably defined quantity f, : n, and
* R is off-diagonal and proportional to a suitably defined small quantity v.

Once that is achieved, one can transform to the A-interaction representation, where the jth term
in the propagator's Picard series will contain only Ai. For small 1e1, this approach leads to a
perturbative formulation for the field in terms of multiply reflected left- and right-going modes.
This series constitutes an algorithm for computing the field at limited ranges, and its leading
term provides an asymptotic expression for the field at long range. The transform that splits the
generator according to Eq. (46) is a simple rotation in Pauli space.

In fact, the second, third and all subsequent steps are achieved though a regular succession of
such rotations. Given certain assumptions about the range dependence of the medium, each one
improves both the perturbative formulation and the long-range asymptotic approximation. The
operators that produce these rotations, however, differ in two respects from the transform U in
Eq. (41), namely, they are
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* x-dependent, and
* "pseudo-unitary" (a generalization of the unitary class).

Ultimately this means that all the v and e quantities are functions of x, and that all the rotation
angles are imaginary. These points are explored in the remainder of this section, and then the
rotations themselves are obtained explicitly in the following sections.

Pseudo-Unitarity

This section makes some analogies to quantum mechanics, and thus uses the Hamiltonian
H = iG. For any operator V, it is clear from Eq. (42a) that

dz (utvu) = ut [i(HtV - VH) + dxV] u (47)

represents the total x-derivative of the matrix element of V with the state vector u - the rate
of change due to both the dynamic evolution of u and any explicit X dependence in V. Since the
Hamiltonian is "pseudo-Hermitian", i.e.

HtP = PH ... pseudo-Hermitian, (48)

and P itself is independent of x, any matrix element of P must also be :¢-independent. That
fact itself is nothing new (it was implicit in Eq. (19a)); the novel element is its relation to the
pseudo-Hermiticity of H. Note that there is no comparable result for E. Since

E=-PH, (49)

that operator, although pseudo-Hermitian, is x-dependent wherever H is. As a result, P is a
constant of the motion, but E is not.

The dynamic evolution of the state vector can be summarized in terms of the propagator as
u(E) = K( ,C)u((). From the identity

ut(O)PU(O) = ut(O) [Kt(t, (PK(,u(c]u(()

together with the initial value K((, ) = 1, it follows that, since P is an invariant of the motion,
the propagator is "pseudo-unitary", i.e.

P = Kt((, ()PK(t, () ... pseudo-unitary (50)

for any (, (. This property is responsible for the invariance of P during the evolution. By definition,
P will be invariant under any pseudo-unitary transform M, whether, like K, it is related to the
dynamic evolution of the system or not. 4

Using the fact that P is Hermitian, the pseudo-Hermiticity of H and the pseudo-unitarity of a
transform M can be rewritten in various equivalent ways, such as

(PH)t = PH
(PM)t = PM-'

4 Strictly speaking, the way things have been defined, it is M-, not M itself, that is directly analogous to K.
However, pseudo-unitarity for one implies pseudo-unitarity for the other.

12
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These results have better-known analogs in quantum mechanics, where the operator p2 = 1 is a 
constant of the motion rather than P itself. Although the vibrating string problem and the two-
state quantum problem are very similar in a mathematical sense, it would be a mistake to press the
analogy too far, since the two state vectors have entirely different physical meanings - one being
a classical displacement and the other a probability amplitude.

In a quantum mechanical setting, the physical observables are represented by Hermitian oper-
ators. Any such operator V has real Pauli coefficients Vo, * * *, V3. In the present context, V may
be pseudo-Hermitian, in which case Vo and V3 are real while V1 and V2 are imaginary.

State-Space Transforms

A linear transform Mfi = u will preserve the appearance of the problem

d.,ii = Gu (51a)

P(fi) = cOYfitPfi (51b)
E(ui) = yi tEufi (51c)

in terms of the transformed operators

G=A+R (52a)
P = Mt PM (52b)
E = MtEM (52c)

The first part of the generator,

A = M-1GM (53a)

is a similarity transform; the second part,

R = -M-ldM (53b)

involves the explicit x dependence of M (which is assumed to be nonsingular and differentiable so
that k is well-defined).

To conserve energy, M will be restricted to pseudo-unitary transforms. When that is done, Eq.
(49) is enough to determine the forms of the transformed energy operators:

E=-iPA (54)

and P = P. In quantum mechanical terminology, such an M is an innocuous "change of picture,"
and all that is needed to characterize its effect is usable expressions for A and R. To obtain them,
it will be sufficiently general to use

M = exp(-iS) (55)

with a pseudo-Hermitian S to guarantee that M is pseudo-unitary. Thus,

A = exp(+iS)G exp(-iS) (56a)
R = - exp(+iS)d, exp(-iS) . (56b)
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Since Eq. (56a) is a similarity transform, A = Aol + A-0 is the result of a simple Pauli-space
rotation of G, as discussed in Appendix A. Specifically,

Ao = Go = 0 (57a)

and A = AA where

A=G=in, (57b)

with A obtained by rotating g about the i direction through the angle q =-2S. But, since S is
pseudo-Hermitian rather than Hermitian, this angle need not be real. If h points mainly in the e3
direction (i.e., if 1I-e312 > Ip6112 + Is-e212), then q is a real angle - otherwise it is imaginary.

The second term of the transformed generator has the form

R = - {e+iSO [cos(S) + isin(S) .4]} d, {e-So [cos(S)-isin(S)b-&f]} . (58)

With the help of 9-s = 0 and Eq. (A6), this reduces to

ft = i~o + i [+ cos(S) sin(S)s -sin2(S)( xS)] - . (59)

(As always, the dot indicates differentiation by the scaled coordinate x.) The scalar part of S
affects only the scalar term Ro = iso. Since So has no impact on the vector part of R and had
none at all on A, it is entirely irrelevant to the problem of diagonalizing A + R. For convenience,
let So = 0 so that only the vector part

R=2[+s+sin~s+(1-cosOs~xs] (0R= 2~ (60)

remains. This involves rates of change for both the length and direction of S (i.e., both + and s-),
and that appears to be about all that can be said about it in general. However, if the direction is
fixed, the expression simplifies to

R =-2+s . (61)
2

One case is useful enough to deserve special attention, namely an S that is parallel to one of the
Pauli axes: .4j = ±1 for j = 1, 2, or 3. To maintain pseudo-unitarity, + must be real when j = 3
and imaginary when j = 1, 2.

5. BREMMER REPRESENTATION

This section implements a pseudo-unitary transform to the "Bremmer" representation, where
the generator of the wave evolution is diagonal to order e. This fact improves the convergence
of the Picard series for the solution and provides the impetus for additional transforms that are
developed in the next section to improve it still further.

14
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Change of Notation

The previous section dealt with state-space transforms in a fairly general sense: u = Mu, where
u was a d'Alembert state vector and fi was the state vector in some transformed representation.
Here we devise a particular form for that. Since it will ultimately be the first in a series, we switch
to an indexed notation at this point. Quantities in the d'Alembert representation together with
the transform that produces them are indicated by a (0) superscript, e.g., G, A, R, u and M,
S are written hereafter as G(°), A(M), R(), u() and MO), S(0). The transformed or "Bremmer"
representation is labeled with a (l) superscript, so d, A, R, fi are denoted G(l), A('), RM, u(1).
The transform, then, is written u(°) = M(-)u(').

Rotation

Making A(l) diagonal is tantamount to aligning AWl) with 6. Since AWl) results from a rotation
of G(0) = ee2-i(+e)e 3 , the diagonalization can be accomplished by using ej as the axis and rotating
through the angle tan- 1 (ie/(l + e)), i.e., by using a vector §(O) with components S(°) = S(0) = 0
and

S(0) = -iiP(°)/2 , (62)

where

tanhP(0) = . (63)

Thus

2) l, (64)

and the transform M(°) - exp {-iS(O)} is

M(°) cosh (4b(0)/2) 1 - sinh (O(O)/2) ol

1n 1 (65)

The transformed operators are

AO1) = -iv(1)0a3 (66a)
RMl) = 1(1)al (66b)

P(1)=-03 (66c)
E) = v( 1)1, (66d)

where

v(1) = n (67)

2n

Note that Ie~L)l << v() is precisely the condition anticipated by Eq. (31) at the end of section 2.
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Using a pseudo-unitary transform automatically produces an off-diagonal RO). The converse
is also true. Keller and Keller [6] began by requiring RO1 ) to be off-diagonal and arrived at a
pseudo-unitary transformation (the same one, to within an arbitrary constant). Pseudo-unitarity
distinguishes an essentially unique "splitting" among all the possible transforms [7]. It is appro-
priate to acknowledge here that, despite a somewhat altered appearance in the present context,
the transform developed in this section is a type of Foldy-Wouthuysen transform [8]. This sort of
transform was introduced in the early 1950s [9] to produce asymptotic mode decoupling in a very
different physical context - relativistic quantum mechanics.

Mode Separation

This is a convenient point to pause and consider the case of an environmental region where the
wavenumber k is a constant - possibly different from the reference value ko. Since e is constant
in such a region, G(O) is independent of x and can thus be diagonalized by an x-independent S(O).
This means that R(') vanishes so that Eq. (64) diagonalizes the whole generator GO1) = -iV(,)O 3,
and that v(l) = n is independent of x. As in section 3, the generator's eigenvectors are Is); here,
however the corresponding eigenvalues are -siv( 1). Again the state vector separates exactly into a
sum of counter-propagating modes

u(1)(-) = a(')(x) + bW1)(x) , (69)

where

a(l)(x) = u(a)(xo) exp [+iv(l) x (x - Xo)] I-) (70a)

bW1)(x) = u(x)(o) exp [-iv(l) x (x - x0)] 1+) * (70b)

It is easy to confirm that these modes also partition both the power flux and the energy density,

P(a(l) + b(W)) = P(a(l)) + P(b('))
2(a(l) + b(')) = 2(a(l)) + R(W))

that their individual energies are separately conserved,

p(a0)(-)) = P(a( 1)(xo)) = +cotU(1)(XO) 12

P(b(W)(x)) = P(b(l)(xo)) = -co7!U)(xo)I

and their energy densities are spatially uniform,

2(a0l)(x)) = 2(a(0)(xo)) = yv(l)lu(l)(XO)12

R(W~l)(-)) = 2(b(0)(xo)) = yv(l)IU(+)(x0)l2

This is the d'Alembert decomposition of section 3 again, this time for if n ¢ 1.

16
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Bremmer Series rr

In the Bremmer representation, the initial-value problem is

du(') (-) = [A(') (x) + R() (x)] u(1) (x) ... u(')(xo) = [M(O) (Xo)] u() (XO) . (71)

Since AM (x), the "large" part of the generator, is diagonal, it can be used to construct an "inter-
action" transform [10],

L(x,xo) = exp ( dA()()) exp (io()(X, exp(+i )(,o)) (72)

in which

S0() (X so) = | dv(l)() .(73)

This L converts the state vector to the interaction representation via

uM(x() = L(x,xo)q(zT) , (74)

and is itself the propagator for an artificial problem,

dTL(x,xo) = A(1)(x)L(x,zo) ... L(xo,xo) = 1 (75)

in which the perturbation eLoM is "turned off" [2] so that 1+) and I-) are decoupled.

In this interaction representation, the initial-value problem for state vectors is

dzq(x) = V(x, xo)q(x) ... q(zo) = u(1)(xo) (76)

in terms of the generator,5

V(x, xo) = L (x, xo)R(M)(x)L(x, xo) . (77)

The propagator, Z($, xO), evolves the state vector from its initial value in the usual way,

q(x) = Z(Z, xo)q(xo) , (78)

and thus satisfies the initial-value differential problem,

dxZ(x, xo) = V(x, xo)Z(x, zo) ... Z(xo, xo)-1 . (79)

As before, the equivalent integral equation is

Z(X, Xo) = 1+1| dV(g,xo)Z(g,xo) , (80)

and its Picard series solution (often called a Born series in this context [10]) is

'In quantum-mechanical terms, the interaction Hamiltonian would be iV.
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Co

Z(, Xo) =E Zj(X xo), (81a)
j=o

where

Zo(x,Xo) = 1 (81b)

and

Zj+l (x, xo) = j d V(, xo) Zj (E, xo) * (81c)

Equations (79)-(81) are identical in form to Eqs. (35)-(37). Here, however, V oC LOM:

V(t,xo) = e( )(g) e[ exp [+2iy(')(gxzo)] ] . (82a)
exp [-2i9o(') v, zo)] °

Thus Zj involves only the jth power of QLo, so the convergence problem that was caused by the
presence of terms containing both co and ed in G (the generator in Eq. (39a)) is avoided. For

ILOMI < 1, the series should converge rapidly.

Furthermore, V is off-diagonal. Consequently the Zj terms are alternately diagonal and off-
diagonal. Z2, for instance, is just the double integral of

V(CXo)V((,xo) =e(- )e((() exp [+2iy )(,(] 0 ] (82b)

As a result, when Eq. (81a) is used with Eq. (78) with the state vector expanded in the unperturbed
eigenstates, q(x) = E,=± q,(x)1s), one finds

qs(x) = qs(xo) + dx 1 e(')(xi) exp [+2§iWG(1)(Xl, xo)] q-x(xo)

+ dx2 2 dx1 L(l)(X2)L(')(x1) exp [+2'ict(')(x2, x1)] qdxo) + (83)
xO zTo 2,W()2,X]qx

for , = +. This is essentially the Bremmer series [11] - an expression whose jth term represents a
wave that been reflected j times on its way from xo to x, with LOM (x) acting as a distributed reflec-
tion coefficient for the medium. Clearly, if q, vanishes at xo, the odd-numbered terms all vanish.
Then the state vector reduces to q (x)lK), a mode that propagates purely in one direction, but has
an amplitude q, (x) composed of contributions that have undergone an even number (0,2,4,--.)
of distributed reflections. The j > 2 terms were left implicit in Eq. (83). More of them could
have been included without much trouble, but there would be little reason for it in this context
because our interest is in long-range propagation. For computational purposes, the infinite series
must be truncated at some order, and this implies a maximum x beyond which the truncated series
no longer faithfully represents qx(r). For long-range use, a large-x asymptotic expansion is needed
instead. The first term in the asymptotic expansion of the Bremmer series for small p(l) is just the
leading term in the series [6],

18
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U.;)(x) exp [-iso(1)(X, Xo)] q,(o) * (84) x

This expression is an asymptotic approximation for one-way propagation that excludes backscatter
in all forms (all the j > 0 terms).

Note that this would all have been equally simple had R(0) involved u2 instead of oa, i.e., if
0O) had turned out to be orthogonal to e2 rather than to 61. In that case, a diagonal A(M) could
have been produced by simply rotating around that axis instead.

6. HIGHER-ORDER REPRESENTATIONS

Building on the results of the preceding section, this section introduces a hierarchy of
trans-Bremmer rotations. In these the wave-evolution generator is diagonal, and thus the for-
ward/backward modes are decoupled, to progressively higher orders.

Chain of Rotations

Pseudo-unitary rotations similar to the one in the preceding section will be used to generate
further representations, which will be denoted by superscripts (i), with m > 1. Let 6j, 6e be the
first two Pauli unit vectors 1, e2 in either order and suppose that G(m) is orthogonal to 6j (i.e.,

G(m) = 0). Then choosing h(m) to lie along the j axis (19(m)-6jI = 1) allows the first term on the
right-hand side of

(m+l) = (cosh41(m)d(m) +zisinh 4G(m)G(-)X l(m) + 1h(m)da,41(-) (85)/2
(see Eq. (All)) to be aligned with 63 by the proper choice of i)(m). This is still only a partial

diagonalization because the second term remains orthogonal to 6; however, if IGjm+l)I/IG iM+l)I <

IGj 111G3 1, it is a step in the right direction. Furthermore, since G(n+') = 0, the process can
easily be repeated, this time by a rotation about the e axis. In fact, it can be iterated indefinitely
in an alternating series of rotations about the first and second Pauli-space axes.

The process begins with the Pauli vector part of the d'Alembert generator rewritten as

0(O) =-iV(°)63 + e(°) e3xs(°) (86a)

in terms of

h(o) = -j (86b)

v(-) = 1 + e (86c)

e(O) - e . (86d)

The axis 9(O) and the rotation angle

41(0) = tanh- 1 (e(o)I1(o)) (86e)

determine the transform M(°) that produces G-M.
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The jth iterate has the same form,

G((j) =-iV(^ +4 Q(j) e3 xs(j), (87a)

with

s~)= s(11) x e3 (87b)
(j)= V(-1 )/coshP(- 11 ) (87c)

e(i)= Id,1(3-l) (87d)

The axis b(3) and rotation angle

+(j)= tanh- 1 (L(J)/o(')) (87e)

determine the transform MUj) that produces G(j+l).

This procedure produces a chain of generators

G - G(-) , G(2) - G (3) - G(m) (88)

linked by a series of pseudo-unitary transforms, u(j) = M(j)u(j+l), where

Mj = cosh (41 (i)/2) 1 - sinh (4(j)/2) b(D-a . (89)

Only one assumption is implicit in the construction of link m at the end: that d'e exists for the
environment in question. As m is increased, lengthening the chain, p(m) always remains identical
to the original P(M), and the system evolves by the transformed equation

dxu(m) = G(m)u(m) . (90)

As m is increased by 1, h(m) simply rotates by -ir/2 about 63. (It is periodic: h(i+4) = i(m).) In
addition, provided the ratio Iv(m)/e(m) I diminishes with increasing m, the generator becomes more
and more diagonal. Together these mean that successive G(m) vectors spiral in toward alignment
with -6 as sketched in Fig. (1).

As in the m = 1 case of section 5, the transformed generator for m > 1 is split into G(m) -

A(m) + R(m), where

A(m) =-iv( )0'3 (91a)
R(m) = LO(-)( 3X (m)). . (91b)

And, as always,

p(m) = -0'3 . (91c)

Thanks to the nature of the transform that produced them, all three operators have conveniently
simple forms: p(m) is invariant, A(m) oc v(m) is diagonal, and R(m) oc e(') involves only one of the
two off-diagonal Pauli operators al, U2. It would be too much to hope that the simplicity of Eq.
(66d) would persist in a form like E(m) = v(m)1, and indeed it does not. But there is no physical
reason why it should.

20
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Fig. l - Pauli-space illustration of G~)for m =0 ... 4. Since G(') is imaginary, the figure is only qualitative. The
mth gray arrow has components (G(-), G(-), G(-)).
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Mode Separation

Suppose, for the moment, that the environment has an interval I where 0(m) (x) - 0. Then the
generator is diagonal in that interval

G(m)(X) = -iv(m)(X)U3 ... x E I

and so is the propagator

K(m) (x, xo) = exp {-iU3 1 d(v(-)(C)} ... **xo EI,

so that the state vector separates exactly into a sum of counter-propagating modes

u~m)(x) = a(m)(x) + b(m)(x) , (92)

where

a(m)(X) = u(T)(xo) exp [+i : d(v(m)(C)] I-) (93a)

b(m)(x) = u(')(xo) exp [-i | d(v(-)(C)] {+) (93b)
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It is easy to confirm that the power flux is partitioned between these modes

P(a(m) + b(m)) - p(a(m)) + P(b(m))

and separately conserved

P(a(m)(x)) = P(a(m)(xo)) = +coIlu_7) (2o)12

P(b(m)(x)) = P(b(m)(xo)) = -coO7lu)(xO)2.

This result is exact but, of course, it is not general because the condition e(m)(x) = 0 limits

its validity to a particular type of environment. The m = 1 case was encountered in section
5, where e( 1)(x) = 0 was seen to imply a uniform medium having n(x) = n(xo), with standard

d'Alembert mode separation prevailing everywhere. The limitation is even greater for m > 1.
For example, e(2)(X) = 0 presupposes a medium where n 1 (x) - n(xo)-l = (x - xo)g for some

constant g. This, in turn, means that 0 < n(x) < oo is possible only on the semi-infinite interval

I = {zx(x - xo)gn(xo) > 0}. This is just another reminder that, except for tailor-made special
cases, mode separation is an approximate result, not an exact one.

Higher-Order Bremmer Series

In parallel to section 5, the initial-value problem for u(m) can be solved via the A(m) interaction

representation. The eigenvectors of A(m) are still 1j), and the counterpart of Eq. (83) for the

components of the interaction-representation state vector is again a Bremmer series,

q,(x) = q((xo) + | x Lo e(m)(xi) exp [+2siW2i(m)(xi, x0)] q-,(xo)

+| dz 2 dx1 o(m)(x2)e(m)(xl)exp [+2,i0(m)(x 2 ,x1)] q.(.o) +.** (94)

The first term in the asymptotic expansion of this mth-order Bremmer serie' for small e(m) is again

just the leading term in the series,

u(M)(x) -exp [-siwIm )(x, 0)] qc(xo) .* * = + * (95)

This is a higher-order asymptotic approximation for one-way propagation.

7. EXPANSION IN c DERIVATIVES

This section introduces a smallness criterion for spatial derivatives of e that renders the mth-
order Bremmer representation's generator diagonal to order cm, thus eliminating backscatter to
that order. Further, it obtains the resulting x-dependent amplitude and phase of the field and
interprets each of these as having a contribution that accumulates along the propagation path and
another contribution from the path's endpoints.

If the environmental variations are adiabatic in the sense that x z e-1, then one should expect

that
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dme � cm+1
X (96)
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Since tanh'0(0) = e/(1 + e) and tanh4,0) - d e/2n, one would have

tanho(°) e
tanht,O(1) ,N c2

and, indeed, for any order m,

tanh +(m) , m+ (97)

The symbolic mathematics system Maple® has been used to confirm through m = 5 that, assuming
Eq. (96),

tanh +(m) = 2-m dme + O(em+2)

which provides a direct verification of Eq. (97). This means that, as m increases, e(m) grows steadily
smaller in relation to l}(m) in the sense that o(m)/v(m) em+l. Thus, under these assumptions,
G(m) is diagonal to order em.

The notation ((m) has been used generally for any quantity C in the mth representation. When
the e series for ((m) is truncated at the mth order, the result will be denoted (I']. For the generator
G(m), this is

Glml = -ivlm]0'3 (98)

where vIm] consists of all the terms of v(m) up through order cm, i.e., v(m) = .[ml + Q(em+l).

Since Eq. (98) is diagonal, the evolution that it generates can be found by a trivial integration,
provided that the function v[m] (x) is known. As m grows larger, the calculation of vIm] becomes an
increasingly intricate task, but one that reduces to a fixed pattern of routine operations - an ideal
job for symbolic computation software. Maple has been used to generate the result out to m = 6.
(Farther, actually, but this has to be stopped somewhere.) The result can be expressed as

v= 1+e e 1 2+ 1+ 3
2 2

-( e4+ 12) + ( e5+ +ee2) - (216+ 35Y 1 z2) +0(J7)

with v[m] found by simply truncating v at the mth order. Maple has also been used to verify that
elm] = 0 = 0[m].

Cumulative Contribution

With v[l](x)z in hand, it is a trivial matter to solve the problem approximated at order m,

dxu(m) = G[m]u(m) (100)

The state vector has the separated form

u(n) = a(-) + b(m)

where the modes are
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a(m)(x) = u(m)(X0)exp (+iW[ ](X,Xo)) | ) (1l0a)

b(m)(x) =u(u) (xo) exp (i[m](z,z 0)) 1+) (lOib)

in terms of the phase function

p(X, o) = | d v(g)* (102)

(W[m] is formed in the usual way, by using v[m] as the integrand.) A few points should be noted
here:

1. The important quantity here is this phase, specifically the deviation from W1[] (x, Xo) = X - Xo
(its value in a uniform medium with n = 1).

2. The even-order contributions to vlI] -vl] are all negative. For x - xo > 0 (< 0), this means
that all the even-order contributions to plm] serve to retard (advance) the phase in a strictly
cumulative way.

3. The odd-order contributions to vIm] do not have definite signs (thanks to their odd powers of
e) so they are likely to do quite a lot of zero-crossing when Ix - xol is large enough. In that
event, their contributions to W[m] should oscillate about zero rather than accumulating.

4. Comparison of Eq. (99) to the Taylor series for the refractive index,

n=1'+e 1f2+ 1e3

-847+ 7 5 _ 21 6 + O(e7 )

shows that v begins to deviate from n at order e4. Thus the WKB phase approximation - the
consequence of invoking the estimate v z n in the phase integrand - begins to depart from
the above results at fourth order.

Endpoint Contribution

The procedure detailed above yields u(m), the state vector in the mth transformed representa-
tion. That still has to be transformed back to the d'Alembert (0-th) representation via

U(-) = W(m)U(m) (103)

where

W(m) = M(0)M('M ... M(m- 1) (104)

So W(m) needs to be calculated. Of course, since it is going to be applied to u(m), the mth order
estimated state vector that results from approximating G(m) by Gfm], a suitable approximation
for W(i) will do. But what is "suitable"? A knee-jerk option might be Wlm], the transform
truncated at the same order as the generator. On consideration, however, that appears to be
overdoing it. The phase deviation W[m] - W[O] embodies the effects of environmental nonuniformities
accumulated throughout the propagation from g = xo to ( = x. But the back-transform W(m) is
not cumulative; it depends only on environmental conditions at the final point ( = x. It might be
sufficient to approximate it by WNl for some i < m . We proceed for the moment with Wxt].
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The unitary transform in Eq. (41) needs to be applied to return to the initial representation
(where the first component of the state vector was simply the string displacement and the second
was the slope of its tangent)

a = Ua(°0 - UWl4a(0) (105a)

and

b = Ub(°) - UW10b(t) . (105b)

In view of Eqs. (93) and (101), only the matrix elements (+IUW[l 1+) and (+IUW[' j-) are needed
to obtain the displacement fields for the left- and right-going d'Alembert modes, respectively.
Another resort to Maple yields

(+IUWIT l+) = Qlt] e+i'[ (106a)

(+IUWI _) = Qlfe-iO[f] (106b)

where the phase is

4= 4e-4 + (4 2e + w + 0( 5) , (107)

and the amplitude term is

Q = 1C + 2
2 _8

-15e3 _ 1) + (195C4 _9 ee-_5 i2) + 0(e5) (108)

The endpoint phase vanishes to first order, 9111 = 0. When the endpoint x lies in a uniform region
(where n is constant, but not necessarily 1), the phase vanishes entirely, and if n = 1 the amplitude
term also reduces to unity. Comparison of Eq. (108) to the power series

n- 1/2 l1 C+ 5C2
2 _8

15 3 195 4-- C +-18C +0O(C.,) (109)

shows that the standard WKB amplitude expression Q z 1/v/ni is valid only through order C2. It
might be guessed that Q 5U 1/s/i would be an improvement on that, but the C-series

/2 1 521- i + -Ce28
15C3 + 195C4+ 1 j2+0(C5
16 ~. 1 28 1 6 C}

shows that it, too, is valid only through order C2.
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Conclusion

The final result for the string displacement field is

u(X)= Q/) ) (u('))(xO)exp{+iho[nl](X, ro) - o[t](z)]} +u(')(xo)exp{-i[fim](Zr,xo) -,el(x)]})

(110)

where m is the "cumulative" order and I < m is the "endpoint" order.

8. EXAMPLE

This section introduces a specific weakly nonuniform medium and presents a numerical example
of 4th-order, non-WKB phase accumulation.

Consider a class of environments characterized by a periodic inhomogeneity of the form

e(x) = Ag sin(agx) + Bg sin(bgx) . (111)

As an example, take the case where (A, B, a, b, g) = (1.0, 0.4, 1.0, 0.8, 0.1). Figure 2 illustrates the
first- through fourth-order contributions to Eq. (99), namely,

first-order index contribution* +
1 2second-order index contribution* -2 e
2

third-order index contribution.*. + C3
2

fourth-order index contribution -* 82
8 8

WKB non-
WKB

plotted from top to bottom in the figure. As should be expected, this c(x) exhibits spatial inter-
ference in the form of a pattern of beats in the top plot with a spacing

L z 27r/[(a-b)g] = 1007r,

and the second through fourth orders follow suit. The amplitude of the beats in the mth order is
gm = 1 0 -m, with the odd orders being about equally positive and negative, and the even orders
purely negative. In the bottom plot, the small non-WKB part of the fourth-order contribution is
shown along with the total.

Figure 3 shows the phase contributions according to Eq. (102). Each plot results from inte-
grating the corresponding plot in Fig. 2 from xo = 0 to x. Their behavior is as anticipated: the
odd orders oscillate around small 'dc' values; the even orders decrease monotonically, contribut-
ing steadily accumulating phase retardations. In the even case, the phase retardation rate drops
sharply with increasing order. In the bottom plot, the WKB and non-WKB parts of the fourth-
order contribution are shown in addition to the total. In that plot, the rate of non-WKB phase
retardation is about 15% of the WKB rate, which is itself only about 1.5% of the second-order rate.
Clearly, fourth-order effects could be prominent only at long ranges. In fact, it is only when ranges

26



.qe.Atpmntir Snlit~tina of Wavefields

0.2 I

O.-I

0o

-0.1

-0.2

0

-2 OeD-O3

-4.0e-03
-6.Oe-03

-8.Oe-03
-1 .0e-02

-1 .20-02
2nd order Index contribution

. . . . .. . . . .1000 .

2.0O-03 -..

-1.043-0: H 

i 3rd order Indeax contrib)uttc
-2-0Oe-O3 -; 

0

-2.0Oe-04

4: tih ordear Indecx contrlibutlol
- ___ ____ ____ to ta l

. ............ non-WKB-3.Oe-04 -.0

I V I I
n

.C;00 . . . . . . . . . .1 000 2000
X

Fig. 2 - Index contributions to Eq. (99) for the example described in the text. Plots contain 500 points each and are
computed at 20-digit precision.

c

27 :

rn

-, --

1-



Robert F. Gragg

3

2

1

0

2000-1

0 :. . . . . . . . . . . . . ..........I....... . I

-2-

- 2nd order phase contribution
-6 l .-.'. . . . . . . . . . .0 1000 2000

0.01
- A

0

- 3rd order phase contribution
-0.01 .o 1000

U2

2000

O X,_L_~~~~~~~~~~~~~~~~~~~~~~~~~.:......... : ...
-002
-0.04

-0.06z 
4th order phase contribution

-0.08 .
............ non-WKB

-0.10 . . . . . . . . . . . . . .0 1000 2000
X

Fig. 3 - Phase contributions to Eq. (102) for the example described in the text. Plots contain 500 points each and
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the same when computed with 10-digit precision.)
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of x z 224,000 t 714L are reached that the fourth-order non-WKB phase contribution reaches 
-ir/2. At that range, the WKB contribution to the fourth-order phase is -3ir, while the second-
order contribution is approximately -2147r = 107 * (-27r). The example serves to underscore the
following points:

* For situations that demand the relative phase of the signal at points only a few dozen wave-
lengths apart (Ax _: 10 to 100), fourth-order phase corrections are quite small. In practice, a
first-order estimate will usually be accurate enough.

* When the demand is for accurate phase values at very long ranges (e.g., in some long-range
interferometry and long time-of-flight applications), fourth-order phase estimation, including
the non-WKB contribution, may be indicated.

9. DISCUSSION

For the one-dimensional case of interest here, it has been shown that a properly chosen series
of pseudo-unitary transforms converts the equation for the dynamic evolution of the wave field
- the Helmholtz equation in this case - to a far more tractable (in fact, diagonal) approximate
form. This can be done to any desired order m in the small environmental inhomogeneity e(x).
The resulting equation can be integrated immediately to provide mth-order expressions for the
amplitude and phase of the wave field at long range. An inherent part of this construct is that
backscatter is neglected at all orders so that the field consists of a pair of asymptotically decoupled
counter-propagating modes.

The approach taken in sections 6 and 7 is not without historical precedent. Most notable is
the 1950 application by Foldy and Wouthuysen [9] of such methods in quantum physics to obtain
the Schrodinger equation from its relativistic precursor, the Klein-Gordon equation. More recently,
Wurmser et al. [12] brought these techniques to bear on a case of classical wave motion in which the
medium is also allowed to vary in directions transverse to the direction of propagation (e.g., along
y as well as x). The resulting two-dimensional Helmholtz equation (Eq. (32a) with d2 - d2 + d2)
leads to a d'Alembert representation of the dynamics that is similar to Eq. (42a) except that e is
a differential operator in y. The upshot is a pair of asymptotically decoupled parabolic equations
for propagation in the ±x directions. These involve fourth-order non-WKB "corrections" to the
refractive index like those seen here. They also contain novel features related to the additional
transverse degree of freedom, notably a classical analog of the quantum mechanical phenomenon
of Zitterbewegung [8].

Bremmer originally developed the representation of section 5, Eq. (83) in particular, by different
means [11]. He first "stratified" the medium, approximating the refractive index by a piecewise
constant stairstep function; then he accounted for all the multiple reflections at each discontinuity;
and finally, he took the limit of infinitely many steps of vanishing height. This "infinitesimal"
approach is perfectly valid and can lead to physical insights [13]. It has been avoided here only
because it is difficult to generalize.
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Appendix A

PAULI OPERATORS

Pauli matrices are used to facilitate the analysis throughout the body of this work. This section
reviews their properties - especially their role as infinitesimal generators of rotation transforms in
state space.

The Pauli spin matrices6

[' = [ i[° ] ] a' [ 1 ° (Al)

have seen long service as a labor-saving device in quantum mechanics and will prove useful here
also. Although certainly not essential, they do have some attributes that reduce the work involved
in doing linear algebra on complex two-dimensional state spaces, e.g.,

trace oj = 0 0rj = I3

det 3j = -1 at = Yj

In addition, the eigen-basis of 0T3:

where

[ O ] I-) = I ]

is convenient for representing complex vectors

q = E qk)

The main advantage of Pauli operators, however, relates to the representation of linear transforms.

Pauli Space

The three Pauli operators are complete in the sense that, together with the unit matrix, they
form a basis for complex 2-by-2 matrix operators. Any such operator can be represented as

V=V01+Vlal+V 2 a2 +V 3 O3 (A2a)

6No distinction is observed between the operators themselves and their matrix representation.
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in terms of the four coefficients

Vo = trace (V)/2 (A2b)
Vj = trace(Vaj + ojV)/4 ... j = 1,2,3 , (A2c)

all of which have real values if V is Hermitian. In brief,

V=Vo1+Va-, (A3)

where

a = OaIe + 02e2 + 03e3 (A4a)

V = V161 + V2e2 + V3 3 (A4b)

are vectors in an abstract three-dimensional 'Pauli space'. The original operator is equivalent to a
scalar part Vo and a Pauli-vector part V. A magnitude and direction can be defined for this vector
part through V = (V.V) 1 /2 and v = V/V, although these need not generally be real valued.

Products and Exponentials

Products and exponentials of Pauli operators can be evaluated by using the fundamental com-
bination rule

OTjaCk = ikjkeOe + bjk1 (A5)

and its various spinoffs [Al] such as

(a-.1) (b. o= (a-b)1 + i(aXb) - (A6)

and

exp(+iSi-&) = cos(S)l ± i sin(S)h-- . (A7)

Similarity Transforms as Pauli-Space Rotations

For any Hermitian operator S, the result of using the unitary operator exp(-iS) to perform a
similarity transformation

V' = exp(+iS)Vexp(-iS) (A8)

on the V of Eq. (A3) is necessarily an operator of the same form,

V, = Vol + V'a.6 . (A9)

Clearly, the scalar parts of S and V play only a trivial role in this (So is irrelevant and Vo is
invariant), and the vector parts are related through

or = exp(+iS-a,)V-d exp(-iS§-). (AlO)

Expansion of the exponentials using Eq. (A7), followed by two applications of Eq. (A6) results in
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V = cos(2S) [V - (V .)h] + sin(2S)Vxh + (V-h)i. (All) ¢

To clarify the form of this, let S = -q/2 and write V = VW so that

V= V {cosq [0 -(v- sin qSvxA + (6-9)A} . (A12)

For a given v, any choice of h - provided it is not collinear with v - determines a right-handed
orthogonal Pauli-space basis q, f , h in the following way. Take f to be the direction of h xO, i.e.,
AxO = sinrf with 0 = Z(AO). Then, since v is orthogonal to f, it can be written as

v = sinO4+cos0i ,

where q = fxh. Thus Eq. (A12) becomes

V' = V (Al3a)
v'= sinO(cosqS+sinbf) +cos0h , (Al3b)

which means that V' is just a rotated version of V. In standard spherical coordinates relative to
the q, F, i axes, v' is a unit vector with spherical angles (0, 0), whereas v was a unit vector with
spherical angles (0,0). Clearly, since Vo' = Vo and V' = V, the entire V - V' transformation
amounts to nothing more than a Pauli-space rotation of the vector part of V about the direction h
through an angle 4 =-2S. Since S is Hermitian, SI, S2, S3 are all real, making the rotation angle
real also.

If S is not Hermitian, then the magnitude S, as defined above, can become imaginary, giving
the unit vector s both real and imaginary components. A more general class of "pseudo-Hermitian"
S operators (with real S3 but imaginary SI, S2) is encountered below. The above result still applies,
provided the rotation angle is allowed to be imaginary.
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Appendix B

RELATION TO THE BORN SERIES

This appendix relates the "Foldy-Wouthuysen" (FW) solution obtained in the body of the
report to the solution achieved in a scattering context by the Born method. The two are shown to
agree through second order.

Scattering Problem in Integral Form

The Helmholtz equation of interest is

d2u(X) + u(X) = -2e(x)u(x), (B1)

in the scaled x coordinate. A scattering problem is being considered, so there are no sources at
finite x. The retarded Green's function for a uniform medium (one with C = 0) is

ijXYg(x, y) = Z eIl . (B2)
2

It satisfies

dxg(x, y) + g(Xy) = -6(x - Y) (B3)

and allows Eq. (B1) to be re-expressed, within any interval a < x < b, as

u(x) = [g(x, y)dyu(y) - u(y)dyg(xy)]y- + dy 2g(x, y)e(y)u(y) * (B4)

Bounded Scattering Region

For simplicity, suppose that all environmental nonuniformity lies in a bounded "scattering
region" - specifically that the support of e(x) is the finite interval t < x < r. Outside that interval
the field must have the form

u(x) _ | Ae+i(x-a) + Be-i(x-a) . .. X <(e
| Ce+i(x-a) + De-i(x-a) ... r ()

where the point x = a has been used for the (arbitrary) phase reference and A, B, C, D are param-
eters. One can always arrange for A = 1 and D = 0 by normalizing appropriately and taking the
incident signal to come from the left. Then if a < e and r < b, the [ ... lb term in Eq. (B4) reduces
to ei(x-a), leaving

u(x) = ei(x-a) + i A dy etIx-xYe(y)u(y) ... a < x < b . (B6)
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Now we rename a = xo and let b -a oo so that the integral equation to be solved is

u(X) = UO(X) + i f dye' '-1"c(y)u(y) ... xo < x < °, (B7)

given the incident signal uo(x) = ei@Z-o).

Born Method

The smallness of C(x) suggests that one attempt to obtain the solution u as a Born series

UB(X) = WO(2) + Wl(X) + W2(X) + * * * (B8)

with Wn = O(eC), starting with the incident field wo = uo. Born's method obtains the partial sums,
Un = wO + * + wn, of this series by iteration,

un(x) =uo(x)+ij dye'kX-V8e(y)un.-1(y) ... n > 0 (B9)

In other words, successive terms in the Born series, Eq. (B8), are generated via

Wn(x) = if dy eil"Z'e(y)wn-A(y) ... n > 0 (B10)

and the nth Born approximation is uB = un + 0(en+l).

Preliminaries

Before proceeding in that direction, it will be convenient to introduce some shorthand notation
and a preliminary result.

Differentiation will be denoted by superscripts in parentheses,

q(W)(x) - d= (z) ... n> 0 , (Bi)

which is a departure from the usage in the body of the report. (n = 0 is the trivial case q(-) = q.)
This will be extended to n < 0 so that, for example, q(-l) denotes the anti-derivative,

q(-l)(z= j dyq(y) . (B12)

In this notation, a typical Taylor series takes the form

00 nq(xs + y) = E 7 -q W(x (B13)

We will also need the following result:

jdy i2y n= (i)n+l (B14)

This may be obtained by first changing the integration variable to t = 2y, thereby converting the
left-hand side to

1 [00

n! 2n+1 Jo dt eit e .

zz
cll�
r-
:XA-
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For physical reasons7, that singular integral is to be understood as the y -t 0 limit of

00 dt e-lylteittn

which can be found in tables [Bi]:

00 dii leIYaiei6 t - r(I) eiparctan(6/1'y) I) () > 1 1 1 1'(6)j

With i = n + 1 and 6 = 1, the iyj -4 o limit is r(n + 1)ei(n+l)r/2 = n! in+l, confirming Eq. (B14).

First Born Approximation

The first Born term is

WI(x) = iJ dyei(Y-Zo+IX-YD)e(y)

or, with the integration range partitioned at y = x,

= F dY~)+i(x-xo) + Fl iy2(yxo)e(Y)] ei(XXo)Wj1(X) = [~i 0dy(y)] o + [i dy e- (B15)

f( ) b(x)

Outside the scattering region, where the functions f and b are constant, the significance of the
two terms in Eq. (B15) is unambiguous. To the right (for r < x), b vanishes and the first term
reduces to f(+oo)e+'(xx-0) where

f (+oo) = i dye(y)
-00

while to the left (for x < A), f vanishes and the second term reduces to b(-oo)e-i(x-xo) where

b(-oo) = i | dy ei2(Y-xo)e(y)

On the right side of the scattering region, Wu is a constant-amplitude wave that moves to the right;
on the left, it has a different constant amplitude and moves to the left. Note also that for x < X,

Uj(x) = ei(x-xO) + e-i(x-xO)i j0dyei2ye(y)

In terms of the unscaled lengths X = x/ko, Y = y/ko, this is

Uj(X) = e-ikoXo{eikoX + [ikoF(2ko)Ie-ikoX}

in which the [- factor is recognizable as the first-order Born reflection coefficient expressed in the
standard way [B21 as a Fourier transform e(c) = f+X dY etKYe(Y).

'J7I embodies the effect of attenuation in the medium.
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But we are interested mainly in the field within the scattering region, where wI does not yield to m

any such simple, unambiguous reduction into forward and backward components. In the scattering
region, however, Eq. (B15) can be written

Wj(X) = Wo(W) [ifk dye(y) +ij dyei2 C(X+y)] * (B16)

Then, with e(x + y) = [c(x + y) - e(x)] + e(x) in the second integrand and with fJ dy ei2y = i/2
(Eq. (B14) with n = 0), one has

WI(X) = WOo(X) {i dye(y) - e (x)+iI dye e(X+Y) - CI. (B17)

This form emphasizes the fact that wt can always be regarded, without any approximation at all,
as a forward-propagating carrier wo(x) = exp{i(x - xo)} with an x-dependent modulation p + v.
It also suggests that, although p . e, it may be possible, when C is a slowly varying function, to
relegate v to the 0(C2) terms so that it contributes nothing to the Born approximation at this
order. The remainder of this appendix is basically a systematic pursuit of this possibility through
first and second order.

When e(x + y) in the second integrand in Eq. (B16) is expanded in a Taylor series about y = 0,
and Eq. (B14) is used to evaluate the resulting fJ dy ei21yy/n! terms, the outcome is

00fjllWj/WuO=iE (i)~ e(n) (1318)
n=-1

(Note that 1u comes from n =-1,0 and v from n > 1.) Thus the first Born partial sum is given by

Uj/WO0= + i E(2)n e(n) (1319)

i.e.,

Utj(x) e 1+if dye(y)- le(x)+i i e(n)(z)] (B20)

With

(B21)

the first Born approximation uB = ui + O(C2 ) can then be written

UB(x) = ei(x xO) [- C(X)) e dvZ° + i E (2) C(n)(X)] + 0(e2 ) ' (B22)

but that is as far as one can go without some knowledge of the behavior of the derivative terms in
the remaining sum. If, as in section 7, one assumes that

e(n) , n+l n > O (B23)
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then all of them belong with the O(e2) terms and one has

U B(rX)= (1--e(x)) el odiE+c(,)J+0(2) (B24)

Term-by-term comparison with the first-order form of Eq. (110), namely,

UFW(X) = Q[1](x)e-i'[i](x)eiP['](xxo) + O(e2 ) (B25)

confirms that they agree through first order,

UB _ uFW = O(C2 ). (B26)

Second Born Approximation

The second Born series term is given by the double integral

00 O07

W2(Z)/Wo(x) =-J dy | dzE(y,z) (B27)

with the integrand8

E(y, z) = ei{ I- I+Iz-11+(zX)}E(y)C(z) (B28)

When the integration ranges are partitioned at y = x and z = y, this becomes

W2/wo =-(a + b + c + d) (B29)

in terms of the four quantities

a(x) = fZ dy j dz ei2(z-y)e(y)e(z) (B30a)
zo0 Y

b(x) = / dy / dze(y)e(z) (B30b)

c()= = dy f dz e 2 (Yz)e(y)C(z) (B30c)

d(x) = | dy j dz ei2(z-x)e(y)E(z) (B30d)zY

which will now be evaluated in turn.

The a term is
z 00

a(x) = dy e(y) j dz ei2ze(y + z) (B31a)

- | dye(y) e( )(Y) [j dze n!] (B31b)

oo .i n+l

n=0 2 x dn eli c

'E's z dependence is left implicit.
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where expanding e(y + z) in a Taylor series about z = 0 produces Eq. (B31b), and Eq. (B31c)
comes from evaluating [... ] via Eq. (B14) and using the definition

an(x) = | dyE(y)C(n)(Y) .

The b term is, with no approximation,

b(x) = 2 [1 dye(y)]

(B32)

(B33)

The c term is

c(X) = I dy ei2( x)'Y(y)

= 0 dy ei2yYb(X + y)

00 (n) [I dy ei2 y 
n=O [ !.

= I (2)nll (n)(X)
n=0 

(B34a)

(B34b)

(B34c)

(B34d)

where the definition

,y(x) = e(x) dy e(y) (B35)

is used in Eq. (B34a), then expanding y(x + y) about y = 0 produces Eq. (B34c), and evaluation
of [...] through Eq. (B14) produces Eq. (B34d).

The d term is

L00d(x) = | dyei2(Y-x)a(1)(y)

J00
= | dy ei2ya(l)(x + y)

- E : (2) ,i+1 + ~')(Z) [J000dyei21YIn]

- E () )n+e+2 e1
n=0 e=O
n- M

(2) E n- n=O 2 e=o

(B36a)

(B36b)

(B36c)

(B36d)

(B36e)

- where expanding a(1)(x + y) about y = 0 and using the definition Eq. (B32) produce Eq. (B36c),
then evaluating [...] using Eq. (B14) produces Eq. (B36d), and summation in an alternate order
yields Eq. (B36e).
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The second Born partial sum is given by

U2/WO = 1+ 'IIIwo + W2/WO (B37)

with wi/wo and w2/WO obtained from Eq. (B18) and Eq. (B29), respectively. For the second Born
approximation, we will need to identify and retain contributions through order C2. For wl/Iwo that
is easy; to second order it is simply

4
.

For W2/Wo, we need all the second-order terms from a, b, c, and d. Since b is purely second-order,
its contribution is simply C(-1)2 /2.

For a, we need to assess the o, = [e(O)C(n)I(l) terms, the first two of which are

X
ao(X) = | dyc2(y)

ai(x) = dy (v)e(')(y) =)

Since e(')(xo) = 0 for all n > 0, we have

ao = e2(-), e2 (B38)

ai =12 e C2 , (B39)

both of which contribute at order e2. The an for n = 2,3,--- can be evaluated by repeated
integration by parts. For even and odd n, respectively, they are

e-l1
) (_)kC(k)(X)C(2t-k-l)(X)+(-)t dy f(t2 (y)

m CV+ _C21+2

a2e+1(X) = :(_)kC(k)(X)E(2e-k)(X) + (_-)1 (X)
k=O 2_

,.,,e21 2 ~ Ef2f+
2

for I > 1. Since 21 + 1 > 3, all of these belong in O(e3 ) and we are left with

a = ao - a1 + 0(C3)

= - 2e~ 1 )- 2 +0(C3 ) . (B40)

For c, we need the y(') - [e(o)el)] (n) terms. Since

y(0) = C (B41)
Z,2
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these can easily be obtained from the standard expression for the nth derivative of a product,

(n)= ( n (k),(n-k-l) ... n > 0

With the k = n term written separately, this is

- C(n)C(-l)+ ( (k)C(n-k-1) ... n> . (B42)
_,En+

2 k=

,#fn+1

Clearly, the only contribution below the third order is the k = 0 one for n = 1. Thus
i 1 3

c = 2-yo- 4y +0O(e3)

_ _ 1 (0)2 +0(C 3 )-C(0)C_') .() +(3 (B43)
2 4

The fact that a+1) = [a] ) = [C()C(m)]( ) is the tth derivative of a product allows it to be
written as

a('+')= k ( k )Ck(m+t-k)

Contributions to d come from m = n - t. Since these are

1+ = I1 ( '~(k)C(n-k)an-1 =E k )L . .. n > °, (B44)
k=O ( ,fn+2

only n = 0 contributes below the third order. Thus

d= (i) a(1)+O(C3)

- 0 2+(d3 ) (B45)

,4E

In light of the above results, the second Born approximation is given by

u B/IW = 1 + (ie( 1)2 -, '(I)) + (-lC(-1)2 - E2(1) + 5C2 - (-1)) 3)

or, in the conventional notation,

uB()=ei(O) [+if dye(y) - d e ) 2
- C(X)

yy2 dYC2(y) +0(C 3 ) (B47)
C 2(X) - i-(X) -_-C(X)IdyC(y) -- IdB47))8 2 ~~~2J1.0 2J
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Term-by-term comparison with the second-order form of Eq. (110), i.e.,

uFW(X) = Q[2](x)ei0[ 2 ](z)eiC[2](XXo) + O(e3 )

= (1 -2C(X) + .C2 (x)) eii ()/4ei fO dy(I+s(y)- 2(y)/2) + 0(C3) (B48)

confirms their agreement through second order,

uB _ U FW = O(e3) (B49)

To extend this investigation to the third Born approximation would mean analyzing w3/Wo -

a triple integral analogous to Eq. (B27). The analog of Eq. (B30) would involve 23 = 8 terms;

furthermore, their third-order contributions, along with those of W2/wo and w/lwo, would need to
be identified and retained. The effort appears prohibitive, but it seems compelling to conjecture
that UB - uFW vanishes to all orders.
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