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CONTRIBUTIONS TO RADAR TRACKING ERRORS FOR A TWO-POINT
TARGET CAUSED BY GEOMETRIC APPROXIMATIONS

1. INTRODUCTION

In tracking an extended radar target, an accurate measurement of the target’s position is
essential. A target is extended [1, p.1] if “its size is sufficient to cause glint errors which exceed
the other errors of the system.” However the composite signal at the receiver induced by the
scattering elements comprising such targets can cause substantial measurement errors of position
[1,2,3]. Therefore accurate characterizations of the measured (apparent) range and angular errors
of extended targets are important. In Ref. 1 [Ch. 1], these errors are quantified for a two-point
target, but an error is introduced by approximating the range to the centroid of the two-point
target. Since the accuracy of the characterization has practical significance for radar systems in

terms of observed glint errors, this issue is investigated for the ideal situation of a two-point target
in a two-dimensional geometry to gain further insight into this problem. Exact expressions of the
range and angular errors and an alternate set of approximations to them are derived. Both sets
of approximations are compared to the exact errors. These errors depend on the phase (¢s) of
the composite signal, on the differences between the distances from the radar to the two scattering
centers and the centroid of the target, and on the relative size of the amplitudes of the individual
scattered fields from each center (E,/E;).

The alternate approximations are obtained first by expanding appropriate parts of the errors
in infinite series and then by truncating the series. The truncated series are polynomials in the
ratio of the distance separating the two scattering elements to the actual distance from a radar to
the centroid of the scatterers. The differences between the exact errors and the two distinct sets of
approximations to them are examined as a function of this ratio. Advantages and shortcomings of
each set of approximations are identified. The exact expression for the angular error is shown to
reduce both to the first-order approximation and to the expression of Ref. 1 [Ch. 1], when certain
approximations are made; however, such is not the case for the transverse and radial range errors.

First the problem is defined, the geometry is specified, and exact expressions for the range
and angular errors are derived. This is followed by a discussion of the approximations to the errors
and by an analysis of the impact of the approximations relative to the exact expressions for two
exa.mple& In pa.]’t.i('n]?a.'ri limits of the ratios of the different range errors are 2!1&1_‘,’7"’1 in detail.

An X-band system (10 GHz) and a large aircraft, which is characterized by a separation of 50 m
between the scattering centers, are assumed in both examples. The examples represent an aircraft

that is in its landing approach or at a range of roughly 200 nmi.

2. DEFINITIONS

To have consistent terminology, the following definitions are extracted from Ref. 1 and sum-
marized. In keeping with the definition of an extended target, partition the target’s surface by
subdividing the associated volume with a fine, three-dimensional grid. When the radar observes
the target, each small surface clement contributes to the total received signal. Those elements that
produce strong scatter are called spccular points [4]. Usually a target has many specular points. An
individual point contributes randomly to the echo signal’s amplitude and to the appareut position
of the extended target, which varies according to the relative motion between the physical target
and the radar. Consequently, “a specular point is not any particular geometric point on the surface
of the extended target;” rather it “represents a combination of scattering elements which return a
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Gaussian signal. Other specular points are similarly composed, and their signals are statistically
independent {5,6].”

“Hence, a mathematical model of the extended target must meet two requirements: (a) it
must, fake into account the physical processes which affect radar tracking of the target’s extended
features, and (b) it must yield results which predict accurately the practical performance of the
tracking radar. One such model, the n—point model [7], represents the target as the sum of a
large number of random, independent specular points, filling the space occupied by the target.”
An n—point target model consists of n specular points that can be either independent isotropically
reflecting pﬁint taxgets independent complex reﬂecting ob jects a combination of the two, or any
Gf thli FLELUUIJJB Wlltﬁlt: d, bl‘d'blbhll,d.-l LUiI“:ldLlUii e.ﬁ.ibtb DCbW{;‘tH !:H’B bL¢LLeung LEIUAEIS

“The number of specular points used to represent the target...may be reduced to a small value
for practical purposes, and in some cases the two-point model is used” {2,8,9]. This analysis is
undertaken for a two-polnt target, bul may have implications for a more complicated extended

3. EXACT CHARACTERIZATION OF RANGE AND ANGULAR ERRORS

ase is treated, from which the more prevalent, monostatic situation is

wvah SAVLEQLIVI

Initially the bistatic case is treated, from which the more preval
obtained as a special case. These geometries are depicted in Figs. 1 and 2. The formulation of
Ref. 10 is followed. In particular, the origin of the inertial frame is chosen to be the location of
the transmitter. In Fig. 1, Py and P, are the positions of the scattering centers at a given instant

of time, ' is the mlﬂnnmf of the line segment PP, P2 whaose ]pno‘th is I P, is the observation ‘nmﬂf

~

(iocatlon of the receiver) of the scattered field, Ty and Ty, are the pos:t:on vectors from the origin
to points Py and P, respectively, and T; and ¥, are the vectors frem P; to P, and P to P,
respectively. For the sake of argument, assume the magnitudes of ¥; and Tp; are respectively less
than the magnitudes of ¥, and Tyo; that is, 1y < 7o and 1o < rgs.

The scattered electric field at P, due to the ith specular point has the form E; cosfw(t—t;}+ &)
for ¢ € {1,2}, where w is the angular carrier frequency, §; is the phase induced by the ith scatterer, 2,
is the time delay at P, over the path from O to P; to P,, and E; is the amplitude of the ith scattering
center and is proportional to the square root of its effective radar cross-section. This interpretation
of §; agrees with that of Ref. 11 {Eq. {71)]. Under the assumption that the polarizations from P
and P, are identical, the composite signal recelved at point P, and time ¢ is

eg(t) = e1{(t) 4+ ex(t) = By cosfw(t — 31) + 511 + Es cos{w(l — £3) + &2} = Escos(wt — ¢5), (1)

Y hY »

for the individual fields e; and e;. The composite phase and amplitude are s and Eg, which after
some algebra can be written as

B { \/ETf + Eg +2FE, E, 605{51 ~ &+ QZP), for £, ;é Ey (2 ))
5= 2B {1 + cos(8y — &3 + 9], for E; = E,, and {a
s =8+ 9, (2(5))

where
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'g[)zw(ig -—tl),
ﬁ:w(t2 +i1)/2:

(3(a))

(3(8})
L= (r; +1oi) /e, (3(c))
E sin 51+~“i’- Y E;sin| 6,-2
mn(ag)rman(n-g)
2 2 2 €08 -3
tan & = Ercos (Jﬁ— = )'i'EzC &g ') (3(4))
- tan (é“%‘h), for E; = Fo,

and ¢ is the speed of light in free space.

Fig. 1 — Bistatic geometry, where
the observation point Py and the
transmitter O are distinet

souree

Fig. 2 — Monostatic geometry. swhere
the abservation point PL‘ and the

O are collocated
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The expressions for Eq.(2) are obtained by substituting the identities, & —wt; = & —~ B — /2
and & —wiy = 83— F4+4/2, into Eq.(1) and simplifying the resniting equations. Clearly g depends
on w, r1, T2, To1, Toz, 61, and &. To simplify subsequent equations, the following definitions of
real-valued scalars are used

L+ T T T
ry = 1t 2 r-n=m br=ry—ry, frg=rp2—7T01, D= d&r+ by {4
a 2 b fi2t 2 T Z 1 u 1.4 il A u- VS
Rewriting # and ¢ in this nomenclature leads to
w w
8= E('ra + Fa0) and = z{ﬁf‘ + 8ro). {5)

As a result of various errors, the location of the target measured by a tracking radar is not
necessarily any of the points Py, P, or O. Let the location of the measured centroid be denocted
P4c, with associated vectors 5, and p,,, and magnitudes p,, and p,0 from Pyc to P, and O to
Psc, respectively {Fig. 1). According to propagation theory {12, pp. 224-227] and experimental
measurements {3}, the apparent center Pac is determined from the phase 5 of the composite
signal; that is, the direction of 5, is the direction of the gradient of 1s evaluated at F,, while its
magnitude is specified by

C 31,95
™72 fw ip,]
W 1P,
whora thp nartial Aarivative ic tho grann fima Aolay Feanst averacciong for thoaca s anantitioe ara
FPILLI D LG PO LEGE USRI YOLI YD 1o LD 51\.’1.[1.‘ LIL1IIC uTidu LIAGQLULY C.’\.PIUDDIUJID AV LILICOU WYY qu.wu.luwavb i

now derived.
First observe that

1; e+ Tao ), for £y = E,.
Whan EF. and 8. ara rpancbond far ¢ha nanea Af frannenrias nndar cnneidaratian thic aqitatinn olm
FY AUQLL iy QRN Uy GLT LUlabgllL U LI Jﬂ-\ll&c 1S .I.].U\iucll i Lwts ] LELLEL LUIIDIUCLGJJIUI[, LVILID C\iuﬁn‘aiU 1 ORiii
plifies to
ra+ra0) 2 2
D EZ2—E?
s et EITEITIE: Brcos(fa—timy)’ for By # By (1)
G
TatTag
-~ 7 for £y = Es.

Since this analysis takes place in the plane determined by the points O, Py, and P;, the gradient
depends on two spatial variables. A natural choice is the set of polar coordinates {r,#) relative to
the uv-coordinate frame, whose origin is located at G’ with the positive u-axis perpendicular to
P, P; and the positive v-axis coinciding with OP; (Fig. 1). Therefore the gradient Vs evaluated
at P, is

s . 10vs,
Vs, = [“a?"r* '—as_eﬁL ) ®)

s T

where &, and & are the polar unit vectors. Let (rq,f;) and (r,f) represent the polar coordinates
of the poinis O and F,, respectively, and let T, and T be the associated position vectors from 0
with magnitudes 1o and r.
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Before calculating Vs, the functional relationships between 7,4, 740, 67, ér9 and r, 8, 7o, fo
are determined. Assuming 7; and ry; are greater than {/2 and applying basic trigonometry leads to

To1 = \/T% —rplsinfy + 12/4, (Q(a,))

_ /2 N T o )l . 1'2 Ioa
T‘DQ—VTO+T‘0£SIHU0+L /4,

(9(6)
71 = \/7"2 —rlsinf + {2 /4, (9(c))
(9(d)

7o = \/:'"2 + rlsin® + 12/4,

which express the distances ro1, rg2, 71, 72 in terms of the polar variables r, 8, g, 8. Substitute
these expressions into Eq. {4) to get

frn:l(a/ﬂw?nlsinﬂn-!-!?/tl—!—« ?‘9+rnlsin9n+!2/4\ (10{a))
al Q\V 1} [§] O i Y] G G i= ) VRS
re = S (/P74 BJA+ /7 + rlsin 01 /4 (10(8))
. 2(\/ +2]44 /4 ;

67‘0 = \/TS +T0isin90 + 32/4 — \/Tg — rolsintlh +[2/41 (10(6))
§r = /r? 4 rlsin® + /4 = \/r? — rlsin 6 + [2 /4. (10(d))

Replace the appropriate quantities of Eq. (2(b)) by the preceding expressions to obtain

5T+§T‘nﬂ
6r+67'g)]

‘ (Ta + TQO) + arctan{ — Ey sin [614—2—6-{57'4—67‘0)]-{-{‘:2 s [62ﬁﬂ
¢ E; cos [61+2—“’G(6r+6ru)J + Ez cos [52—2i

—_

}, for £y #£ Es

Ps =

in [ 8,4 2 (514 870) | +sin | 63— 2 (6r+8r
2(?“3 + Tag) + arctan —sm[ 1t 45 (6rtro) Sm{ i rALU TU)] , for By = Fs.
¢ cos |8y + 42 (6r+8ry) | +cos [b2— 52 (6r+6ro)
(11)

As a Dbricef aside, note that ¥s clearly depends on the carrier w, E1/E2, 71 + 72, and 71 — rz. Now

taking the partial derivatives indicated in Eq. (8) and making some minor algebraic adjustments
vield

% W 2r + lsin@ N 2r —lsin @
dr 1p, e | \/rTrlsinf+ /4 \/r* —risinf + 2/4
. 2r 4+ lsind N 27 — Isin@
Vit rising + 2 /4 \/7'2k7"£si119+13/4
E2 - E? | )
K= : )
El- -+ ]3(5 + 2FE,E, cos [62 - & - (67 + !5?‘0)&.?/(1] } (1 (a))
Eadis' L w [cosf lcost
r dr lp,  de \/’f‘2 + risind + 12 /4 \/r2 —rlsinf 4 [2/4

y Ei - E}
E + E242E\F, COS[62 ~ b = {br + 6r0)w/c]

{cosd lcosd
T Vr? 4 rlsinf 4 12 /4 i V- rlsin9+12/4)
)
}, (12(5))

3
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when By # Eo. If By = FE,, the expressions for the partial derivatives are obtained from Egs.
(12(a)) and (12(b)) by omitting the product terms so that onty the first two terms remain for each
partial.

The angular error between the measured {apparent) and actual locations of the target is the
angle from &, to V15 in the counterclockwise direction. In the geometry of Fig. 1, ¢ is an acute,
negative angle and

A Ja
10¢s [dPs
tan ¢ = r Of or 13)

No standard definition of a formula to represent the range error currently exists. However two
natural candidates are the radial range error R, and the magnitude p of the vector error (T —7,, ),
which are given by

Bo=r=pn =~ fnl and p=1ip|=[F =Pl (14)
A third choice is the range error projected along the actual direction
Ar=r1— IProjection of 3 onto T| =T — Pm COS . (15)

1t is clear from the geometry of Fig. 1 that relationships among these errors exist. If a fourth error
(AL = pmsin ¢), the error in the direction transverse to F, is defined, these relationships may be
quantified. In particular, Ar and AL are the orthogonal components of 5. Since

ot = (ArY 4 (ALY = RE + drpp sin®(6/2), (16)

p is clearly the largest error. Observe that

2 _ g2
i '"“'2”0 . —}2:’— L2 A1 , for By # Ey
Re — Ef-}-Eg-{-?ElEg cos[ﬁ;—&;—?wdr}'c] (17)
r - TatTad for £, = B,

2 2

is the only error independent of ¢ and that p and ]Ar1 approach ]Re] in the limit as ¢ approaches
zero,
In analyzing expressions for the errors, it is nseful to introduce three new parameters,

{

{ o
Yo = —, T=E 2 =
T

_E:':

(18)

the first two of which are numbers between zero and one for this application. Although the equations
for the errors of the bistatic case can be reformulated in terms of v, v, and zg, the monosiatic
case is treated instead because it has greater applicability to radar scenarios, not to mention that
the calculations are much less cumbersome. Results for monostatic tracking radars are obtained
by setting

r="7Tg, Tg= Tan; & = by, ér:érq; éﬂzéﬁga 67'257"0: ¢:¢01 Y = Yo, (19)
and the corresponding geometry (Fig. 2} is obtained by letiing the point F, coincide with O.

6



NRL REPORT 9349

Therefore in the monostatic case for zp # 1, the expressions for 95 and the various errors
become

g 22 2

2 r + r z§+1+2z0cos[62-—61-—2w67'/c]}

(- . , a
2r, Y . 0T (or o SRS 4

- - - — 2 @

{ 251r149?‘+ T-}-QSII‘L r)

2
1— 2

— ¥ (20(a))

2 i 01 i e C [y TR S
Zy t 1+ 422 COSLOz — 03 — LW0T/C]| J

1— z§

=T —Tg— 6 , 20(b
Re=r—r ng +1 + 229 cos|by ~ 61 — 2wér/e] (2005))
( Lz } )

=7 — o é N 20(¢

Ar=r cosqﬁ{'r + ng + 1+ 225 cos [52 — 8y — 2w5r/c] } (20
1~ zg
AL =sin¢ ra + ér ris2 e a0 (20(d})
Zg + 1+ 23 CO5 |02 — 01 — WOT/E J
ot sm (51+w6r/c] -I-zosin[éz —wﬁr/c]

— T 20(e

¥s + arctan{ cos[81 + wbr/c] + zo cos[6s — wér /c] (20(e))
while for 25 = 1
_ycos@ ) dr e oy . bT

tan ¢ = 5 {—r T( " 2sm9T) , (21{a))
n {917 R
fte = 1T — Ty, \«dld))
Ar =71 — 7, cos o, (21(c))
AL = rysin ¢, (21(d))
N QW’F‘a 61 + 62 f21/e\\
e = - 5 Leli€))

Clearly Eqgs. (21) are directly obtainable from Eqs. (20) by letting zo be unity; however, one
would not arrive at Eqs. (21} if the argument of the cosine, é; — é; — 2wér/e, is set equal to zero
before letling zg be zero, When calculating such limits, they must be taken in the proper order. In
this problem, the limit with respect to zg must be evaluated first. In fact, the double limit obtained
by letting 8, — §; — 2wdr/c approach zero, followed by z; approaching one, does not even exist.

Even though it is assumed that » < ry and roy < ro; (hence 8,8y € [7/2,7)) in the preceding
arguments and figures, the results thus far are true for all 8,6y € [0,27}.

4. APPROXIMATIONS TO THE EXACT EXPRESSIONS

The exact expressions of the errors given by Eqs.(20) depend on the parameter -, which lies in
tha anan intarual 70 1Y Thn nardienlasr on tmnlicit danandanea meriire in Ar nnd 2 nr antivalanélsy
LT UPEIL L1V vdl \U, 1)- 111 prad bl uldl y, dlil HILpPLILlL LlClJLallUCJ.lL«C ViLUlo LIL VI Qilu f g Ul LL[UIVCLJ.CI[';_I.J’
in the individual ranges ry and ry. It is further assumed that -y is small enough to guarantee the
convergence of the binomial series representations of y and ry. Consequently,

p 3
~

ry = rll— Isinﬁ-!— “cos? B+ —sinfcos? 8 + O+ (22(a))
1 L 2 8 i i L \ \Wvrs

!
J
¥ 2
Ty = r{l + Esmﬂ-l- -g— cos 6 — —651119(:08 g+ O(‘)’ )} (22(2))
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which imply

ér . 7 2 4
— =7 sinf — 5 sin 8 cos® 8 + O{y"), {23(a))
Ta 72 2 4
== 14 5 cos 8+ 0(%%), {23(0))
3
P = ~2ﬂ{«y sind — % sin#cos? 9 + 0(74)}. (23(c))
C

The O-notation means terms of that order and higher.

The preceding three expressions can be approximated by truncating the appropriate infinite
series. The least accurate approximations are obtained by eliminating all terms with v raised to a
power greater than or equal to one or two, which are respectively called the zeroth— and first-order
approximations and are designated by zero and one subscripts. For example,

¥ cos 6 1 - 2%
£ = ) 24{a
an ¢ 2 2414 2%cos [52 — &1 — (2wyr/e)sin 9} (24(a))
. 1— 2
= — , 24(b
e ‘Jsm@zg 4+ 14 2z cos[é; — & — {2wyr/fc)sinb] (24(5))

1— 23
22 + 14 22 cos[dy — 81 — (2wyr/e)sin ]

Ary =71 —rcosgy {1 +ysiné }, {24(e))
E

S

1—22
N 3 _ 24(d
1 rsmq&i{ + v sin 1 +2zgc0s[5z — & ._(wa)ur/c)siﬂg]} (24(d))

Equations {24) are valid for 2o # 1. When zy = 1, tan¢; and R,y are zero, Ary is {1 — cos By ),
and ALy is rsind;.
Analogous expressions for Egs. (24) from Ref. 1 [Egs. {1.11) and (1.14}] are given by

Icosg 1 - 2§
o , 25 a
tan Pop 2re 28 + 1+ 229 cos{(2wl/c)sin g (25(a))
lsing 1z
. ’ 25(b
Arss 2 224+ 14 2z cos{{2wi/c)sin q] e
1— 2%

{25(c)

ALg = —I —
b Cﬂsng + 1 4 22z cos{(2wl/e) sing]

To account for the apparent sign errors in the formulae for ® and ¢ of Ref. 1 [pp. 7,9], minus signs
are inserted following the equal signs in Eqs. {25). A similar sign difference is also found in Ref.
10 [p. 1822] in the equivalent expression denoted %, on which the result of Ref. 1 is based.

First note that the parameter “r” of Ref. 1 is an approximation to the actual range r. In
particular, it is r,, the average of r; and r;. To make comparisons between the results of Ref,
1 and the exact and approximate expressions of this report, their “r” has been replaced with 7,.
Consequently, the center of their moving coordinate axis is situated at Oy at a distance r, from
O (Fig. 2). L

Secondly, the directed angle ¢ is measured from the line segment O'0 to the perpendicular
bisector of P, P, on the O—side of Py P;. It is not clear from Refs.1 and 10 how ¢ is defined. So the

8
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aforementioned definition is selected. For the geometry of Fig. 2, ¢ is related to # by § + ¢=x. In
fact, the reiaiionship beiween § and ¢ for arbitrary configurations is given by

0, for0<8<m/2
+g=< m, form/2<8<3n/2 (26)
27, for 3n/2 < 8 < 2r.

The authors of Ref. 1 [pp. 4-12] never explicitly state what approximations are used for
71 and ry, but they apparently follow the work of Ref. 10, which employs the approximations
7~ {l1/2)sinq and = + {!/2)sin g, respectively. The geometrical significance of this approximation
can be understood by consulting Fig. 2 and observing that {; = ({/2)sin g is the distance of P
and P, from the line through O’ perpendicular to F. Hence ry and r; are approximated by their
projections onto the line through O and O,,. Although it cannot be stated with absolute certainty,
it is likely that their approximation is related to the far-field assumption of parallel lines: the
two triads of line segments that connect P, to Q', P, P> and O to the same three points are
approximately parallel. As a final comment, the selection of expressions to represent Ar,, and
AL, is disturbing because the choice is independent of ¢. According to the graphical depiction of
Ref. 1 [Fig. 1.3, p. 8], Ar,, and AL, are the radial and perpendicular components of the vector
error p. Thus they must depend on the angular error ¢ in the same manner that Egs. (20(c)),
(20(d)), (24(c)), and (24(d)) do, which is in opposition to the analytical definitions attributed to
them by Eqs. (25(b)) and (25(c)). Consequently, the respective differences among Ar, AL, p and
Arony ALy, [(Ars)? + (ALgs)?|H/? will be examined more closely.

Because they are concerned with an accurate characterization of the range and angular errors,
the three approximations (“r,” vy, r2) that Ref. 1 makes are important. In essence, they introduce
an intrinsic error at the outset to all subsequent equations. To ascertain the geometrical effect of
substituting r, for 7, solve Eq.(10(b)) for 7 to obtain

[ 4r2 -
= SR S— 27
"= e 4rd - 2 sin’ 8 (27)

Clearly, r is a function of the target orientation (#) to the radar and the extent ({) of the target
relative to the average range (7,) of the two scatterers. Since the numerator of the radicand is less
than the denominator, r < r,. Hence, as indicated in Fig. 2, O, is farther away from O than O'.
More importantly, the radicand varies between /1 — (12)/(4r2) and 1 for any value of #. Hence
the approximation of 7 by r, is only as good as ihe approximaiion of 1 by /1 = (£2)/{4r2).

Substituting ¢ = 7 — 8 into Eqs. (25} yields

tan ¢ [cos@ 1-—- zg ”
an @Pyp = ,
"7 2r, zZ + 14 22 cos|(2wl/c)sin 6] (28(a))
[sin d 1 — z2
&T‘o = — 0
' 2 25 +14 2zcos[(2wl/c)sind]’ (28(2))
Sheb = HE Uzg + 1+ 2z cos[(2wl/c)sing] (23(c))

Upon identifying » with r, in Eqs. (28), Eq. (28(a)) is identical to Eq. (24(a)) when &, — 6; = 0;
however,

1 -1 :
S e0s {An-?(l—cosgbl)} and ZSiHQSI{Alersmqﬁl} (29)
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rather than Ary and AL; agree with Ar,, and AL,,. ’IIn light of the preceding discussion, the
disagreements between Ary, and Ar; and AL,, and AL; are not unexpected. In addition, Eq.
(24(a}) is equivalent to Ref. 3 [Eq. (3)] with the identification of rtan ¢, & — & — 9, I, 8, and 2o
to £, ¢+ Lsinp, L, 9, and a. Lastly, observe that the only effect of changing the range of 8 from
[x/2,37/2) to [0,7/2) U [37/2,27) is to change the sign for each of Eqs. (28).

5. EXAMPLES

For very small v, the first-order approximations are very good; however, these results may not
be accurate enough for all situations of interest. In addition, it is not clear analytically how good
the approximations of Ref. 1 are. Therefore a comparison between the exact and approximate
representations of the range and angular errors is now undertaken by considering two examples for
zg = 0.5 and for a carrier frequency of 10 GHz. To represent a large aircraft, the scattering centers
are separated by 50 m. Hence, for an aircraft that is landing or one that is 200 nmi from the radar,
the respective s are 0.05 and 0.00025. The examples are treated in that order.

Figures 3(a) through 3(c) indicate that the absclute value of the angular errors of Eqgs. (20(a))},
{24(a)), and {28(a}) can get up to 0.07 rad (4.0°), which is not insignificant. In fact, the approxi-
mations are nearly equal since their difference lies in the interval [-0.00003,0.00003] rad (Fig. 3(b)).
The difference between ¢, and ¢ {hence between ¢y and ¢) Ructnates between -0.06 and 0.06 rad
(Fig. 3(c)). Since the differences, ¢ — ¢,5 and ¢ — ¢y, can be as large as the actnal angular error,
neither approximation is good for all ranges of 8.

In terms of the radial range error, Fig. 4(a) shows that |Ar| can be 150 m, which is three times
the separation between the scattering centers. Since the ratio |Ar/Ar,y| is often greater than 1 and
can be as large as 15 (Fig. 4(b)}, |Ar,| could be a mere 10 m, one-fifteenth the actual radial error.
Clearly Ar,, is not a good measure of this error and is particularly bad near # equal 0, =, and 2w,
where the graph of |Ar/Ar,;] appears to blow up. In contrast, Ary is a better approximation of
Ar (Fig. 4{c)) roughly by a factor of two for the entire range of #; but in small intervals about /2
and 3%/2, the approximation is excellent.

Figure 5 provides a comparison of the various transverse errors. The absolute value of the
actual transverse error can reach 65 m (Fig 5{(a)), and JAL/AL,| can be as high as 4 (Fig. 5(b)).
Therefore AL,y 1s not a good estimate of this error. However ALy is an even poorer approximation
of AL {(¥Fig. 5{c)) since ALy ~ 2A L, except for 8 near 0, /2, 7, 37/2, and 2w, where ALy isa
very good estimate of AL. '

Since |ArfAr,] and |AL/ALy| are as large as 15 and 4, respectively, and the maximum of
p is 150 m (Fig. 6(a}), one expects the maximum of p/{(Aro)* + (ALes)?]'/? to have an upper
hound of 150/4/241 =~ 9.66. This expectation is verified by Fig. 6(b), where the maximum value is
nearly 7. Therefore [{Arop)? 4+ (AL )21"/? is a poor measure of p. Similatly, p1 is a poor estimate
of p except for values of # centered about 0, 7/2, 7, 37/2, and 2r (Fig. 6(c)).

The preceding example demonstrates that the first-order approximations of Eqs.(24) and the
expressions of Ref. 1 can be poor representations of the angular, radial range, and transverse range
errors. In such instances, one should rely on the exact errors (Egs.(20}).

Comparisons of the errors for the second example (v = 0.00025) are displayed in Figs. 7
through 10. The range errors {AL, Ar, and p) have essentjaily the same form and magnitude
as the preceding example, and the angular error ¢ has the same form but is 200 times smaller.
However, the hehavior of the approximations relative to the errors is significantly different; for
example, the symmetry about § = # may be absent {(Figs. 7(c), 8(b), 8(b), 10(c}). In addition,
excursions of the first-order approximations from the actual errors are much smaller than those
of the first example, and the analytical relationships among the exact errors and both sets of
approximations are apparent for small values of . In particular, ¢ ~ ¢, > ¢1, Ar = Ary = 2Ar,,,

i0
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and AL ~ ALy = AL, /2; and Ar, AL, p, and ¢ respectively lie in [-150 m,150 m], [-75 m,75 m],
[0,150 m], and [-0.5 mrad,0.5 mrad] (see Figs. 7(a) through 10(a)).

Both approximations to the angular error ¢ are excellent. Since ¢y and ¢,p are indistingnishable
up to the twelfth decimal, only ¢ — ¢, is sketched (Fig. 7(c)). This difference gets no larger than
3 x 107 rad. The first-order approximations of AL, Ar, and p are also very good except possibly
at 8 equal 0, =, and 27 (Figs. 8(c), 9(c), 10(c)). In contrast, the transverse and radial errors of
Ref. 1 apparently converge to multiples of the actual errors except possibly near 0, =, and 2 (Figs.
8(b), 9(b})); while v/Ar2, + ALZ, smoothly oscillates between one-half and twice the actual error
p (Fig. 10(b)).

11
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6. LIMITS OF THE RATIO OF THE RANGE ERRORS

To address the issue of whether the approximations converge to the transverse and radial
errors, analytical expressions for ArfAry, Arf/A, AL/AL;, and AL/AL,, are now considered
for 63 — 63 = 0. Evaluation of the limits of these quotients as y approaches zero for fixed 8 is treated
first. Then the limits as # approaches 0, 7, and 27 for fixed v are evaluated because the ratios
may be zero or may not exist. The behavior at these specific # for small v are then determined by

taking a second limit as vy approaches zero.
Equations {20), (23}, {24), and (28) yield

3

AL sing ¥, 1 . 7o 2 4
AL " Sin¢1{1+—8-c{)s g+ 00"+ [751119-— A sin § cos” & 4+ O{y )]

hY

9 1- 23 }
22 4+ 14 2z cos|{2wrfe){ ysinb — 2 ginfeos?f + O ¥4
i 3

1 -z 1
25 + 1+ 2z cos ((2&)?‘7/4:) sin B] f,

= 11+73iﬂ9

» A3
=<¢1l—coso 1+—Q—00529+O(74)+ {'ysinﬁ—?sinﬂcos?ﬂ—i—O(‘fi)]
ool A - s ’

1- 23
x 2 ; 72 2 4 )}
2+ 142z cos[(QwT,/c)(’ysmﬂ — - sinfcos? 8 4+ Oy ))}

1- 2
+ 1—cos¢1(1+'ysin9 “ )}
25 4+ 1+ 2z cos {{‘}Zw?"}'/c} sin H]

( ~2 3 .

AT ) r ~ - .
‘;{;b = sind)il + ;? cos® ¢ + O(+*) + lysin{? - ’g sin fcos” 8 + 0(’3/4)J
1- 2% }
x [ rtg\ f\f » ) ~3 . n LY S aYi A\\‘l
25 + 14 22 cos{{2wr/e)| ysinf — T sinfeos? § + O(y'} )} )
_ 2
+{'ycos€ L— 2% },
28 + 14 229 cos ({me/c) sin 3]
2 3
Ar =<¢l—cos¢|l+ T cost +0(v") + [’y sin @ — lsin9c0529+0(’¥4)]
Ara 8 ]
1~ 22 AR
I-%
: S )
72 + 14 2z9 cos [(20)7’]6)({'( sind — L-sinfcos? 0 + O(y‘*))]
J v sinf 1~z l

I 2 2241+2zcos I(Qw*r*y/c) sin 9J J

24
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Qbserve that

tan
lms=o,  lme =0, Jm iR @0
and consequently
lim L3 = lim s'ingi) = 1. (32)
4—0 ¢ ¥—0 sin ¢y
From Egs. (30(a}), (30(b)), (31), and (32), it follows that
%’13(1) AALLI 1 and 11_’1"% % =1. (33)

To determine the limit of Eq. (30(d)), an interim approximation of Ar/Ar, is now obtained.
For small v, cos¢ may be replaced by unity. In addition, all terms with  raised to a power
exceeding one are eliminated. Thus, Eq. (30(d)) becomes

2 {r—r+rysint
Afop 24+ 1+ 229 cos [(me/c)(sin 6')]

+{_r‘)/smé’ 1 -2 }, (34)
2 22+ 1422 cos[(2wr7/c) sin 8]
from which - ar ) 55)
40 Argp )

Next consider

AL sin ¢ 28 + 14 2z cos [(Qwr'y/c) sin 9]
ALy ~ ycost 1— 22

7 7
X ¢ 1+ gcos%’ +0(y"H + ['ysinﬁ - gsin9c0520+0(74)]

1—23
X cosf - ) (36)
22+ 14 22 cos[(mer/c) sin 9}

The bracketed expression to the right of the first times sign goes to unity as v — 0; so it remains
to ascertain the behavior of the term involving ¢. In particular, for small v (and hence small ¢),
sin ¢ is replaced by tan ¢, Eq. (20(a)) is applied, and the limit is evaluated to obtain

sin & 22 41+ 229 cos [(way/c) sin 91 1

li = lim = -,
11_1’1%} ALy 'v—u:) vy cosf 1 -z 2 (37)

The behavior of the quotients in Eqs. (30) for # equal to 0, , and 27 are now determined by
evaluating the limits as # approaches these values and taking the resultant limits, if possible, as 7

approaches zero.
2(1-=
Ar Y 4+ 1+z2 \/1+1‘

For fixed 7,
8—»8,1:'1,27:' AT‘] 1+ 12 ;+23; -1
Z

(38)
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for zp # 1, which leads to

2
Ar 14 %
]. m m — e -
ql—rﬁ{ﬁ—}é i Af'l } 1 (1 — Zﬁ) ’ (39)

Clearly this expression has an infinite discontinuity at zp = 1. Thus as zy approaches unity, the
limit of the absolute value of Ar/Ar; tends to positive infinity.

Letting 29 = 0.5 in Eq. (39) yields 8 for the absolute value of this double limit. Upon inspection
of Figs. 4(c) and 8(c}, one can see that the analytical and graphical results are in agreement for #
equal 8, 7, and 27.

In comparison, the limits of Ar/Ar,, as # approaches 0, 7, and 27 do not exist since

J1t+ % 1
, 1011112 Ary, =10 and , 13m2 Ar = r!l-— s {40)
-0, 2T —L, 7 hd

+:§f%l+zz;§

but in the extended real numbers,

l Ar }
Ary,

lim = +00. (41)
=07, 27

This is exhibited in Figs. 4(b} and 8(b), where the curves have sharp jumps at ¢ equal 0, =, and 27.

These jumps are similar to those of Figs. 4(c) and 8(c), except that in the present case, instead of

finite values for the functions at these 8, the functions are undefined and have vertical asymptotes.
The expressions for the ratios of the transverse errors are a bit simpler. More specificaily,

{ . . AL 1 yI+%

i + and lim = - : (42)
V 9—0,m2r AL, 2 14 42 (1—zp)2 ’ 142
4 1-!'20

lim
F—0,7m,27 ﬂ\Ll

where Eqs. {42) are valid for all positive zp. Hence

hm{ lim -é—J-L—} =1  and hm{ lim AL } = % (43)

=0l s-0,72x ALy =0 0,722 AL,

In general, as v decreases to zero, all errors become smoother, the first-order approximations
approach the actual errors, and Ar,, and AL, approach Ar/2 and 2A L, respectively, except near
f equal to 0, 7, and 2x. Hence AL, is eventually an upper bound for AL so that the transverse
error is less than ALg. On the other hand, Ar,y is double the actual radial range error for very
small v. Therefore Arg, and AL,y are not good estimates Ar and AL for small ¥ and ¢ not near
0, 7, and 27; however, the rejationships among them are precisely known.

All of these analytically derived conclusions about the behavior of the two sets of approxima-
tions for small 4 can be seen in Figs. 7 through 10. The first-order approximation to the transverse
range error AL is excellent {Fig. 9(c), Eq. {33)}, even for 8 near 0, 7, 2r (Eq. (43)). The radial
range errof Ary closely approximates Ar (Fig. 8(c)) except near 0, 7, 27, where the ratio increases
to a finite, nonzero value in accordance with Eqgs. (33) and {39). Lastly, the predicted relationships
{Egs. {35), {37}, {41), (42)) between the approximations of Ref. 1 and the exact range errors are
displayed in Figs. 8(b) and 9{(b).

Generally it turns out that the first-order approximations of the range errors are excellent for
4 € [0,0.000001], are good for v € {0.000001,0.0003], are fair for 4 € {0.0003,0.005], and are poor
for vy € {0.005,1.0]. Appropriate multiples of the range estimates of Ref. 1 behave similariy. Also
both approximations to the angular error are accurate for v smaller than 0.005.

22



NRL REPORT 9349
7. SUMMARY

Based on the assumption that the measured centroid of a two-point target is determined from
the phase 15 of the composite signal of the individual returns, exact expressions for the angular,
transverse range, radial range, and vector errors have been derived. These errors depend on six
parameters: the transmission frequency (27 f = w); the range to the centroid of the two scatterers
(7); the difference between the phases induced by each scatterer (6; — 4§, ); the ratio of the amplitudes
of the individual scatterers (2q); the angle between the line segment from the centroid to the radar
and the perpendicular bisector of the line segment connecting the scatterers (#); and the ratio of
the distance between the scatterers to the centroidal range (7).

Fxamples are analyzed for specific choices of f, zy, and §; — é; (10 GHz, 0.5, and 0 rad). Two
conclusions can be drawn from this analysis. First, the magnitude of the vector error—the distance
between the measured and actual target centroids—can be large even for small values of . In one
example where v = 0.00025, this error is three times the distance between the scatterers for some

target orientations ﬂY]’]I{‘]’] means the measured tarcet location conld he nFF hv three hnr.'lv lenoths

target orientations, which means the measured target location could be three lengths.
Consequently, the measured location can be well away from the actual target.

Second, approximate formulae for the angunlar and range errors, such as the far-field approxima-
tion to the geometry, should not be used in place of exact expressions without proper consideration
of the errors incurred by their use. It has been demonstrated that such approximations can diverge
substantially from the actual errors. In particular, the formulae of Ref. 1 may not be adequate
for representing the radial and transverse range errors when v > 0.00025, since these estimates
of the errors are twice and one-half the real values, respectively, for small ¥, while the first-order
approximations derived herein are inaccurate for v in excess of 0.005. Therefore when v > 0.005,
exact expressions or more accurate approximations for the errors must be used if one wishes to
get an accurate assessment of the range and angular errors. On the other hand, for v < 0.005,
the first-order approximations are valid. Even the radial and transverse range errors of Ref. 1
can be used, provided their relationships to the actual range errors are kept in mind. Although
a three-dimensional analysis both for two- point and V- point targets would be more realistic, this
two-dimensional analysis provides additional insight into the glint problem.

This analysis indicates that the glint phenomena may be caused in part by the inherent error

in the positional measurement. If this error is deemed significant and is attributable to a theoretical
formulation that resulted in the eqguations snecifvine nosition. then tha thaary shanld he revnmn

RASVEALAS MAALEL S RALANLAL 4L VUL LY UOAIUGS SR blia il PLAOLVILLy VLLDLL VUE pTAUL Y odivuiu v xcva,uxyed

to account for this. Even if the existing theory is correct, an explanation of this error should be
sought. The situation is complicated further by the introduction of an additional error through
approximations to the theoretical expressions for the position. Whether the combination of the
imherent and approximation-induced errors reduces or increases the measured positional error is
unclear. In terms of application to a radar system, errors of the magnitudes demonstrated herein
may be significant. For example, a 4° angular error for an incoming object could be very important.

8. REFERENCES

1. R. V. Ostrovityanov and F. A. Basalov, Statistical Theory of Eztended Radar Targets (Artech
House, Dedham, MA, 1985).

2. J. H. Dunn, D. D. Howard, and A. M. King, “Phenomena of Scintillation Noise in Radar Tracking
Systems,” Proc IRE 47(5), 855-863 (1959).

3. D. D. Howard, “Radar Target Angular Scintillation in Tracking and Guidance Sysiems Based

on Echo Signal Phase Front Distortion,” Proceedings of the National Electronics Conference, 13-15
O(‘[()I]PT‘ 195 Q I‘Tﬂfp] Sherman (‘hn‘nun T”lnnlc

149 VRS LRI INAA, litagl, AU

23



MOKOLE
4. L. A. Wainstein and V. D. Zubakov, Frtraction of Signals from Noise, Moscow: Soviet Radio
{1960}, translated by R. A. Silverman {Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

5. 8. G. Zubkovich, Statistical Characteristics of Radio Signals Reflected from the Greund, Moscow:
Soviet Radio, 1968,

6. L. Peters and F. C. Weimer, “Radar Tracking of Complex Targets,” Proc. IEE 110 {12},
21492162 (1963).

7. R. H. Delano, “A Theory of Target Glint or Angular Scintillation in Radar Tracking,” Proc.
IRFE 41 (12}, 17?8 1784 (1953).

8. A. §. Locke, Guidance {Van Nostrand Reinhold, New York, 1955).

9. L. Peters and F. C. Weimer, “Concerning the Assumption of Random Distribution of Scatterers
as a Model of an Aircraft for Tracking Radars,” IRE Trans. on Ant. and Prop. AP-9 (1), 110-111

(1961).

10. Ya. D. Shirman and V. N. Golikov, “On the Theory of Straying of the Effective Center of
Secondary Emission,” Radio Engineering and Electronic Physics 13 (11), 1821-1823 (1968).

11. J. V. Lindsay, “Angular Glint and the Moving, Rotating, Complex Radar Target,” IEEE Trans.
Aerospace and Electronic Sys. AES-4 (2), 164-173 (1968).

12. K. C. Yeh and C. H. Liu, Theory of lonespheric Waves {Academic Press, New York, 1972).

24



