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A NEW THEORY FOR IMAGE FORMATION WITH QUASI-HOMOGENEOUS
SOURCES AND ITS APPLICATION TO THE DETECTION AND LOCATION
OF ICBM LAUNCHES

1. INTRODUCTION

The detection of the launch of an ICBM-type missile by a hostile country toward the United
States is of serious interest to the "Brilliant Eyes” program. The most easily detected signature
from the launch of the missile appears to be the thermal radiation from the exhaust of the booster
rocket. This radiation can be expected to be bright and easily detected against the sky provided that
the radiation is not concealed by clouds, solar background, or other such phenomena.

The radiation from an ICBM booster rocket can be analyzed by the use of the quasi-
homogeneous source model developed by Carter and Wolf [1]. In this report, such an analysis is
done for the first time to compare the various methods that have been suggested for detecting an
ICBM launch and locating its position. In Section 2, a theory describing the basic imaging
problem is developed by using the methods of optical coherence theory with the quasi-
homogeneous source model. In Section 3, a generalized imaging system, which can be used to
describe most all of the imaging systems considered for the ICBM launch detection problem, is
described by use of this theory. Section 4 discusses the limitations of small imaging system
apertures on the resulting image and modifies the theory to account for this effect. Section 5
specializes the generalized imaging system to study the imaging properties of interferometers
(similar to the radio interferometers used for rudio astronomy). And Section 6 describes how the

generalized imaging system studies the imaging properties of the more conventional telescope.

This theory shows that the physics behind the operation of an interferometer based on a
Michelson stellar interferometer and the operation of a conventional telescope are almost identical,
In both cases, it is the second-order correlation function for the field fluctuations over the
instrument's aperture that contains the information required to form an image. In the case of the

Michelson interferometer, the correlations are carried out point pair by point pair and then
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W, H. CARTER

numerically Fourier transformed to give an image. In the case of a telescope, the imaging lens
Fourier transforms the field correlation function for all point pairs in the aperture plane and
produces an image intensity proportional to this transform. In both cases, the image is formed
from the aperture field correlations by Fourier transformation. Only the method for carrying out
this transformation is different in the two cases.

2. BASIC IMAGING THEORY
Consider a source of thermal electromagnetic radiation, such as the piume of a booster rocket,
that we want to image in some manner. Let the origin of coordinates be located near the center of

the source as shown in Fig. 1. The detectors for the imaging device are located over some region
of a spherical surface of radius R from the origin.

object / /7 /
lf

detectors

source free media

X-y plane
Fig. 1 — The geometry used for the calculations
We assume that the entire, infinite space in Fig. 1 is source free except for the object that we
want to image. We further assume that the object is much hotter than its surround so that it radiates

a thermal electromagnetic field such that any monochromatic, scalar Cartesian component of the
vector field satisfies the inhomogeneons Helmholiz equation [2, Eq. (6.54)]

(VP+(2n) U(X)=~4r p(%), Q)
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where p(X) is the source distribution within the object, and we express all spatial coordinates in
units of one wavelength of the monochromatic field component. The well known Green's function
solution to Eq. (1) over an infinite region devoid of any other sources is

ui= [[[px)e | 2- %27, (2)

source volume

[2, Eq. (9.3)], where the primed coordinates represent a radius vector from the origin to a point in
the source, and the unprimed coordinates represent a radius vector from the origin to a field point
within the half space to the right of the x-y plane in Fig. 1.

If the object can be contained completely within a sphere of radius @, then for any field point
X outside of the Rayleigh range of the source. we can approximate the Green's function in Eq.
(2) by the expansion [2, Eq. (9.7)]

ezmli-z'ljl f-—i’l - Iczmtil /|5c'|] o 2FETIR (3)
|5]>>2xa®

Thus, if the detector surface is well outside of the Rayleigh range of the source, we can represent
the field there by

uiz)= [[Jpire =% 7 (R, 4)

source votune
where R = x|,

We assume that the intensity of the radiauon field is measured by an array of detectors
distributed over a portion of a sphere of radius R from the origin in the far field of the source. We
further assume that the detectors are sensitive only within the infrared or optical range of
wavelengths and that, unlike typical radio receivers, they average over many coherence lengths of
the thermal radiation. We also assume that the field is ergodic so that the time-averaged field
intensity can be treated by using ensemble averages as is usually done in coherence theory [3].
Then the detectors produce an electric signal proportional to the optical intensity

1™0Z)= (U (INU™(E)]), (5)
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where the sharp brackets denote an ensembie average. To study the pr opagation of the field from
source 10 detector, we introduce the cross-spectral density function
W (%, %) =(U () (U (Z)]"), (6)

the trace of which is equal to the intensity. Upon substitution from Eq. (4) into Eq. (6), we get

(=33 2y 2=
W (5, %) = _”J‘ j_”wp(x;v X2)
source volume source volume
x g A E-RIIRY %d %, /R, {7)
where we define the source correlation function by

W,(%;, %) ={p(%,) p"(3,)), ®

assume that the source distribution is anasi-homogeneous 5o
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W, (30, %)= 1, 1% +5)12] p, (%~ %), ©

where I, (X}),1t,(X_) are the intensity and complex degree of spectral coherence over the three-

dimensional source, respectively. For a thermal source, it has been shown [4] that
t, (X ) =sin(2z{% ) / (2% )), (10)
in units of one wavelength.
By substitution from Eq. (9) into Eq. (7), we get [5,6]

W (RS, RS,) = L(5.) fi,(5,}/ R?, (D

for the cross-spectral density function over the detector array, where

6= [[fLene ey, 2@

source volume



NRL REPORT 9336

and

o Go= [[f e PR 12(6)

source volume

and where

X5 = x), (13)

in which §,=X,/Rand s, =X,/R are unit vectors from the origin toward the field points

X, and X,, respectively. Upon substitution from Eq. (10) into Eq. (12(b)), we have

i, (E)= HJ sin(2n|¢’

source volume

—21':1‘ iF, d 3101

. J-sm (2rr ) sin(27r 13 |) r2dr
27 2nr[5,|

= o[ sin2rr) sin2nr [5, ) dr.
Q0

= BT (14)

fi,(5)=C 5)

is simply a constant proportional to the volume of the object for a thermal source. Upon
substitution from Eq. (15) into Eq. (11), we have finally

W )RS, RS.)=C1,(5,-5,) IR~ (16)

From Eq.(16), it is clear that the cross-spectral density function is given by components of the
three-dimensional Fourier transform of the source intensity, This relationship is much more
complicated than it might first appear from Eq.(16). The principle complication arises from the fact
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that W “*(RS,, R5,) can be measured only over the surface of the sphere of radius R as shown in
Fig. 1, whereas f;,(&} —5,) is a three-dimensional spatial frequency spectrum of the source
intensity as shown in Fig. 2. Thus a single measurement of W “}(R5, R5,) over a portion of the

measurement sphere in Fig. 1 only gives data values for /,(5, = 5,) over a portion of a surface

within the three-dimensional spatial frequency space of the object intensity distribution I ”(X}), as
shown in Fig. 2. This is not enough information to perform the three-dimensional Fourier

transformation to caiculate the image 7/”(¥7). Thus it is easy to calculate W “(R5,, RS,)

iven 1,{5 —5,) but not so straightforward 1o do the inverse, which is what we need to do.
gl p g

It is the job of our imaging system to measure the cross-spectral density function
W (RS, R¥,) over the detector plane and fo use this information to find /,(X{). There are two

classes of imaging systems that can do this, interferometers and telescopes. In the following
sections, we describe both types of systems by using a unified theoretical approach to aid

comparisons.

Fig. 2 — Spatial frequency domain of F ?(Ei - §2)
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3. GENERALIZED IMAGING SYSTEM

Almost any linear imaging system can be realized by the generalized imaging system shown in
Fig. 3.

X-y plane opaque stop lens image plane
RFARN '
[

/ }

4
/=)
)
wib

1 |
+ ¥
I' II
N/ /
4
o — R —_— - f o
Fig. 3 — Generalired imaging system

This is not a design that is necessarily recommended for actual deployment, but it is extremely
useful for comparing the various capabilities of optical imaging systems since this system can
mimic almost any known stationary imaging system by the proper choice of holes in the opaque
stop. Notice from Fig. 3 that the object, which s assumed to satisfy all of the assumptions made
in the last section, radiates a distance R to the imaging system, which is assumed to be outside of
the Rayleigh range of the object so that Eq. (16) holds. The imaging system consists simply of an
opaque stop pierced with holes that occupies a porton of the detector plane in Fig. 1, a diffraction-
limited lens, and an image plane a focal length faway from the lens over which the intensity is
measured in some manner. If needed to simulate a more complicated optical system than we will
address here, the opaque stop can be replaced by  filter with a complex transmittance function T.
Then, as we will show, this generalized imaging system can mimic any linear, spatially stationary
two-dimensional system.
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As shown In Fig. 3, points within the object are indicated by the radius vector ¥’ from the

origin; points within the plane of the stop are indicated by the radins vector £ from the z axis
within the detector plane; and points within the image plane are indicated by the radius vector ¥
from the z axis within the image plane.

Equation (16) gives us the cross-spectral density function over the detector plane, which
contains all the information about the object that is present there. In the coordinates of our

generalized imaging system, this equation becomes

wE =g [[[r@)e s ttorg g an

source volume

The stop is assumed to be represented by a transfer function T E J such that the field amplitude is

modified by the relation

U,NE)=UNE)T(E), (18)

on passage through the holes in the stop. Upon substitotion from Eq. (18) into Eq. (6), we find
that the cross-spectral density function is modified by

W, OE, E) =<UJ “ENU, Eg}*}

- <{U “"‘)(é;) TENU &) TE)
£ LENT

) (19)

L
—
o

The diffraction limited lens can be assumed to take the Fourier transform of the field transmitted by

o Y D~ /8 _18\]

. e field amplitude over the image plane i
th 1€ SO [n4] Ihe Tieia ampiituce Over the unage planeis |/, BqQ. (0-10))

e sSiop oV

U, (%)= ‘T e 2R 450 12 ) J J Uf (E) o ImiEENS dzg‘ (20

00 =fHo
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Thus, by substitution from this equation into Eq. (5), we get for the intensity observed over the

image plane
LG = (U.6U (®)

:fl_2 J' j J ij(“’(ipﬁz) e'z"“[(gx'51)1+(T]1—711))’)]ff dzg}d 2&'2.

Upon substitution from Egs. (17) and (19) into Eq. (21), we have

o

o= [ [] e sty

- —eo  BWUILE YULUME

% T(&[)T‘(E: )‘_, eGP - NS d 2Eld 252_

Transforming coordinates by using

E =i +&)/2,
E = -&)
E=5+5 2
=5 -1

we get

[[reze 7tz
Equation (24) can be greatly simplified by intrixducing the modified Fourier optics operators

FLILEY = [[fracre 5 Rq 2y,

SOUTIT PR LTC

FT,[F(E_)]= J' jﬂg:_ ) e eI g 2F

3y

(22)

(23)

(24)

(25)

(26)
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and the incoherent transfer function

K(&)=] JTE +E /T ~E 1D d%,

—00 — bt

=T(E)®T(E), @2n

where the operator @ depotes an autocorrelation. Thus, by substitution from Egs. (25), (26), and
(27) into Eq. (24), we get

I(%) = +5% FLIFTL K (E ). (28)

Equation (28) locks almost like the mathematical description of a a general linear system except for
the mixture of two-dimensional and three-dimensional Fourier transforms. The effects of this must
be analyzed in more detail.

4. IMAGING SYSTEMS WITH SMALL NUMERICAL APERTURE

Almost any imaging system that is not very near to its object, like a microscope, has a very
small numerical aperture. We can safely assome this is the case for any imaging system we might
envision for the purposes of this report. Thus we can assume that all of the holes in the stop in
Fig. 3 are contained within a circle of radius . The transmittance function must then be given by

T(E)=0,if & +0° > b’ (29)

outside of this circle. Since the spatial frequencies for I,(%]) are given by

E/ R=(£/ R, n/R,[/R) according to Eq. (25), the stop will block all spatial frequencies except

those for which
(E/RY + (/R <(b/RY, where [ =+/RT—E% —7°. 30)
Figure 4 shows the location of these spatial frequencies. Figure 4 also shows that the domain of

available data is a portion of a sphere in spatial frequency space with a radius of unity parallel 1o
the & 7 plane at the origin and which projects a circle of radius b/R onto the & 7 plane.

10
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Fig. 4 — Domain of the three-dimensional spatial frequency spectra for the object
mtensity [p (55:_) The cross-hatched surface on the sphere illustrates the two-
dimensional domain that is available to form an image. The transparent circle is

the projection of that data onto the £ 1) plane.

11
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Since these spatial frequencies are all that we have, we must study what they can give us rather
carefully. To do this most easily, we begin by considering not the complete object intensity 7 (X])

but the projection of it onto the z = § plane within the object,

I, ¥, 0)= 1,8 dz’

U [ [ L&/Rn/RL/IR 9" a>E/ R dr’

il
e ]

&:_.,3

[ 1,& 7RI RLI Ry Sy VR [ R 4y > E /R

p

(E/R, M/ R,0) ™YV 4t [ RYd(M/ R), 3y

i
ét_.__,g an_‘g
é"-"—'-\ﬂ

which is the two-dimensional Fourier transform of only the spectral data over the & 71 plane (in

agreement with the well-known projection slice theorem).

From inspection of Fig. 4, we observe that for smalil enough b, the spectral data that we have
available is asymptotically the same as the data over a disk of radius b/R from the origin in the

& n plane. Thus, by Fourier inversion of Eq. (31), we have

o e
T/EID cn D DY £ [0, 0 0 2xilx’E+ y MR a0 10 3
AL L HAR U —J J & y,We ax 4ay, {2247
ol =G
an expression for the spatial frequencies over the & 7 plane. Since this is more than all of the

spatial frequencies that are available in an imaging system that has a small numeral aperture, we can
- replace the three-dimensional Fourier transform in Eq. (28) with Eq. (32) to get

(%= }TCF j j {J J.I{O’(x’, ¥, 0) gAY NIR et oy

w“ K(E—) g—zﬂﬁ-ﬁ'ﬂ-yﬁff d 2&;_5 (33}

12
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Finally, transforming to the unit vector coordinates § = (x /It ylf, — «\F —(x1fY - (31 f) )

and § = (x’/ R,y /R, \/1 —(x’/RY + (¥ R)l) from the center of the lens aperture toward

the object and image planes, respectively, we have from Eq. (33)

L(f$)=SFTFT[1"(RS)]K(E)], (34)

by using the conventional Fourier optics operator

o=

FTIF(E) = | [ Fiiye? & mgiE, (35)

Equation (34) is exactly the same as the well known equation describing the data processing by a
general linear, stationary two-dimensional system. To simulate such a system with the options
shown in Fig. 3, we need only require that the (sometimes complex) k(_E:_) function defined by
Eq. (27) can be physically realized. The input data to Eq. (34) 1s seen not to be the three-

dimensional intensity of the object /,{X ) but rather the projection of this intensity onto the z =0

plane [ ¢R5’). Thus all depth information is lost because of the limited data collection area on the

A useful property for comparing imaging svstems is the image of a point object, called the
point-spread function, To derive an expression for the point-spread function, we first apply the
famous convolution theorem [7, pg. 10] to Eq. (34) to get

MR SN EL IR RS T
e vag

"‘1
o~
&,
N,

il
=
—
=y 8
NaL!

[
JR

and then set the projected object intensity function /' ¢ R§) to a point object, i.e.,

'R = 87 (R, (37)

13
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in Eq. (36). We then substitute from (27), and use the autocorrelation theorem {7, p. 10] to get

h(E) =5 FTIKE W8 (- RY)
=% FTIK(E.)]
=& FTIT(E)® T E.)]

= ey
2

=Ll] frE)e™ " a% ] . (38)

—0ts — 0

Equation (38) gives the point spread function for our generalized imaging system when illuminated

by a quasi-homogeneous source. Clearly it is a function of only T{ Eﬁ J, the transmittance function
of the stop. By substituting from the second line of Eq. (38) into Eq. (36), we have the very
important equation

1(f5) = h(3) * 1'(-R5). (39

From this equation we see the importance of the spread function for analyzing imaging systems.
The image is just the object function convolved with the spread function. If the spread function
were a Dirac delta function at the origin, the image would be a perfect replica of the object. Since
this never happens, what we want is a system that has as sharp a peak as possible at the origin and
is as close to zero as possible everywhere else to minimize background noise to the image. We
will look for such systems.

We have developed the generalized system as much as possible without making assumptions
that limit its application. In the following sections, we will use this system to analyze the imaging
properties of several interferometers and telescopes that might be used as sensors for detecting and
identifying the target of interest.

5. INTERFEROMETERS
An optical interferometer is not really so different from an ordinary telescope within this

theory, although the manner in which the instrument is actually realized can be very much
different. To simuiate the operation of an interferometer, we use a stop (in the position shown in

14
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Fig. 3) that has small pinholes in it. The very simplest such stop would have a single pinhole on
the optic axis so that its transmittance function is given by

T(E)=8 (&), (40)

With this aperture, the generalized imaging system would behave as a pinhole camera, the lens
having no effect on the light from a single point other than a simple phase shift. This case is
actually very difficult to treat since it requires a geometrical optics limit to the diffraction theory
used here [8]. To do this requires that we set up the diffraction integrals represented by Eq. (34),
and then evaluate them in a special way by using the method of stationary phase. Since such an
imaging device isn't presently considered very practical (very little light is admitted through one

pinhole) and the analysis is very long and complicated, we will not pursue this case further.

The next case is with a stop having two symmetrically placed pinholes (about the origin) a
distance 4 apart so that the transmittance function becomes

T(E)=8(E—-d/2)8(n)+8(E+di2)8(n). (41)

This turns out to be a very important case for the purposes of this study. This is an analog to the
Michelson stellar interferometer (9, p. 275] and also the radio interferometer used as an element of
a radio telescope. For a radio telescope, the interferometer does not have the physical form of our
generalized imaging system with a transmittance function given by Eq. (40). It would not be
practical to build a radio frequency lens the size of the Earth's orbit about the Sun (the values of d
can sometimes be that large in radio astronomy), but the basic mathematical models for a single
element of a radio telescope and our device are the same. Upon substitution from Eq. (41) into
Eq. (38), we get

h(f)z—f%[2+200s(27rds1)], (42)

where

K(E)=8(E~d)8(n)+28(E)5(1)+ 8(E +d)d(n). (43)

This is the point-spread function for the Michelson stellar interferometer. Figure 5 shows a
simulation of this spread function obtained with the computer program Mathematica.

15
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Fig, 5 — Mathematica simulation of the point-spread function for

2 Michelson interferometer as given analytically by Eq. (41)

We note from Fig. 5 that the Michelson interferometer does not have a spread function that has a
sharp, single peak at the origin. Thus when this spread function is convolved with the object
function, it cannot produce an image. From Eq. {43), it is clear that this interferometer gives only
one spatial frequency component of the image so that for a point object (which contains all
frequency components with equal magnitude), the image is the single spatial frequency shown in
Fig. 5. This interferometer is used in radio astronomy because for radio waves, we are limited to a
very few point detectors (radio receivers) that are each very expensive (generally with very large
parabolic dish antennas). Thus the Michelson interferometer is mandated by physical constraints
as well as history. A radio telescope is made up of many Michelson interferometers each giving
the magnitude and phase of only one spatial frequency component of the required image. Spatial
frequency data are collected from many such interferometers untii enough are available to do an
approximate inverse Fourier transform to obtain the image. This method can be appiied to imaging
sources of quasi-homogeneous light as well as radio waves. There are some obvious advantages
to such an approach. The small area required to collect light for each of the two pinholes makes for
two, very light-weight, compact collectors. Images can be produced, of course, only if the light
received by the two collectors can be made to interfere; and also, if a common phase reference can
be maintained for the complex data from all of the interferometers. Some disadvantages of imaging

16
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| | [, |

with interferometers are the low sensitivity due to the small amount of light available to each
collector and the long time required to obtain i i

the image.

The next, more complicated interferometer would have three pinholes arranged at the corners of
an equilateral triangle with sides of length d. The transmittance function would then become

TE)

1l
o7
JYE

(YD — N
AV AN S

8(E ~2d /3)d(m+d /3)
8% +2d /33 +d/3). (44)

+ +

By substitution from Eq. (44) into Eq. (38) and evaluating the result numerically, we get the point-
spread fanction illustrated in Fig. 6.

Fig. 6 — Mathematica simulation of the point-spread function for

an interferometer with a three-point aperture as given by Eq. (44)
This interferometer gives us an image by using six spatial frequency components from the

object, which are equally weighted, plus a more heavily weighted DC component. From Fig. 6, it
is clear that there is no single, central maximum at the origin. Thus we still can't get an image

17



W. H. CARTER

from only one such interferometer. To my knowledge, no work has been done on the use of an
array of such interferometers to form an image by the sort of aperture synthesis used in radio
mterferometer. Isolating the six spatial frequencies from each interferometer might be a problem.

The next, more complicated interferometer would have four pinholes located at the comners of a
square box so that the transmittance function would become

T(E)=8(& ~d)8(n-d)
+8(& - d)6(1 +dj
+8(E+d)b(n —d)
+3(E+d)d(n +dj. (45

Upon substitution from Eq. (45) into Eq. (38) and again by using numerical evaluation, we get the
point-spread function illustrated in Fig. 7.

Fig. 7 — Mathematica simulation of the point-spread function for

an interferometer with a four-point aperture as given by Eq. (45}

18



NRL REPORT 9336

For the four-pinhole interferometer, the image is made up of ten spatial frequency components;
a DC component weighted 4, four components on the Cartesian axes weighted 2, and four on the
diagonals weighted 1. Since Fig. 7 shows no single maximum at the origin, this interferometer

also gives no image if used alone.

We will define an interferometer (as opposed to a telescope) as an optical system like those
described so far that do not form images. This is not to say that data from an array of such
interferometers cannot be used to form an image, as is the case for the Michelson interferometer
used in radio astronomy. This definition applies to a single interferometer. If we increase the
number of pinholes enough with a center of symmetry at the center of them, we eventually find that
the spread function has a large maxima at the origin so that a true image forms when the spread
function is convolved with the object function. Such systems will be called telescopes and are the
subject of the next section.

6. TELESCOPES

A telescope is simply an interferometer that has a sufficient number of pinholes in its aperture,
symmetrically arranged, such that its point-spread function has a strong peak at the origin.

The first telescope that we will consider has a "wye" aperture with a transmittance function
given by _
T(E) =0(8) step(m)
+step(-1) ¥(E-1/2)
+step(-M) 8(€ +M/2),if & + n* <&,
= (}, otherwise. (46)

This instrument is a simple extension of the three-hole interferometer described above that has a
continuous distribution of pinholes added along the lines in the directions from the origins to the
three original pinholes. When observed in the x-y plane, this aperture forms an upside-down letter
wye. Upon substitution from Eq. (46) into Eq. (38), we obtain the spread function shown in Fig.
8. From this figure, we notice that the addition of the extra pinholes has produced a strong peak at
the origin. Thus the image formed by convolution of the object function with the spread function
shown in Fig. § (as described by Eq. (39)) is a recognizable replica of the object. The resolution is
limited by the diameter of the central peak in Fig. 8, and the background noise is limited by the

MeaDg 1S p) Ll |

rather significant side lobes. This is the price that we pay for the limited number of pinholes in the
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aperture. But, at the same time, we gain the advantage of a very lightweight system since light

need only be collected along three one-dimensional collector arrays.

Fig. 8 — Mathematica simulation of the point-spread function

T Sy S, P PR,
IOT & Wy€ apeilure as given

A system with better resolution and noise can be realized without much additional weight by a
telescope with a narrow, annular aperture with the transmittance function given by

T(E)=8(JEX+ 0" —d)/d. 47

By substitution from Eq. (47) into Eq. (38), we obtain the spread function shown in Fig. 9.
Comparison of Figs. 8 and 9 make the improvement in noise apparent.

The best, general-purpose telescope is, of course, the filled, circular aperture that has been

conventional since Galileo's time. This instrument has a transfer function given by
o o

T(E )= cire(xJE + 07 /d). (48)

20
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Fig. 9 — Mathematica simulation of the point-spread function for

a thin, annular aperture as given by Eq. (47)
By substituting from Eq. (48) into Eq. (38), we get the famous Airy disk pattern

h(f):—f‘%[ZJ,(xdx)/(ndx)]z, (49)

which is illustrated in Fig. 10. The smallest interval in the object that can be resolved in the image
after convolution of the object function with this spread function is given by the well-known

5=0.61 f/d, (50

in spatial units of one wavelength, which is easily calculated from the width of the central lobe in

v th
|3

tha
11

g it rivac
Hus it gives uic

least noise. It also, however, requires the largest aperture. For a refractive system, the weight of

(4]

the lens alone rapidly becomes impractical as d is increased to improve the resolution as given by

Eq. (30). For a refiective systern, the primary mirror 1s much lighier than a lens, but stili gets
heavier and heavier as d is increased. Thus, a trade-off must be sought between weight and the

21
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added noise effects and loss of light from a sparse aperture. These are very practical engineering
problems involving detailed design and materials technology well beyond the scope of this tutorial
treatment of basic imaging theory; however, the theory developed here might be of some use in the

design.

7. CONCLUSIONS

.

We see easily from this analysis that the method for forming the image by using an
interferometer and a telescope are identical from a purely theoretical standpoint, as based on the
model developed in this report. In both cases, it is the cross-spectral density function in the
aperture plane of the instrument that carries the necessary information to obtain an image.

22



NRL REPORT 9336

In the case of the Michelson stellar interferometer, the complex degree of spectral coherence is

nnnnnnn A grmprifioally

2 Ty 1QiT e 4 Fig. 5. From the measurement
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of the relative modulation depth and phase shift of the illustrated sinusoidal pattern at the origin in
this figure, the amplitude and phase for the cross-spectral density function for points in the aperture
separated by d, the distance between the pinholes in Eq. (41) can be determined. Such data are
collected for all possible values of d within the aperture of the instrument, and these data are then
Fourier transformed into an image of the object as described by Carter [10, Eq. (5.1)). This is the
way that a radio telescope is operated.

For an ordinary telescope, the imaging lens systems performs exactly the same operations as
described above for the radio telescope. The lens performs a Fourier transformation on the cross-
spectral density function over the aperture plane as given by Eq. (21), which yields the image over
the image plane.

Clearly, from the point of view of this model, the systems are identical. They only differ
physically in the manner in which the Fourier transform of the cross-spectral density function over
the aperture plane is taken. One would expect similar image quality from either approach to
imaging so long as the available data from the aperture plane are the same. Some differences
would arise, of course, because of the very different physical limitations of the two systems to
detect the cross-spectral density function precisely and perform the required Fourier transform.
Comparisons of the image quality for a telescope and an interferometer based on an analysis of the
actual physical limitations for the two systems would require detailed systems designs and is
beyond the scope of this theoretical analysis.

Information concerning the detection and location of the booster rocket might be obtained from
a very limited number of interferometers by using point-spread function patterns of the type
illustrated in Figs. 5, 6, and 7. This might be an interesting approach for study since it might

achieve the goals of the "Brilliant Eyes” system with less size and weight than that required for a
conventional telescope.
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detect the cross-spectral density function precisely and perform the required Fourier transform.
Comparisons of the image quality for a telescope and an interferometer based on an analysis of the
actual physical limitations for the two systems would require detailed systems designs and is
beyond the scope of this theoretical analysis.

Information concerning the detection and location of the booster rocket might be obtained from
a very limited number of interferometers by using point-spread function patterns of the type
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