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AN IMPLEMENTATION OF
THE SINGULAR VALUE DECOMPOSITION
ON THE CONNECTION MACHINE CM-2

1. INTRODUCTION

In recent years, the singular value decomposition (SVD) has become an important tool for
modern digital signal processing to find higher resolution and more accurate algorithms to extract
underlying signal and system parameters from measurements. The SVD implemented in the LIN-
PACK [1] scientific library was designed for a serial or vector machine and is not directly portable
to the Connection Machine, which is of data parallel architecture. A parallel version of the SVD
is explored here.

In Section 2, the definition and important properties of the SVD are briefly stated. Section
3 reviews previous implementations of the SVD. Section 4 describes the implementation of the
algorithm on the Connection Machine. Details of the algorithm and results are also given.

2. THE SINGULAR VALUE DECOMPOSITION

If A is a m X n matrix of rank r then there exist real orthogonal matrices U = [u;u;...u,;] and
V = [vyV;...v,] such that A = UXV* where

5 = UIAV = diag(o1,02,...0,) 0 ,
0 0
r < min(m,n) and 0; > 0;41 > 0 for ¢ = 1,..,,r — 1. The o; are the singular values of A and the
corresponding vectors u; and v; are respectively the ¢th left and right singular vectors.

The most valuable aspects of the SVD for digital signal processing are in the rank and the dyadic
decomposition properties. The rank property says that the singular values can be considered as
quantitative measures of the inexact arithmetic measures of the exact mathematic notion of rank.
The dyadic decomposition describes a matrix as the sum of r rank-one matrices of decreasing
importance, as measured by the singular values:

Rank property: rank(A) =r whereo; 202> ... 20, >0

.
Dyadic decomposition: A = ¥ o;u;vi

=1

Manuscript approved January 30, 1991.
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With these properties, the application of the SVD to signal processing and to a wide variety of
other systems is often where a linear model is constructed from a sequence of observed data vectors.
The complexity of the system is reflected by the rank of the data matrix, and the parameters of
the model may often be extracted from certain subspace spanned by singular vectors.

These techniques and their applications to many problems are reviewed in Refs. 2 and 3. For
example, the linear Jeast squares method uses the SVD to find a vector of model parameter x such

o

that the system output A X is as close to the actual observed output b as paSSlbl.e

x = Ath,
. i Fe-1 a1
the pseudo-inverse n X m matrix At = VEtU?, with B+ = l o o J .

The SVD and the Generalized SVD [4] serve as the basis for ESPRIT [5], a technique devel-
oped by Roy and Kailath for applications such as direction-of-arrival {DOA} estimation in which
estimates of the spatial location of multiple sources whose radiation is received by an array of
sensors are sought. While somewhat less general than the well known MUSIC|6] method, ES-
PRIT should prove to be more practical because it does not rely on complete knowledge of the

Ref. 5, a factor of 1{)5 reduction of number of multlphca.tlons over MUSiC was estlmated for
a twenty-element sensor array employed to cover 10 signals in an aperture of 2 radians in both
elevation and azimuth, with one milliradian resolution.

3. PREVIOUS WORK

Theoretically, the SVD may be performed directly following the observation that the singular
values g; are simply the nonnegative roots of the largest eigenvalues of the matrix AAY, and the
singular vectors u; and v; are the corresponding eigenvectors of AA? and AfA. In practice, the
ioss of numerical precision becomes so severe that smaller singular values are rendered incorrect

7).

The most widely used algorithms used on serial machines are variants of those proposed by
Golub and Reinsch {8] and Golub ard Kahan ]9}, in which the given matrix is bidiagonalized, then
the QR method is used to compute the singular values of the resultant bidiagonal form. This
method is inherently unsuitable for paraliel processing {10,11).

The one-sided Jacobi method credited to Hestenes {12,13] and the two-sided variant [13,14)
that were superseded by the Golub serial algorithms are apparentiy suitable to paraliel process-
ing because all row-pairs in the matrix may be processed concurrently and each element of each

row may also be operated on during the rotations. In the Jacobi iteration process the pair-wise
rotations must be done in a narticular order for the nrocess to converge. The standard fvrhf-

PRSI L) b T poe il ARt 1= Reas SAAAL Y A = 4iS 2Lglilial

by-rows method for Jacobi iteration {15}, which involves the sequential processing of row-pairs
(1,2),(1,3),..,(1,m),(2,3),(2,4),....(2,m), ...,(m — 1,m) is not suitable for concurrent processing

because of the obvious data dependency. Many other methods to process row-pairs concurrently

nnn wnvtaurnd S Daf 18 Tha nasmntntinm cohama Aacerribhad in thic ranart o alin +m tha 1\1;1‘\1\!{3:2;‘\?4‘
QLT JTVYVITYYOLL 1L ILCi. 1V, L ILT Pclllluﬁa’ﬁiull PLILTIIT UTOLLIUGAU 1L viLIo JGP\JJ b IQ GRIIL VW VLY VU WVILTOVL Y

algorithm [17] in which each neighboring pair is transformed by a rotation that leaves the larger
{in the norm sense) row on top.
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Ewerbring et al. [11] implemented a similar algorithm on the Connection Machine using a par-
allel variant of Lisp. Their report did not state the execution time. The implementation described
here is in Fortran, maps more matrix elements io a processor and uses a different permutation
scheme.

4, IMPLEMENTATION OF THE SVD ON THE CM-2

The massively parallel computer CM-2 on which the code runs is described in Section 4.1. In
Section 4.2, formulae to generate the rotation matrix and the permutation scheme are described
in detail. Results are discussed in Section 4.3. The Fortran code is included in the Appendices.

4.1. Connection Machine CM-2

Initially, the Connection Machine machine model was a single instruction multiple data (SIMD)
array of up to 64K (K=1024) bit-serial processors connected by a hypercube bit-serial interconnect
network. This paradigm is natural and useful in a number of applications, such as the method of
discrete simulation of fluid flow [18] in which each processor is mapped onto a “cell” of the fluid
buu_y which interfaces Oﬁlx_y with a number of I‘leig}‘nb(‘ﬂ‘ cells.

In the second generation CM machine [19], a 32-bit or 64-bit Weitek floating point arithmetic
unit (FPU) was added to each group of 32 processors to provide fast single or double precision
floating point capability.

The virtual processor concept allows automatic mapping of problems that require more nodes
than are available in the physical machine. In this virtual processor mode, every instruction is
executed n times, where the vp ratio n is the ratio of number of problem-domain nodes to the
actual number of processors. The problem size is thus limited by the amount of memory in
each physical processor. At the Naval Research Laboratory Connection Machine Facility, the 16K
processor double precision CM-2 has 1 Megabit of memory per processor.

The core of the machine operation is in downloadable microcode. User programming languages
include an assembly language called Paris and parallel versions of other common high-level lan-
guages (HLL): *Lisp, C¥ and CM Fortran. CM Fortran is based on Fortran-8X, which is similar to
Fortran-77, augmented with array operations.

The recently introduced slicewise Fortran compiler used for this work employs a different ma-
chine model. The machine is presented to the compiler as up to 2048 depth-4 pipelined floating
point nodes; each node is a 32-bit or 64-bit processor. For certain problems, this machine model
produces compiled codes that are two to three times faster than the fieldwise modeled compiler by
streamlining of data in and out of the FPUs, and by using in-place FPU calculations.

The theoretical single precision, peak floating-point performance of a full (64K) CM-2 is 27
GFLOPS, assuming that all of the floating point chips in the machine perform a multiplication and
an addition every clock cycle. On a full CM-2 with 32-bit FPU and microcode version 5.0, Levit [20]
reported a much lower peak performance of users code without interprocessor communication. This
so-called memory-bandwith-bound peak performance is cited to be 5.17 GFLOPS. For a 16K 64-bit
FPU, roughly 800 MFLOPS is expected for the communication-free portions of the code. Grid
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communication (between power-of-two interprocessor points) is only 73 MIPS (in terms of number
of 32-bit words communicated per second) at vp ratio 1, to 1375 MIPS for adjacent communication
at a high vp ratio. The fast Fourier transform (FFT) has been coded and is reported to execute
at a sustained rate of more than 1 GFLOPS for very large FFTs on a 84K CM-2 [21].

4.2. SVD Algorithm

Consider mapping each element of a real matrix A of size m X » onto a node on a 2-D array
of virtual processors on the CM-2. Transformations of the matrix that require change to the value
of each element may take place on all processors simultaneously. The Hestenes one-sided Jacobi

HY VRS Uy R & AR (. T % . I,
AVCI il AR MILVERL CARIVILD RIS CUHLGUTTEIILY.

One-Sided Jacobt Rotation

[
Denote a matrix A in R™*” ag A2 *? 1o emphasize that 2-element matrix operations are to
be performed on the & pairs of the n-element rows.

In Hestenes’s construction of the SVD, two rows of the matrix are rolated to be orthogonal
than narmnutad with arthar rawe 1 rontinas tha neacnss antil all aro mutually astharnnal Thic ie
WLEAL PRI LA WYV UGt LU0V D v LVLLILUY vt PIVATOL Wilvil el G Liiuvudaiy WL vaiURisaikis L LU0 a2

achieved by multiplying each pair of elements from the row pairs by a sequence of rotations {Rs},
R = R;{én. The rotated resuit is stored in a matrix H = H;"x“.

The product of the rofation matrices is constructed by applying {Ri} to an initial identity
matrix I = [? *™ during the iterations, The result is kept in matrix U

where my
7 Xm By 2 xm
(U™ = TIRaES" ()
k

Note that in Eq.{ 1), the rotation matrices Ry are replicated m times in each row to match the
dimensions of 1.

After normalizing each row i of H by its norm o;, H = [h; hz...h{-..hm]i may be factored into
as a product of a pseudo-diagonal matrix (a diagonal matrix concatenated with null rows) X and
an orthonormal matrix V?,

t 3
H = {hhs. bbby = EVE {2)
where
{‘n-‘—n,"‘;!__l— - ~lh |l — ~ ~ D
{ll‘_l -— Ul -I_ 1][‘1 — U‘-ll :’__ lllrl — Ur - \J,
vi= . t
= [vive.Vin Vil
where

vi = {hi/gia 1= D
h 6,i>r
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> - diag(oy,00,..0,) 0
] 0
In Egs. (1) and (2), since U? and V are orthonormal and £ is pseudo-diagonal, we have the
defining equation for the SVD:
TVi=UlA (3)
Two rows x apd y are to be rotated into rows X and Y, respectively by using the premultiplier

(3)=r(0) = (o me) (5)- (4

The first criterion for selecting a value for the rotation angle # is for the resultant rows to be
orthogonal:

X'Y =0. (5)
Defining
a = x'y
Bo= xP-IyP (6)

v = (a® 4 Y8,

and substituting the expansion of the right-hand side of Eq. ( 4) into Eq. (5), we have

tan2f = %

8
cos28 = &+ ~ (M)
sin2f = :i:% = 2sin 6 cos 8.

The + sign ambiguity corresponds to the % ambiguity of 20 which can be resolved by an
additional constraint that the norms of the rows hecome more nrr]m-]v fhrn-nrrh each rotation in

order for the rotation process to converge. In fact, it will soon be shown that the + sign for cos 26
and sin 28 results in a rotation that puts the larger norm on top while the - sign results in the
smaller norm on top.

The rotation matrix coefficients may then be derived from the above using the half-angle
trigonometry identities. Thus:

cosd = :i:(ﬂg-‘ﬁg)% = i(%ﬁ)% o)
sin = x(l=ee2yr o p(x=h)3 R

An arbitrary limitation of @] <  has been found to help in the convergence [22]. In Eq.( 8)
this limitation is imposed by selectmE the positive value for cos 8. The sign of sin 8 is the
that of sin 26 which is determined by the sign of a.

To see the significance of the sign for cos 26 and sin 26, calculate the change in norms of the
TOW, Say X!

XX -x'x = Zasin2- Ssin?

- ii _ pa=B _ 2o?—~p4p? (9)
- 2 ’6 2y 2y :
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If a + sign is chosen in place of the % in the BEq. { 9), the charge in norm becomes
- ﬁ

2

XX —x'x = {(10)

in which case, |x| has increased since the right-hand side of Eq. (10} is greater than zero (The
case of ¥ = f is considered separately as discussed below). A similar proof may be carried out for
yiy - Yy,
XX — x'x = yly - Y'Y = 7—;—’3-20. (11)
If a - minus is chosen, Eq.( 10) becomes -3—42'3, which is £ 0.

Numerical Jssues

Equations {8) should be used carefully. Specifically, avoid the case when (v £ 8) requires a
subtraction that results in a loss of accuracy. An improved algorithm to construct the rotation
matrix R is:

If3 >0, calculate cosf = (3’2—4;’2)% then calculate sinf = 52

7 ' 7 (5L (12)
K <0, calculate sinf = sign{o)(3FE 12

W=

then caleculate cos® = Eﬁ"n'&

On a digital computer, the orthogonality condition in Eq. (5) can be satisfied to within a
quantity equivalent to the norm of a null row. The orthogonality condition (based on Ref. 22} is:

x'y < & min{jxl,y{) (13)
where
b o= €Al 1
= (g }i ag}) : {14)

The single precision (32-bit) and double precision {64-bit} floating-point machine precisions are
1.17e — 7 and 2.22e — 16, respectively.

IWhows +ha ~AT nith
When the norm of either vector becomes less than §, the rotation becomes meaningless and

could be avoided. On a conventional machine, avoiding these calculations may reduce computation
time. On the CM-2, however, no saving is expected because the entire array has to be operated
on. Taking note of the occurences of null norm and of orthogonal row-pairs, however, serves to
establish the stopping criterion of the iteration, namely:

Stop when for all row pairs (xi,¥i),i = 1,... 5,
X <8 or |yl <6 or (xly:) < §minlx], [y:l). (15)
The calculation of the norms of the rows in Eq. (6) is expensive in ferms of execution time on
the CM-2 because of the interprocessor communication involved in adding the square of the row

elements, each assigned to a virtual processor. Alternatively, new values may be computed from
the elements of the rotation matrix R and the current values of the square- norms. The loss of
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1 22 4—=4 3—=3 1—1
2 1 4 2 3 4 1 3 2
3 4 1 3><2 1 4 2 3
43 _.3/811 2_.2/\4_. 4
(a)
odd sweep even sweep

®) (©

Fig. 1 — Permutation scheme to visit all row pairs in a sweep. (a) The general structure is similar to a bubble-
sort using neighbor exchanges. Rotation followed by exchange achieves the required sorting effect that makes t}'le
permutation scheme converges to a bubble-sort. (b} The rotation tends to put the larger {(norm) IOW OR top, thus in
an odd sweep, an exchange is required after rotation to permute the rows. ¢} In an even sweep, the inputs must first
be exchanged so that the order is enforced after the subsequent rotation.

accuracy in this calculation is sufficiently smali for the algorithm to converge—care must be taken
to avoid calculating the norm since it would mean taking the square-root of a negative real number.
Experiments with the code showed that there was no convergence penalty in terms of number of
sweeps.

Permutation Scheme

On the Connection Machine, high-speed algorithms must be designed with special care in the
agsignment of variables that reside on different processors. A general assignment takes on the order
of a millisecond to send data between arbitrary processors, while an assignment using specialized
communication calls, such as ¢shift to exchange data in a systolic manner, is an order of magnitude
faster. Special hardware is used in the high speed execution of a set of specialized communication
utilities that includes scan, global, reduce, spread and multispread to implement the broadcast
and/or accumulation of values to/from n processors.

The desirability of the nearest-neighbor systolic communication and the mesh layout of the
matrix leads naturally to a pairing scheme as illustrated in Fig. 1 (a). For the purpose of illustration,
that the rows are placed in descending order (from left to right) according to the vector norm, i.e.
[x1| > |x2| > ... > [x|. The rows are then exchanged pairwise: (1,2),(3,4),(5,6),...,(m — 3, m —
2),(m - 1,m}to become (2,1), (4,3),(6,5), ..., (m — 2, m — 3),{m, m — 1). In the next iteration, the
process is repeated without the first and m—th rows: (2),(1,4),(3,6), ...,(m — 3, m). The iteration
repeats even—odd for a total of m cycles (a sweep) after which all pairing of the rows (1,...,m)
have been visited and the norm ordering is reversed, i.e. m,m —1,...,2,1.

If the row norms are not ordered, the same sorting effect described above can also be achieved
if each pair is exchanged conditionally on a particular ordering. When the conditional pairwise
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exchange is followed by neighbor swap, we have a permutation identical to that in the familiar
bubble sort algorithm.

The rotation with matrix R (Eq. (4)) also converges into a bubble-sort transformation because
of the ordered-norm conditions described in Eq. (11). For each row-pair (x,y), as |x] keeps in-
creasing and |y| keeps decreasing, eventually x| > jy|. Experience with this SVD algorithm shows
that this ordered state is usually achieved in the first couple of sweeps.

Fig. 1(b} illustrates this concepi: in each of the m stages of an odd-numbered sweep, each
TOW-pair is shown to feed into an oval icon representing the premuitiplication by matrix R. After
the rotation, the results are interchanged to realize the bubble-sort.

In Fig. 1{c) which illustrates an even-numbered sweep, each input row-pair is unconditionally
exchanged before entering the rotation icon. The necessity of this step is clear if one keeps in
mind that the rotation tends (over a few iterations) to make the norm of the upper output 1a.rger
than that of the lower. Upon entering an even-numbered sweep, if this exchange is not made
to put the larger norm row on top, the subsequent rotation would effectively undo the rotation
of the preceding odd-numbered sweep. In the even-numbered sweeps, no exchange is required at
the output because the output norms ordering is to be reversed from the order produced by the

PIUViUub IULdUlUIL \Idi'gﬁf UL I l'Up)

An alternative approach is to use a different set of values for R such that the rotation will result
in a smaller norm on top. This requires a change in Egs. (12) that involves reversing the sign of
{3 and the order of calculating cos# aiid sin f. The simple mapping of one-floating-point procsssor
node per matrix element actually uses only half the resources for computation because the rotation
of each row-pair is identical for each of the elements of the pair. The solution used here is to assign
a Tow-pair to one processor-row to make full use of all processor nodes for actual calculations.
More Sigﬁu{cantg}f, the number of Jméfprﬁcessm cominunication steps is reduced pf@péﬂxonmzy,
this should significantly reduce execution time. In fact, experiments showed this improved mapping

reduced the execution time by an order of magnitude.

Matriz Shape

As indicated at the beginning of Section 4.2., if the matrix A is m x n, then U and V are
m X m and n X n, respectively. When m # n, the constructive algorithm described above becomes
somewhat cumbersome for the 2-D layout on the CM-2. If m is slightly more or less than n, the
matrix A may be simply padded with jm — n} null rows or columns. However, if m » n, the
algorithm will have to be modified to avoid working directly with the large m X m matrix U. In
this case, U* may be internally processed sequentially as 2 matrices, each of size m X n. See

Appendix B for defail. N

4.3. Results

A CM-Fortran subroutine was written according to the algorithm and requirements presented
in the pre{:eding section. Appendix A contains the source codes for the subroutine that is specific
IDI’ tRE case OI Ty o2 9t APPBIL{HX B coma.ms a mocuneu VEISIOII QI APPEILUIX A Iﬁi’ ’Gﬂe géﬁﬁfiﬂ Case
of m > n. Appendix C contains source codes for a test driver. The codes were tested on random

real matrices. The Connection Machine used was a 16K CM-2 with 64-bit FP1.
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compiler. The LINPACK codes were run on a very lighltly loaded Sun-4/280 and one processor of a Convex C210.
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The normalized residual error after 12 sweeps was on the order of 1e — 16,

Double Precision
Size | Machine | # processors | exec time | # sweeps
512 | CM-2 16K 280 sec 12
256 | CM-2 16K 39 sec 12
512 | Convex 1 141 sec
256 | Convex 1 21 sec
256 | Sun-4 1 305 sec

In Table 1, the execution times for m = n are compared against the execution times of the
LINPACK dsvdc codes on one processor of a Convex €210 and a Sun/4-280. Both the Convex and
Sun/4-280 codes were compiled by using the respective Fortran compiler with optimization; loads
were minimal. The codes for the general cases where m > n were slightly slower.

Table 1 shows that the LINPACK implementation on one procressor of a Convex C210 is 2
times faster than the CM-Fortran implementation on the 16K CM-2 at m = n = 256 and 512, A
full (64K) CM-2 is expected to run between 3 to 4 times faster than a 16K CM-2. It is reasonable
to conclude that the CM-2 and Convex implementations are comparable in execution times.

For a great majority of runs on random matrices, the number of row rotations begins to drop
computing

Error = max |A — USVY|. (18)

Errors in the CM-2 runs were on the order of le-14 for double precision and le-5 for single precision.
After normalizing by the F-norm of A, these errors were on the order of the respective machine
precisions. To gauge the efficiency in the usage of main hardware components (the FPUs), the
number of floating point operations in the innerloop of the Fortran code (subroutine svdcore in
Appendix A) was counted. By using a weight of 4, 2, and 1 for square- root, division, and
multiplication /addition /logical respectively, the FLOP count @ = 100 per virtual processor per
loop per sweep. This included 20 for the calculation of 3, v and the conditions for rotation (Eq. (6)
and (15)), 40 each for # > 0 and § < 0 for the calculation of cos #, sin # and the subsequent rotations
according to Eqs (4) and (12). (On the CM-2, either-or code segments are sequentially executed
and thus must be counted towards the FPU usage.)
m

QFLop = 100(—2~n)mI, (17)

where I, is the number of sweeps. By using Eq. (17) and the results of Table 1, the throughput

rates for the double precision runs are 258 and 288 MFLOPS for matrix size 256x256 and 512x512,
respectively, on the 16K CM-2.

Interprocessor communication associated with the calculation of the dot product of the row
pairs (e in Eq. (6)) and the systolic communication steps was timed to be 30% and 22% of the
total execution time for n = 256 and 512, respectively. After accounting for the communication
time, the performance shown in Table 1 is within a factor of 2 to 2.5 of the peak-memory-bound-
performance of the machine.
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Table 2 — Execution time per sweep (seconds). The prereleased slicewise Foriran compiler with some unrolling of
codes to streamline the inner loop improved execution times by 1.7 and 1.3 times for the smaller vp ratios (n = 256
and 512 respectively),

Double Precision
Size | Fieldwise § Slicewise, unrolled | Fieldwise, unrolled
512 35 23 30
256 7.5 3 b

Table 2 shows the execution time per sweep in units of seconds for the cases m = n = 2586

PR Iy 4 1 3 R R gt i I o b W G o S SO at + ATS SR E o Ty 1 . r

alll 9l DY eliTOE VETSiONs O1 viie L Yoriran coge on the lon UM-Z. 1he pDest periormance was
achieved when the matrix was laid out in slicewise mode and the inner loop was unroiled to remove
conditionals that fragmented the code.
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Appendix A

CM FORTRAN CODE FOR SUBROUTINE SVD OPTIMIZED FOR m ~n

N.B.-The main subroutine svd contains 5 units: svdcore contains the main Jacobi rotation codes;
two2one allocates arrays on the CM two row-elements per processor while one2two performs
the reverse process; evaluatel calculates the S and V matrices; evaluate2 calculates the residual
error. In this unrolled version, svdcore similar chunks of codes are sequentially repeated 4 times,
one slightly different from the others. This is to avoid invoking if-then clauses that would otherwise
fragment the resulting codes.

b SEEREEENS

subroutine svd (ab,ub,vb,sv,m,n,irank,isweep,eps)

c Author: Nhi-Anh Chu

c Connection Machine Facility

C Code 5153, Naval Research Lab

c Nov 9 1930

C Revised Jan 3 1991

c ab -- 2m x n matrix A, to be decomposed into singular values

C av = diag (S) such that 4 = (U 5 Vt)

c ab is returned as (Ut A) where Ut is product of Jacobi rotation
c matrices on (At A)

¢ ub -- 2m x n matrix returned with Ut

c vb -- 2m x n matrix returned with Vt

C 8v -- 2m-vector returned with diag(S), the singular values of A

c irank -- integer returned with the rank of A

c isveep -- integer returned with number of sweeps of the rotations;

c each sweep orthogonalize every row-pair combinations of A

c eps -- real number specifying the machine precision, used to determine
c a "“zero"

integer m, n, irank, isweep

real ab(2«m, n), ub(2*m, n), vb{2%m, n), sv(2*m)

real eps, deltas

real a(m, n), ap(m,n), u(m,n), up(m,n), v(m,n), vp(m,n)

real a_original(2+m,n)
cmf$  layout a(:news, :news), ap{:news, :news), u(:news, :news)
cmf$  layout up(:news, :news), v(:news, :news), vp(:news, :news)
cmf$ layout ab(:news, :news), ub(:news, :news), vb(:news, :news)
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N. A. CHU
cmf$  layout av{:news), a_original(:news, :news)

interface
subroutine oneZ2two{a,ap,b, m, n)
integer m, n
real a(m,n), ap{m,n), b(2xm,n)
cmf§ layout a(:news, :news), ap(:news, :news), b{:news, :news)

interface
subroutine svdcore (a, ap, u, up, m, n, irank, isweep, deltas, eps)
integer irank, isweep, m, n
real a{m,n}, u(m,n),ap(m,n), up(m,n), eps,daltas
cmf$ layout a(:news,:news), u{:news,:news)
cmf$ layout ap{:news,:news}, up{:nevs, :news)

RPN S DU
eld liiveriace

interface
subroutine twoZone{a,ap,b,m,n)
integer m, n
real alm,n), ap(m,n), b{2#%m,n)
cmE$ layout a{:news, :news), ap{:news, :news), b{:news, :news)
end interface

interface
subroutine evaluatel (a,u,v,sv,irank,deltas,m,n)
integer m, n, irank
real alm,r), v(m,n), ulm,n), sv(m), deltas
cmf$ layout a{:news,:news), u(:news,:news), v{:news, :news)
cnf$ layout sv{:news}
end interface

interface

gubroutine evaluatel2 (a,u,a_original,m,n)
integer m, n

real a(m,n), u{m,n), a_originai(m,n)

emf$ layout a{:news,:news), u{:news,:news)
cmf$ layout a_original(:news, :news)
end interface
c ------------------------------------------------------ S S —— L v

a.original = ab

printx,’call oneZtwo’

call CM_timer_clear{l)

call CM_timer_start (1)

call one2two(a, ap, ab, m, n)
call one2two(u, up, ub, m, n)
call CH_timer_stop{i)

call CM_timer_print(i)
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print*, ’call svdcore’

call CM_timer_start(1)

call svdcore (a, ap, u, up, m, n, irank, isweep, deltas, epr)
call CM_timer._stop(1)

call CM_timer print(1)

call CM_timer_start(1)

printk,’call two2Zone’

call two2onefa, ap, ab, m, n)

call two2one(u, up, ub, m, n)

call CM_timer _stop{(1)

call CM_timer_print{1)

call CM_timer_start{1)

call evaluatel (ab,ub,vb,sv,irank,deltas,2*m,n)
call evaluate2 (ab,ub,a_original,2*m,n)

call CM_timer_print(1)

print#*,’...done svd’

call CM_timer_stop(1)

return

end subroutine svd

subroutine svdcore (a, ap, u, up, m, n,irank,isweep,deltas,eps)
integer m, n, irank, isweep
real a(m,n), u{(m,n), ap{m,n), up(m,n), eps, deltas
C Main locals
real alpha (m,n), beta(m,n), gamma{(m,n), <{m, n), s(m, R}
real norms(m,n), normsp(m,n)
C scalars to compute convergence criterion
real epss, Fnorms
C temporaries
real atemp(m,n), utemp(m,n), ntemp(m,n), ortho(m,n)
integer row(m,n), col(m,n), iroti(m,n), irot2(m,n)
logical rotate(m,n)
C loop contreol variables
integer m2, index, i, j, numsweep, numrotate
C constant
integer sup, sdown
C layout on the connection machine
emf$ layout a(:news,:news), u(:news,:news)
cmf$ layout ap(:news,:news), up(:news, :news)
cmf$ layout norms(:news,:news), normspf:news,:news)
cmf$  layout alpha(:news, :news), beta(:news,:news), gamma(:news,:news)
cmf$  layout utemp{:news,:news), atemp(:news,:news), ntemp(:news,:news)
cmf$ layout c(:news,:news), s(:news,:news)
emf$ layout row(:news,:news), col{:news,:news)
emf$ layout iroti(:news, :news), irot2(:news, :news)
emf$  layout ortho(:news,:news), rotate{:news, :news)
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c initialize
m2 = 2Z¥m
numsweep = isweep
epsSs = epsa¥aps
sdown= +1 la(k)<~--a(k+1)
sup = -1 ta(k+i)<-alk)
norms = gpread (sum(a%a,2),2,n)
normsp = spread (sum(ap*ap,2),2,n)
Fnorme = sum(norms(:,1),1) + sum{normsp(:,1),1)
deltas = epss*Fnorms
print*, 'Frobenius norm squared = ’, Fnorms
print*,*Square of machine precision % Fnorm = ’, deltas
forall (i=1:m, j=1:n) col{i,j) = j
u =0.0
up = 4.0
forall (i=i:m, j=1:n) row(i,j)
where (row.eq.col) u= 1.0
forall (i=i:m, j=1:n) row(i,i)
where {(row.eq.col) up =1.0
forall (i=i:m, j=1:n) row(i,j) =

2%i-1

2%i

!
(™

isweesp = 0
100 continue
start odd sweep
igweep = igweep +i
norms = gpread{sum{a%a,2),2,n)
normsp = spread{sum{ap+¥ap,2),2,n)
unroll loop by 2
do index = 1, m2, 2
start odd index
alpha = Z#%spread{sum{a%*ap,2),2,n)
beta = ROIM8 -NOIMsp
gamma = sqrt{{alpha¥alpha)+(beta*beta))
ortho = 0.25¢alpha*alpha - deltassmin{norms, normsp)

=N

rotate = (norms.pe.deltas).and.{normsp.ge.deltas).and. (ortho.

- i F Fa e R ]

vhere ({beta.ge.0).and.rotate)
c = sqrt{{gamma+beta)/(2.0*gamma))
8 = alpha / {2%gamma%c)

= - 27Ta v \..'rny

utemp = -s%u + c¥up
=

ntemp = s*5%norms + c*cHnormap - alphakcks
ap = Cc¥a + B¥ap

up = c¥y + aFup

Normsp= C*CHnorms + gksknormsp + alphakcks
a = atemp

u = utemp

norms = ntemp

endwhere
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where ((beta.lt.0).and.rotate)
8 = sign(sqrt((gamma-beta)/(2.0%gamma)) , alpha)
¢ = alpha / (2.0%xgammaxs)
atemp = -s¥a + c*ap
utemp = -g¥u + c¥up
ntemp = s8*g*norms + ckcknormsp - alphaxc*s

= r¥xa + gkan
Lot~ 4 g8

arn
e o =

up = c¥u + giup

normsp= c*C¥norms + sxsinormsp + alphaxc*s
a = atemp

" = 1nNntamn

L bl o

norms = ntemp
endwhere
where ((beta.gt.0).and.(.not.rotate))

At AamEa = oam

atemp = ap
utemp = up
ntemp = NOIMEP
ap = a
up =u
normsp = norms
a = atemp
u = utemp
norms = ntemp

endwhere

communicate (a, ap) to/from processors aligned with odd rows

atemp = ap

utemp = up

ntemp = normsp
ap =cshift(a, 1, sdown)
up =cshift{u,

2 o e g e ot e L 2 T o— 4 ]
LIS P =Lolldil v wWilL)
a = atemp
u = utemp

nerms = ntemp

T S Y [oRs. s

start even index

alpha = 2xspread(sum{a*ap,2),2,n)

beta = norms -normsp

gamma = sqrt((alphaxalpha)+(betakbeta))

ortho = 0.25*alpha*alpha ~ deltas*min{norms, normsp)

rotate = (norms.ge.deltas).and.(normsp.ge.deltas).and. (ortho.ge.0)
.and.{row.ne.m)

where ((beta.ge.0).and.rotate)
¢ = sqrt{(gamma+beta)/(2.0%gamma)) icosine term
s = alpha / (2%gamma*c) tgine term
atemp = -B¥a + c*ap
utemp = -g¥u + c*up
ntemp = s*s*norms + C¥cknormsp - alphaxc*s
ap = cka + g¥ap

17
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up = g%u + gs*up
normsSp= Ckcknorme + s*sknormsp + alphakcks
a = atemp
u = utemp
norms = ntemp

endwhere

where ((beta.lt.0).and.rotate)
s = sign{sqrt({gamma-beta)/{2.0¢gamma)) , alpha)
¢ = alpha / (2.0%gammaxs)
atamp = ~s¥a + c¥ap
utemp = ~-s%u + ciup
ntemp = s¥s¥norms + c¥cknormsp - alphakcks

ap = c*a + s*ap
up = c¥u + s*up
normgp= ckcHnorms + sksknormsp + alpha*cks
a = atemp
u = utemp
norms = ntemp
endwhere
where ((beta.gt.0).and.(.not.rotate).and,(row.ne.m))
atemp = ap
utemp = up
ntemp = normsp
ap = a
up =u
normsp = norms
a = atemp
u = utemp
norms = ntemp
endwhere
communicate {a, ap) to/from processors aligned with odd rows
atemp = a
utemp = u

ntemp = norms

a2 =rohiftlan 1 ann
<@ LoLAl v TR, iy SUPS

u =cshift{up, i, sup)
norms =cshift(normsp, i, sup)
ap = atemp
up = Glemp
normsp = ntemp
endde ! end odd sweep
gtart even sweep
number of rotations kept in irotl and irot2
isweep = isweep +1
iretl =0
irot2 =¢
do index = i, m2, 2
start odd index

18
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alpha = 2#spread(sum(a*ap,2),2,n)
beta = normsp -norms
gamma = sqrt{(alphaxalpha)+(betakbeta))
ortho = 0.25%alpha*alpha - deltas*min(norms, normsp)
rotate = (norms.ge.deltas).and.{(normsp.ge.deltas).and. (ortho.ge.0)
vhere ((beta.ge.0).and.rotate)
¢ = sqrt((gamma+beta)/(2.0%gamma)) {cosine term
s = alpha / (2*gamma*c) Isine term
atemp = s*a + c¥ap
utemp = 8%u + c¥up
ntemp = S¥S¥Norms + ckc¥normsp + alphakxc*s

ap = c*a - s*ap
up = c*u - s¥up
Nnormsp=s ckCc¥norms + s¥s¥normsp - alphaxcxs
a = atemp
u = utemp
nerms = ntemp
irotl = irotl +1
endwhere -
where ((beta.lt.0).and.rotate)
s = sign(sqrt((gamma-beta)/(2.0%gamma)) , alpha)

¢ = alpha / (2.0%gammaxs)

atemp = s*a + c*ap

utemp = s¥u + c*up

ntemp = gksgknorms + c*c*normsp + alpha*c*s

ap = c¥*a - g%ap

up = c*u - s*up

NOImsp= C*C*norms + g¥s¥normsp - alphakc*s
a = atemp

u = utemp

norms = ntemp
irotl = irotl +1

endwhere
where ((beta.gt.0).and.(.not.rotate))
atemp = ap

utemp = up
ntemp = normsp

ap = a
up =u
normsp= norms
a = atemp
u = utemp
norms = ntemp

endwhere

communicate (a, ap) to/from processors aligned with odd rows

atemp = ap
utemp = up
ntemp = NOrmsp
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ap = ¢shift(a, 1, sdown)

up = c¢shift{u, 1, sdown)
normsp= cshift{norms, i, sdown)
a = atemp

u = ytemp

norms = ntemp
end odd index of even sweep

ot aran Tndaws
g Wik w WY T lnﬁﬁ&

alpha = 2«spread(sum{a%ap,2),2,n)

beta = normsp -norms

gamma = sqrt{{alpha*alpha)+(beta*beta))

orthe = 0.2G*alphakalpha - deltas*min{norms, normsp)

rotate = (norms.ge.deltas)}.and.(normsp.ge.deltas).and. {ortho.ge.0)
.and.{row.ne.m)

where ((beta.ge.0).and.rotate)

¢ = aqrt((gammatbeta)/ (2, 0%gamma)) i

8 = alpha / (2%gammasc) 'gine term
atemp = s*a + c*ap

utemp = s*%u *+ ckup

ntemp = gkgknorms 4 c*cknormsp + alphakcks

ap = C*g -~ g¥ap

up = c¥ll - B¥up

NOTMSP= CHCHNOrms + sksknormsp -~ alphaxe*s

a = ztamp
u = gtemp

norms = ntemp
irot2 = irot2 +1
endwhere
where ({beta.lt.0).and.rotate)
s = sign(sqrt{(gamma-beta)/{(2.0%gamma)) , alpha)
¢ = alpha / {2.0%gammaxs)
atemp = s%a + c¥ap
utemp = s*u + ckup
ntemp = s*B¥NOYmMs + ckCnormsp + alphakcks
ap = cka -~ g¥ap

up = g¥u - g*up

NOIMSP= C*C*Norms + s*s*normsp - alphakcks
a = atemp

u = utemp

norms = ntemp
irot2 = irot2 +1
endyhere
where {(beta.gt.0).and.{.not.rotate).and.{row.ne.m))
atemp = ap
utemp = up
ntemp = normsp
ap =a
up =u
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NOrmsp= NoOIms
a atemp
u utemp
norms = ntemp
endwhere
c communicate (a, ap) to/from processors aligned with odd rows
atemp = a
utemp = u
ntemp = norms
a = cshift(ap, 1, sup)
u = cshift(up, 1, sup)
norms = cshift(normsp, 1, sup)
ap = atemp
up = utemp
normsp= ntemp
enddo ! end even sweep
irotl = irotil + irot2
numrotate = sum(iroti(i:m,1),1)
print*,’ sweep ', isweep, ’ ’ ,numrotate,’ rotations’
if (numrotate.eq.0) goto 300

P |

if (a.:nruvy .6Q.numswaap) goto 300
goto 100
300 continue :
printx,’done rotation...calculating singular values...’
return

end subroutine svdcore

subroutine evaluatel (a,u,v,sv,irank,deltas,m,n)
integer m, n, irank

real a(m,n), v(m,n), u(m,n), sv(m), deltas
integer row(m,n), col(m,n), one(m), ier, i, j
real oned(m), ti(m,m), t2{(m,m), t3(m,m)

cmi$ layout a(:news,:news), u(:news,:news), v(:news, :news)
cmf$ layout sv(:news)

cmf$ layout row(:news,:news), col{:news, :news)

emid layout one(:news), oned(:news)

cmi$ layout ti(:news,:news), t2(:news,:news), t3(:news, :news)
c calculate singular values and rank

oned = sum(a*a,?2)

sv = sqrt{oned)

where (cned.gt.deltas)
cne =1

elsewhere
one =0
sv = 0.0

endwhere

irank = sum (one(i:m))
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calculate v
t3 = gpread (av,2,m)
v = 0.0
where (t3(i:m,1:n).gt.0) v(i:mm, 1:n) = a(l:m, 1:m)/t3{i:m, 1:n)
debug codes beyond the next statement
return
detailed check
print#,'max min of v?
print *, maxval{v{i:m, 1:n)), minvai{v{i:m, 1:n))
evaluate ViV
tl = 0.0
t2 = 0.0
ti{iim, 1:n) = v{i:m, 1:n)
t2 = transpose(ti)
t3 = 0.0
t3 = matmul (t1, t2)
forall (i=1:m, j=1i:n) row(i,j)= i
forall (i=i:m, j=i:n) col(i,j)= j
print*,'maxval VYVt off diagonal °?,
maxval{abs(t3{1:n,1:n)), mask=(row.ne.col))

evaluate UUt
tl = 0.0
t2 = 0.0
t1{i:m, 1:n) = u{l:m, 1:n)
t2 = transpose(ti)
t3 = 0.0
t3 = matmul (ti, t2)
print*, 'maxval UUt off diagomal ’,
maxval{abs{t3{1i:n,1:n}), mask=(row.ne.col))

return
end subroutine evaluatel

subroutine one2two(a,ap,b,m,n)

integer m, n

real alm,n), ap(m,n), b{2m,n)

layout a{:news, :news), ap{:news, :news), b{:news, :news)
forall (i=i:m, j=i:n) a{i,j)= b{2%(i-1) +1, j)

forall (i=1:m, j=1:n) ap{i,i)= b(2*i, j)

return

end

subroutine two2one{a,ap,b,m,n)

integer m, n

real a{m,n), ap(m,n), b{2m,n)

layout a(:news, :news), ap{:news, :npews), b{:news, :news)
forall (i=i:2#m-1:2, j=i:n) b{i,j)= a(1+({(i-1)/2),
forall (i=2:2+m:2, j=i:n) b{i,j)= ap(i+{({i~1)/2),7

[
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return
end

subroutine evaluate2 (a,u,a_original,m,n)

integer m, n, irank

real a(m,n), u(m,n), a_original(m,n)

real ti(m,m), t2(m,m), t3{m,m)

la‘un"‘h nr'ﬂﬁﬂﬂ 'hﬂuﬂ‘ 11('7‘!01‘1‘Q -
vy AN CABNS, LTRSS/ Ry ’

Ppat-1 b~

ER =] )~

layout a_original(:news, ‘news)

layout til(:news,:news), t2(:news,:news), t3(:news, news)

evaluate USVt

tl = 0.0

t2 = 0.0

t2 (1:m,1:n) = a

t1{l:m, 1:n) = u{i:m, 1:n)

t1 = transpose(tl)
t3 = 0.0
t3 = matmul {(t1, t2)

t3(1:m,1:n) = t3(1:m, 1:n) - a_original
printx,’error = max{(abs( U S Vt - 4 )) is ’, maxval(abs(t3))

return
end subroutine evaluate?2
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Appendix B

CM FORTRAN CODE FOR SUBROUTINE SVD OPTIMIZED FOR THE CASE
m>n

N.B.~The main subroutine svd contains 7 units: svdcore contains the main Jacobi rotation codes;
two2one allocates arrays on the CM two row-elements per processor while one2two performs
the reverse process; evaluatel calculates the S and V matrices; evaluate?2 calculates the residual
error; p2one allocates an m X m array into I arrays, each % X n, while one2p performs the
reverse. In this unrolled version of svdcore similar chunks of codes are repeated 4 times, each
slightly different from the other. This is to avoid invoking ¢f-then clauses that would otherwise
fragment the resulting codes. IFurther, calculations involving the matrix U is carried out in a
™.-times do loop.

subroutine svd (ab,ub,vb,sv,p,m,n,irank,isweep,eps)

c Author: Nhi-Anh Chu

c Connection Machine Facility

C Code 5153, Naval Research Lab

c Nov 9 1880

c Revised Jan 3 1891

c p = 2¥int(m/n) i

C ab -~ 2m x n matrix A, to be decompesed into singular values

C sv = diag (S) such that 4 = (U S Vt)

C ab is returned as (Ut A) where Ut is product of Jacobi rotation
c matrices on (At A)

C ub ~- Zm x 2m matrix returned with Ut

C vb -- 2m X n matrix returned with Vt

C sv -- 2m-vector returned with diag(S), the singular values of A

c irank -- integer returned with the rank of A

C isweep -- integer returned with number of aweeps of the rotations;

c each sweep orthogonalize every row-pair combinations of A

C ep3 -- real number specifying the machine precision, used to determine
C a "zero"

™ - - Al 2 e -

il Py iy &, ildlin, 1BWeep

real ab(2#m, n), ub(2*m, p*n), vb{(2*m, n), sv(2+*m)
real eps, deltas

real a(m, n), ap(m,n), u(p,m,n), up(p,m,n), v(m,n), vp{m,n)
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real a_original(2+m,n)

cmf$ layout a(:news, :news), ap{(:news, :news), u(:serial, :news, :news)
cmf$ layout up(:iserial, :inews, :news), v{:news, :news), vp{:news, :news)
cmf$ layout ab{:news, :news), ub{:news, :news), vb(:news, inews)
cf$ layout ev{:news), a_original{:news, :news)

interface

subroutine one2two(a,ap,b, m, n)
integer m, n
real a{m,n), ap{m,n), b{(2a,n)
cmf$ layout a(:news, :news), ap{:news, :news), b{:news, :news)
end interface

interface
subroutine svdcore {a, ap, u, up, p, ®, n, irank, isweep, deltas, eps)
integer irank, isweep, p, m, n
real a(m,n), ulp,m,n),ap{m,n), uplp,m,n), eps,deitas
cmf$ layout a{:news,:news), u(:serial, :news, :news)
cmi$ layout ap{:news,:news), up{:serial, :news, :news)
end interface

interface
subroutine twoZome{a,ap,b,m,n)
integer m, n
real a(m,n), ap(m,n), b(2+m,n)
cmf$ layout a{:news, :news), ap(:news, :news), b{:news, :news)
end interface

interface
subroutine p2one{u,up,ub,p,n,n)
integer p, m, n
real u(p,m,n), uplp,m,n), ub{2#m,p*n)
emf$ layout u(:serial, :news, :news), up{:serial, :news, :news)
cmf$ layout ub{:news, :news)
end interface
interface
subroutine oneZ2p(u,up,ub,p,m,n)
integer p, 2, n, k
real u(p,m,n), up(p,m,n}, ub(2%m,p*n)
enf$ layout u(:serial, :news, :news), up{:serial, :newsa, :nevs)
cmf$ layout ub{:news, :news)
end interface

interface

subroutine evaluatel (a,u,v,sv,irank,deltas,m,n)
integer m, n, irank

real a(m,n), v(m,n), u{m,m), svin), deltas
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cmf$ layout a(:news,:news), u(:neus,:news), v(:nevs,:news)
cmf$ layout sv(:news)
end interface

interface

subroutine evaluate2 (a,u,a_original,m,n)
integer m, n

real a(m,n), u(m,n), a_original(m,n)

cmf$ layout a(:news,:news), u{:news, :news)
cmf$ layout a_original{:news, :news)
end interface
e e _—— e
C make sure that p is 2+«m/n

if (p.ne.(2*m/n)) stop ’p must be equal to m/n’
a_original = ab

print*,’call one2two’

call CM_timer_clear{1)

call CM_timer_start (1)

call one2two{a, ap, ab, m, n)

call one2p(u, up, ub, p, m, n)

call CM_timer_stop(l)

call CM_timer_print(1)
print*,*call svdcore’

call CM_timer_start(1)

call svdcore (a, ap, u, up,
call CM_timer_stop(1)

call CM_timer_print(1)

call CM_timer_start(1)

print#*,’call two2cne’

call two2one(a, ap, ab, m, n)

call p2one(u, up, ub, p, m, n)

call CM_timer_stop(1l)

call CM_timer_print(1)

print*,’call evaluate’

call CM_timer_start(1)

call evaluatel (ab,ub,vb,sv,irank,deltas,2+m,n)
call evaluate2 (ab,ub,a_original,2+m,n)

call CM_timer_print(1)

print*,’...done svd’

call CM_timer_stop(1)

return

end subroutine svd

o
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subroutine svdcore (a, ap, u, up, p, m, n,irank,isveep,deltas,eps)
integer p, m, n, irank, iswveep

real a{m,n), u(p,m,n), ap(m,n), up(p,m,n), eps, deltas
C Main locals

real alpha (m,n), beta(m,n), gamma(m,n), c(m, n), s(m, n)
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real norms{m,n), normsp{m,n)
C scalars to compute convergence criterion
real epss, Fnorms
C temporaries
real atemp(m,n), utemp{p, m,n), ntemp{m,n), ortho(m,n)
integer row(m,n), coi{m,n), ircti(m,n), irot2{m,n)
_ logical rotate{m,n)
C loop control variables
integer m2, index, k, i, j, numsweep, numrotate
C constant
integer sup, sdown
¢ layout on the connection machine

cmfd layout a{:news,:news), uf{:serial, :news, :news)

cmf$ layout ap(:news,:news), up(:serial, :news, :news)

cmf$ layout norms(:news,:news), normsp(:nevs, :news)

cmf$ layout alpha(:news, :news), beta(:news,:news), gamma(:news,:news)

cnf$ layout utemp{:serial, :news,:news)
cmf$ layout atemp(:news,:news), ntemp{:news,:news)

cmfd layout c¢(:news,:news), s{:news,:news)
cof$ layout row{:news,:news), col{:news, :news)
emf$ layout iroti{:news, :news), irot2{:newe, :news)
cmfg layout ortho(:news,:news), rotate(:news, :news)
C_.__..-__..__.._-_.._-_-__ ----- - -
C initialize

me = 2*m

numsweep = isweep
if (m2.1t.n) then
print#¥, 'There must be no more ¢olumns than rows. ?
print#,’Transpose the matrix’
irank = 0
stop
end if
epas = epaxeps
sdown= +1 ta(k)<---a(k+1)
sup = -1 ta(k+1i)<-alk)
norms = spread {sum(a*a,2),2,n)
normsp = spread (sum(ap*ap,2),2,n)
Frnorms = sum{norms(:,1),1) + sum{normap{:,1),1)

AaT+an = ancoeinAarmo
MY S T vyﬂﬁ!"'l AW L A&

print*, ’Frobenius norm squared = *, Fnorms
printx,’Square of machine precision * Fnorm = *, deltas

u =0.0

up = 0.0

do k =1, p
forall (i=1:m, j=i:n) col{i,j) = j* (k-D)#*n
forall (i=i:m, j=1:n) row(i,j) = 2¥%i-i
where {(rovw.eq.col) ulk,:,:)= 1.0
forall (i=1:m, j=i:n) row(i,j) = 2xi
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where (row.eq.col) up(k,:,:) =1.0
enddo
forall (i=1:m, j=1:n) row{(i,j) = i
isweep = 0
100 continue
start odd sweep
isweep = isweep +1
norms = spread{sum(a*a,2),2,n)
normsp = spread(sum{ap*ap,2),2,n)
unroll loop by 2
do index = 1, m2, 2
start odd index
alpha = 2#spread(sum(a*ap,2),2,n)
beta = norms -normsp
gamma = sqrt{(alpha*alpha)+(beta*beta))
ortho = 0.25%alpha*alpha - deltas*min(norms, normsp)
rotate = (norms.ge.deltas).and.(normsp.ge.deltas).and. (ortho.ge.0)
where ((beta.ge.0).and.rotate)
¢ = sqrt({gamma+beta)/(2.0%gamma))

= = =Tl e

: f A Y
8 = alpha / (2%gammaxc)

atemp = -3*a + c¥ap
ntemp = s¥s*norms + c¥c*¥normsp - alpha¥c*s
ap = c¥a + s¥ap
normep= ckcknorms + s¥gxnormep + alphakcks
a = atemp
normg = ntemp

endwhere

where ((beta.lt.0).and.rotate)
s = sign(sqrt((gamma-beta)/(2.0*gamma)) , alpha)
c = alpha / (2.0*gamma*s)

atemp = -s¥a + c*ap
ntemp = s*S*NOrms + c¥cknormsp - alphakc#*s
ap = c*a + g¥ap
ROTMSP= C*C*NOIXrms + s*g*normsp + alphakc#*s
a = atemp
norms = ntemp

endwhere

do k=1,p

where (rotate)
utemp(k,:,:) = -s*u(k,:,:) + c*up(k,:,:)
up(k,:,:) = c¥u(k,:,:) + s*up(k,:,:)
ulk,:,:) = utemp(k,:,:)

endwhere

enddo

where ((beta.gt.0).and.(.not.rotate))
atemp = ap
ntemp = normsp
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ap =a
NOIMSp = norms
a = atemp
norms = ntemp
sndwhere
do k =1,p
where((beta.gt.0).and.{.not.rotate))
utemp(k,:,:) = up(k,:,:)

uplk,:,:) = ulk,:,:)
ulk,:,:) = utemp(k,:,:)
endyhere

enddo
communicate {(a, ap) to/from processors aligned with odd rows
atemp = ap
ntemp = normsp
ap =cshift(a, 1, sdown)
normsp =cshift(norms, 1, sdown)
a ® atemp
norms = ntemp
do k=1,p
utemp{k,:,:) = up(k,:,:)
up(k,:,:) =cshift(ulk,:,:), i, sdown)
ulk,:,:) = utemp(k,:,:)
enddo
start even index
alpha = 2xspread(sum(a%ap,2},2,n)
beta * norms -normsp
gamma = sqrt{{alphasalpha)+(beta*beta))
ortho = 0.25*%alpha*alpha - deltassmin(norms, normsp)
rotate = {norms.ge.deltas).and.(normsp.ge.deltas).and.{ortho.ge.0)
.and . {row.ne.m)

80 AW e )

where {{beta.ge.0).and.rotate)
¢ = sqrt{{gamma+beta)/(2.0%gamna)) tcosine term
s = alpha / (2+¢gammaxc) tsine term

atamp = —-g%z + Cc¥xap

sx=&r e 4
ntemp = s*B*¥N0OrWMS + ckCcknormsp - alphaxcs
ap = ckp + s*ap
LOTMER= C*C*NRorms + skg*normsp + alphakc¥s
a = atemp
normg = ntemp
endwhere
where ((beta.lt.0).and.rotate)
g = sign{sqrt{{gamma-beta)/{2.0%gamma)}) , alpha)
< = alpha / (2.0%gamma*s)

atemp = -s%a + Cc*ap
ntemp = s¥g%norms + cxcknormsp - alphakc*s
ap = c*a + g¥ap

NOYMSP= CkCkunorme + gkg*normsp + alphakcks
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a = atemp
norms = ntemp
endwhere
do k=1,p

wvhere (rotate)
utemp(k,:,:)

-s¥ulk,:,:) + crup(k,:,:)

up(k,:,:) = c*xulk,:,:) + s¥up(k,:,:)
ulk,:,:) = utemp(k,:,:)
endwhere

enddo
where ((beta.gt.0).and.(.not.rotate).and.(row.ne.m))
atemp = ap

ntemp = normsp
ap =a
normsp = norms
a = atemp
norms = ntemp
endwhere
do k=1i,p
where ((beta.gt.0).and.{(.not.rotate).and.(row.ne.m))
utemp(k,:,:) = up(k,:,:)
up(k,:,:) = u(k,:,:)
ulk,:,:) = utemp(k,:,:)
endwhere
enddo
communicate (a, ap) to/from processors aligned with odd rows
atemp = a

ntemp = norms
a =cshift(ap, 1, sup)
norms =cshift(normsp, 1, sup)
ap = atemp
normsp = ntemp
do k=1,p
utemp(k,:,:) = uk,:,:)
u(k,:,:) =cshift(up(k,:,:), 1, sup)
up(k,:,:) = utemp(k,:,:)
enddo
enddo ! end odd sweep
start even sweep
number of rotations kept in irot!l and irot2
isweep = isweep +1
iroti =0
irot2 =0
do index = 1, m2, 2
start odd index
alpha = 2xgpread(sum(a*ap,2),2,n)
beta = normsp -norms
gamma = sqrt((alpha*alpha)+(beta*beta))
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ortho = O.25%alpha*alpha - deltas*min(norms, normsp)
rotate = (norms.ge.deltas).and.(normsp.ge.deltas).and.(orthc.ge.0)
where ((beta.ge.0).and.rotate)

¢ = sqrt{{gamma+beta)/(2.0%gamma)) !cosine term

8 = alpha / (2¢gamma%c) !gine term

atemp = s¥a + C¥ap

ntemp = s¥g¥norms + ckxciknormsp + alphakc#sg

ap ® %3 - S*ap
NOXmSp= C*C*NoIms + s+s*normsp - alphakces
a = atemp

norms = ntemp
iroetl = irotl +1
endwhere
where ((beta.it.0).and.rotate)
s = gign(sqrt{(gamma-beta)/(Z2.0*gamma)) , alpha)

r = alwnha 9 Akraommake’

atemp = g¥a + c¥ap
ntemp = B¥S*NOIMS + CH¥CHNOTMSP + alphakc*s

ap = c%*a - 8¥ap
normsps c¥cknorms + sksinormasp - alphakcks
a = atemp

norms = ntemp
irotl = irotl +1

Zuwn R waln
TlUUwWLCL Y

do k=1,p
vhere (rotate)
utemp(k,:,:?
up{k,:,:)
ulk,:,.:)
endwherse

s*ulk,:,:) + crup(k,:,:)
exulk,:,:) - s+up(k,:,:)
utemp(k,:,:)

ntemp = normsp
ap =a
normsp= Norms
2 = atemp
norms = ntemp
endvhere
de k =1,p
where ((beta.gt.0).and.(.not.rotate))
utemp(k,:,:) = up(k,:,:}
up(k,:,:) = u(k,:,:)
ulk,:,:) utemp(k,:,:)
endwhere
enddo
communicate (&, ap) to/from processors aligned with odd rows

atemp = ap
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ntemp = normsp

ap = cshift(a, 1, sdown)

normsp= cshift{norms, 1, sdown)

a = atemp

norms = ntemp

do k=1,p
utemp(k,:,:) = up(k,:,:)
up{k,:,:) =ecshift{ulk,:,:), 1, sdown)
ulk,:,:) = utemp(k,:,:)

enddo

end odd index of even sweep
start even index
alpha = 2¢spread(sum(a*ap,2),2,n)
beta = normsp -norms
gamma = sqrt((alpha*alpha)+{beta*beta))
ortho = 0,25*alpha*alpha - deltas*min(norms, normsp}
rotate = (norms.ge.deltas).and.(normsp.ge.deltas).and. (ortho.ge.0)
.and, (row.ne.m)
where ((beta.ge.0).and.rotate)
¢ = sqrt((gamma+beta)/(2.0*gamma)) ‘cosine term
8 = alpha / (2%gammakc) !sine term
atemp = s*a + c*ap
ntemp = s¥s¥norms + ckcknormsp + alphaxc*s

ap = c¥a - s*ap
normsp= c¥C¥Norms + S¥s*normsp - alphakcs
a = atemp

norme = ntemp
irot2 = irot2 +1
endvhere
where ((beta.lt.0).and.rotate)
s = sign(sqrt((gamma-beta)/{2.0*gamma)) , alpha)
¢ = alpha / (2.0%gamma%s)
atemp = s*a + c*ap
ntemp = S¥3S*NOrms + C*C¥normsp + alphaxc*s

ap = c¥a - gtap
nOTMSpS CHCINOYMS + Sksknormsp - alphakcks
a = atemp
norms = ntemp
irot2 = irot2 +1
endwhere
do k=1,p

where (rotate)
utemp(k,:,:)

s*uk,:,:) + cupik,:,:)

up(k,:,:) = cxu(k,:,:) - s*up(k,:,:)
ufk,:,:) = utemp(k,:,:)
endwhere

enddo
where ((beta.gt.0).and.(.not.rotate).and.(row.ne.m))
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atemp = ap
ntemp = normsp
ap =a
normsp= norms
a = atemp
norms = ntemp
endwhere
do k=1,p
where ((beta.gt.0).and,{.not.rotate).and.{row.ne.m))
utemp(k,:,:) = upf{k,:,:)

I

uplk,:,:) = ulk,:,:)
ulk,:,:) = utemp{k,:,:)
endvhere
enddo
communicate {a, ap) to/from processcrs aligned with odd rows
atemp = a
ntemp = norms

a = cghift{ap, 1, sup)

norms = cshift(normsp, i, sup)

ap = atemp

normsp= ntemp

do k=1i,p
utemp(k,:,:) = ufk,:,:)
ulk,:,:) = cshift(up(k,:,:), 1, sup)
up{k,:,:) = utemp(k,:,:)

enddo

enddo ! end even sweap
irotl = irotl + irot2
numrotate = sum{ireti(i:m,1),1)
print*,* sweep ', isweep, °’ * numrotate,’ rotationsg’
if (pumrotate.eq.0) goto 300
if (isweep.eq.numsweep) goto 300
goto 100
continue
print*, done rotation...calculating singular values...’
return
end subroutine svdcore

subroutine evaluatel {a,u,v,sv,irank,deltas,m,n)

integer m, n, irank

real a{m,n), v{n,n), uim,m), svin), delras

integer row{m,m), col{m,m}, i, j

real ti{m.,m), t2(n,n), t3{n,n)

layout a(:news,:news), u{:news,:news), v(:news,:news)
layout sv{:news)

layout row(:news,:news), col{:news,:news)

layout ti(:news,:news), t2(:news,:news), t3{:nevs,:neus)
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calculate singular values and rank
t3 = a(i:n, 1:n)
sv = sqrt(sum(t3%t3,2))
irank = count(sv.gt.sqrt(deltas))
calculate v
t2 = spread (sv,2,n)
v =20.0
where (t2.gt.0) v = t3/t2
debug codes beyond the next statement
return
detailed check
print#,’max min of v’ ,maxval{v), minval(v)
evaluate VtV
t2 = matmul (transpose{v), v)
forall (i=1:m, j=1:m) row(i,j)= 1
forall (i=1:m, j=1:m) col{i,jl)= j
printx,’maxval VVt off diagonal ’, maxval(abs(t2),
mask=(row(l:n,1:n).ne.col(1:n,1:n)))
evaluate UUt
t1 = matmul (transpose(u), u)
print*, 'maxval UUt off diagonal ?,
maxval(abs(tl), mask=(row.ne.col))
return
end subroutine evaluatel

subroutine one2two(a,ap,b,m,n)

integer m, n

real a(m,n), ap{(m,n), b{2#m,n)

layout a(:news, :news), ap(:news, :news), b(:news,
forall (i=1:m, j=1:n) a(i,j)= b(2x(i-1) +1, j)
forall (i=1:m, j=1:n) ap(i,j)= b(2*i, j)

return

end

subroutine two2one(a,ap,b,m,n)

integer m, n

real a(m,n), ap(m,n), b{(2#m,n)

layout a(:news, :news), ap(:news, :news), b(:news,

inews)

‘news)

forall (i=1:2%m-1:2, j=1:n) b{i,j)= a{1+((i-1)/2), j)
forall (i=2:2¥m:2, j=1:n) b(i,j)= ap(1+{{i-1)/2),j)

return
end

subroutine one2p{u,up,ub,p,m,n)

integer p, m, n, k
real u(p,m,n), up(p,m,n), ub(2*m,p*n)
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cuf$ layout u{:serial, :news, :news), up{:serial, :news, :news)
cmf$ layout ub{:news, :news)
do k =1,p

forall (i=1:2%m-1:2, j=k:(k+n-1)) wo{i,j)= ulk,1+{{i-1)/2}, i}
forall (i=2:2#m:2, j=k:(k+n-1)) ub(i,j)= wup(k,1+({i-1)/2),3)
enddo
return
end

subroutine p2ocne(u,up,ub,p,n,n)
integer p, m, n, k
real ulp,m,n), upip,m,n}, ub{2%m,p*n}

cnf$ layout uf:serial, :news, :news), up(:serial, :news, :news)
cnf$ layout ub{:news, :news)
do k =1,p

forall (i=1:2*m-1:2, j=1i:n) ub(i,j+{(k-1)%n)= u(k,1+({(i-1)/72), j)
forall (i=2:2%m:2, j=1:n) ub(i,j+(k-1)*n)= up{k,1+{{i-2)/2),3
enddo
return

|
oI

subroutine evaluate2 (a,u.a_original,m,n)
integer m, n, irank

real a{m,n), ulm,m), a.original(m,n)
real ti{m,n)

cmis layout a{:news,:news), u{:news,:news)
cnfd layout a_original{:news, :news)

cmid layout ti{:news,:news)

C evaluate USVL

C {(SVt) is already in matrix a

tt = matmul{transpose{u), a) - a_original

print*,’error = max{ahs{ U S Vt - 4 )) is *, maxval(abs{ti))
return

end subroutine evaluate2
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Appendix C

CM FORTRAN CODE FOR TEST DRIVER

program svdtest

test program for singular value decomposition (svd) subroutine

integer, parameter:: mm=512, nn=512

integer m ,n ,irank, isweep, b{mm,mm), ans, i
real a{mm, nn), u{mm,nn), v(mm,nn), sv{mm)

real eps, error

laycut a(:news, :news), b(:news, :news), u(:news, :news)

layout v(:news, :news), sv(:news)
interface

subreoutine svd (ab,ub,vb,sv,m,n,irank,isweep,eps)

integer m,n,irank, isweep

real ab{(2+m,n), ub(2%m,n), vb(2+m,n), sv{(2#m),eps
layout ab(:news, :news), ub(:news, :news), vb{(:news,

layout sv(:news)
end interface

call CM_set_safety_mode(0)
print#,’eps (default to 2.22e-16)’
read*,eps

if (eps.le.0) eps = 2.22e-16
print*,eps

a=20.0

print*,’m, n of matrix 7’

read*, m,n

print¥,m,n

print#, ’max number of sweep 7’
read*,isveep

print*, isweep

print#*,’creating a random matrix’
call cmf_random (a{il:m,1:n))

print*,’maxval matrix =',maxval(a(i:m,1:n))

print*,’call svd routine’

call svd(a(i:m,1:n),u(i:m,1:n), v{i:m,1:n), sv{i:m),
m/2, n, irank, isweep, eps)
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print*, ’exit svd routine’
stop
end
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