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RESULTS ON CANCELLER CONVERGENCE
IN NONSTATIONARY NOISE

1. INTRODUCTION

The optimal weights associated with an adaptive canceller are often not known a priori and thus
must be estimated by using finite averaging. Because of the use of estimated weights, suboptimal
canceller performance results. Reed, Mallet, and Brennan [1,2] quantified this performance for the
Sampled Matrix Inversion (SMI) algorithm in the transient state under the conditions that the input
noise must be Gaussian, stationary, and independent from time sample to time sample. They
mathematically demonstrated that the SMI canceller has relatively fast convergence characteristics and
also that the convergence is independent of the input covariance matrix.

In Ref. 3, the Reed, Mallet, and Brennan results were extended to include the effects of non-
Gaussian inputs by using the Gram-Schmidt (GS) canceller [4-9] as an analysis tool. It was shown
that the GS canceller and the SMI canceller are numerically identical, and hence the SMI can be
analyzed by using the GS canceller structure. In Ref. 10, lower and upper bounds of convergence
performance were derived for when the input noise is Gaussian but correlated from sample to sample
(colored input noise). In this report the methodology developed in Refs. 3, 4, and 10 is extended to
analyze a canceller in temporally nonstationary noise. Upper and lower bounds of convergence per-
formance are again derived.

The analysis presented in this report pertains to the adaptive processor in canceller configuration
whereby the derived signal is assumed only to be present in the main channel and auxiliary channels
are used to cancel correlated noises in the main channel. However, Ref. 1 showed that any noncon-
strained linear adaptive array processor can be transformed into a canceller configuration without
changing the output noise power convergence statistics. Hence, the results of this report apply to any
nonconstrained linear adaptive array processor.

2. THE GS CANCELLER

Consider the general N-input GS canceller structure (Fig. I(a)). Let xM(t), xl (t), . . ., xN I(t)

represent the complex data in the 0th, 1st, . . . , N - Ith channels, respectively. We call the left-
most input xM(t) the main channel and the remaining N - 1 inputs the auxiliary channels. The main
channel's signal consists of a desired signal plus additive noise. The noise consists of internal noise
plus external noise. Cancellation of the signals from external interfering sources relies on the correla-
tion of simultaneously received signals in the main and auxiliary channels. The internal noises on
each channel are assumed uncorrelated between channels. The canceller operates so as to decorrelate
the auxiliary inputs one at a time from the other inputs by use of the basic 2-input GS processor
shown in Fig. I(b). For example, Fig. 1(a) shows that XN- -(t) is uncorrelated with
X@(t), xF (t), . . ., xWb) 2(t) in the first level of decomposition. Next, the output channel that results
from decorrelating xN -I(t) from XN - 2 (t) is decorrelated from the other outputs of the first-level GSs.
The decomposition proceeds until a final output channel is generated. If the decorrelation weights in
each of the 2-input GSs are computed from an infinite number of input samples, this output channel is
totally decorrelated with the input: x I(t), x2 (t), .2. ., XN I(t).

Manuscript approved February 1, 1991
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If we do not have an infinite number of input samples then the decorrelation weight associated
with each 2-input GS canceller is estimated by using finite averaging. The three methods of perform-
ing GS cancellation are nonconcurrent, concurrent, and systolic processing. The last two are
described in more detail in Refs. 3 and 4. For this analysis, we assume nonconcurrent processing
whereby the GS weights are estimated from a block of input data and applied to subsequent or previ-
ous input data. For clarity, data that are used to calculate the GS weights are denoted by lower case
x's and are called the concurrent data. The data to which the computed weights are applied are
denoted by upper case X's and are called the nonconcurrent data.

We briefly describe the nonconcurrent GS canceller. Let x(m) represent the outputs of the 2-
input GSs on the (m - 1) level. The GS weights are computed from these outputs. Then outputs of
the 2-input GSs at the mth level are given by

n =0, 1, ... ,N-m - 1,
xnm+l)(k) = xnm)(k) - wnm)x~j!m(k) m = 1, 2, .. , N - 1 (1)

k =1,2, ... ,K.
Note that xn) = xn . The weight w(m), seen in Eq. (1), is computed so as to decorrelate x ± n ) with
X41m. For K input samples per channel, this weight is estimated as

K
x X~ * *(k)xnm) (k)

(nm) = k , (2)

, I X~Qm (k) 12

k=I

where * denotes the complex conjugate and 1-1 is the magnitude. Here k indexes the sampled data.

For the nonconcurrent canceller, let Xnm) represent the nonconcurrent data outputs of the 2-input
GSs on the (m - 1) level. Then the outputs of the 2-input GSs of the mth level are given by

_+1) X(m) -0; n ,1, ...,N-m -1,
Xn~ x~)m n) p~, m 1, 2,. ,N -1(3

where XI1) = X, and wnm) is calculated by using Eq. (2), i.e., these weights are computed from a
block of data that does not include X,.

For this development unless otherwise noted we make the following assumptions:

1. The samples of x0 , xl, .. . , xNI and X0, XI, ... , XNI are Gaussian complex ran-
dom variables (r.v.) when conditioned on their respective noise power level.

2. These same r.v.'s when conditioned on their respective noise power level are samples from
stationary processes with zero mean.

3. xn,(kI) is independent of Xn2 (k2) for all kI, k2 , nI, n2.

4. The desired signal is not present during weight computation and is not in the auxiliary
channels.

5. K 2N

3
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3. OUTPUT MEASURE

Figure 2 shows a simplified N-input GS canceller structure for nonconcurrent processing. GSKN

indicates that an N-input GS structure uses K samples for each channel to compute the weights interior
to the GS structure. Note for the nonconcurrent structure that the weights are computed from the
x 0, x1, . .. , xN-I data blocks and are applied to X0, Xl, . .. , XN-I. The 0th channel (or the far
left channel in Fig. 2) is always designated the main channel; the others are called auxiliary channels
or just plain AUXs. The output of the nonconcurrent processor is denoted by Zn. Figure 3 shows
the GS structure for K = Xo where the concurrent and nonconcurrent orthogonal outputs are zn and
Z0, n = 0, 1, 2, ... , N -1, respectively.

x4 xi X2

XO1 xi1 X21

zo4

z 0

GSO:,

zI
zi

Z2

X N-1

* * * XN-1 

N

Z N-1

ZN-1

Fig. 2 - Representation of nonconcurrent
weighting of GS canceller

Fig. 3 - GS representation with N
orthogonalized output channels

For any set of interior GS weights estimated, there is an equivalent linear weighting of the input
channel. We denote this equivalent estimated weighting by the N-length vector wv, where

w = (w0,Wl, ... , WNI) (4)

and T denotes the transpose vector (or matrix) operation. For the GS canceller the weighting on the
main channel is constrained to be 1 or w0 = 1. Let unlin be defined as the steady state output noise
power residue and

R is steady state input covariance matrix (main and AUXs, an N x N matrix), (5)

R is estimated input noise covariance matrix using X0, X 1, . .. ., XN-I
(in this case X0 consists of noise only),

4
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A 2
ao, is transient output noise power residue associated with nonconcurrent weighting

normalized to a~mn, and

77- ~~~~~2
Onw is expected value of unw averaged over X0, Xl, . X. I, -. We call this quantity the

X-average transient output noise power residue.

Note that the last three quantities defined are random variables.

By using the above definitions, we can show that

A2 V V~2 - 2
anW = 2 = ~~~~~~~~~~~~(6a)

Omin amin

where t denotes the complex transpose. Note that because of assumption 3, Section 2,

~ wR w
7lW = 2 * (6b)

Omin

Also since w0 = 1, from assumption 4, Section 2, the desired signal is passed directly to the output
uncancelled. Hence, the output signal power is unchanged from input to output so the expected value

A2
of anw is equal to the cancellation ratio. We define the normalized output noise power residue as

2 a2w u0 (KN) = Etu0w1 = ET n(7)

where El-[ denotes the expected value. Thus the above is the average (or 1st moment) of the tran-
sient normalized output noise power residue. This output measure is commonly used to grade the
convergence performance of the SMI canceller.

4. INVARIANT TRANSFORMS

In the section, we discuss two types of matrix transforms on the input data that significantly sim-
plify the analysis. Let C be any N X N nonsingular matrix. Reference I shows that transforming
the input channels x0, x 1, . . . , XN -I by this matrix does not change the transient or steady state out-
put residue of the GS/SMI canceller. The GS canceller in the steady state is equivalent to a matrix
transformation of the input data vector in which the matrix is nonsingular and upper triangular.
Therefore, we can transform the input data by using a steady-state GS canceller (with its orthgonal-
ized channels) prior to performing the transient analysis. Figure 4 shows an equivalent configuration
of the GS canceller in the transient state. Here the matrix transform C is implemented by passing the
input channels through a GSOON structure followed by a power equalizer on the output auxiliary
channels. The output powers of the AUX channels after power equalization are equal to amin. Note
that each input channel into the GSKN structure is orthogonal in the steady state to the other channels.

5
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The structure shown in Fig. 4 illustrates that any GS canceller structure can be divided into two
parts: a deterministic, steady-state frontend processor in which the main channel is decorrelated from
the auxiliary channels and a stochastic backend processor which is driven by uncorrelated equal
powered noise in each channel. The backend processor is independent of the input covariance matrix,
and the auxiliary weights associated with the backend processor go to zero as K - co. Hence the
convergence properties of the GS canceller can be studied by analyzing the convergence properties of
the backend processor whereby the input channels are spatially orthogonal and of equal power.

A second matrix transform to be used in the the forthcoming analysis is now discussed. Let 4I
be any K x K unitary matrix, i.e., a4' = IK where IK is the K x K identity matrix. We transform
each input channel K-length data vector, x, n = 0, 1, 2, . . , N - 1 by 4) such that

xn,' = 4) x, = O. 1, . . . , N - 1, (8)

where x,, n = 0, 1, ... , N - 1 is the resultant output data set. If we input this data set to a
GSK,N canceller, then the estimated weights using the x, inputs are identical to those using the x,
inputs [3].

x Xi x1XN-1

Z

Fig. 4 - Residue-equivalent GSKN canceller
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5. GS DECOMPOSITION

In this section we discuss a decomposition of a GS structure that was first introduced in Ref. 3.
A GSKN structure can be decomposed as shown in Fig. 5 into a first-level processor followed by a
GSKN-1 structure. The output K-length vectors (those used in computing the next level weights) of
the first-level processor can be written as

Yn = Xn - WnXN-1,
XN1IXn

Wi1 =
XN -1XN -

XN _ Xn
Yn = Xn - XN-1

XN IXN-1

Thus

XN-IXN1 I
X- Ixn,
XN 1 XN -1J

n =0, 1,2,... ,N- 1.

It can be shown [3] that

XN .XN1 I

XN-1XN-1

xO

Znw

Fig. 5 - Decomposition of GSKN
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where 1 is a K x K unitary matrix and r is a diagonal matrix whose first element is 0 and all other
diagonal elements are equal to 1. Thus

(12)

As discussed in Section 4, we can transform the output data set y,, n = 0, 1, . .. , N - 2 by a
unitary matrix 4' and not change the equivalent transient weighting vector of the GSK,N-I structure.
Thus we write

(13)

Now set vn = 4xn. By using the form of F and setting u, = (unj, u, 2, ....

Unk) Vn = (Vn0 I, Vn2 , . . ., Vnk)T, where T denotes transpose, it follows from Eq. (13) that

(14a)UnI = 0,

U nk = Vnk, k = 2, 3, ... , K.
Define

Unk = Vnk+lS k = 1,2, ... , K- 1. (14b)

Z NW

Fig. 6 - Further decomposition of GSKN

8
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un' = (I)y, = IP4�x, n = 0, 1, ... , N - 2.



NRL REPORT 9312

Hence, the number of input r.v.'s to the GSKN-1 structure has been reduced by 1 (Fig. 6). Note
U,, = YX n = 0, 1, . . ., N - 2.

6. NONSTATIONARY NOISE MODEL

In this section we present the temporal nonstationary noise model of the inputs to the GS can-
celler. We consider separately the modeling of internal and external noise sources. We assume that
the average power level from external interference sources is not a constant from sampling time to
sampling time. Our methodology is to derive lower and upper bounds on the output noise power resi-
due of the adaptive canceller when these power levels are known exactly at each sampling time. Thus
these bounds are conditioned on the K-specified power levels of the external noise. Thereafter a joint
probability distribution function can be assigned to the K-specified power levels and upper/lower
bounds of performance can be derived by integrating the conditioned upper/lower bounds over the
joint probability distribution function. More specifically, define

Raae(k) = (N - 1) X (N - 1) auxiliary covariance matrix of the external interference
at time step k, k = 1, 2, . .. , K.

rame(k) = N - 1 length cross-correlation vector between the auxiliaries and the
main channels of the external interference at time step, k,
k = 1,2,... ,K.

We set

Raae(k) -2 Caae (15)

rame(k) = Cam,e (16)

where

Caae is a constant (N - 1) X (N- 1) normalized auxiliary cross-correlation matrix

of the external noise sources,

Cam, e is a constant N - 1 length normalized cross-correlation vector of the

external noise sources, and

k2 is input power to each main and auxiliary channel at time instant k,

k=1, 2, ... , Assume a2 oar2 fork, # k2 .

The normalization of Caane and came results from setting all of the a2 = 1 and computing the result-
ing auxiliary covariance matrix and the cross-correlation vector between main and auxiliaries of the
external interference, respectively.

9
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Define

Wa = (w1 ,w 2 , . W. . ,wN_ )T = optimum canceller weighting vector,

Raa = (N -1) X (N - 1) auxiliary covariance matrix,

ram = N -1 length auxiliary-main cross-correlation vector,

Raae = (N -1) X (N -1) external interference covariance matrix.

We assume all internal noises are temporally and spatially statistically independent and identically dis-
tributed, zero mean, complex stationary Gaussian noise processes with power 02, which without loss
of generality is set equal to 1. These internal noises are additive in each channel. We note that all
other powers are referenced from a2 = 1.

For the noise model described,

w = ram (17)

Raa = Raae + IN-I (18)

ram o r2] Cam, e (19)

Raae = [ 0 Caa, e (20)

where IN-I is the (N - 1) X (N -1) identity matrix that represents the internal noise covariance
matrix. Since Caa, e is a hermitian matrix, we can decompose it as

Caa, e = 4e r 4e (21)

where

r is the real diagonal matrix of eigenvalues of Caa, e

bIe is the unitary eigenmatrix of Caae, i.e. , be se = IN-I

Define

(71,72, ... ,YN-_) = eigenvalues of Caa,e,

o2 = steady state (K- oo) main channel internal noise power residue
(after cancellation),

10
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or2 =steady state main channel external interference power residue,

i2 = average noise power (internal and external) of the main channel
input, and

m2 = total steady state noise power residue.

It can be shown that

a02n = 0i2 + 2e = - ram Rj ram (22)

and

or? 1 + ram R - 2 ram. (23)

Thus

or2 = o2 -ram Raa- ram - (24)
e in am aa am .

As mentioned in Section 4, the auxiliary inputs (x1 ,x2 , ... ,XN _- )T of a sidelobe canceller can
be multiplied by an arbitrary nonsingular (N - 1) x (N - 1) matrix transform such that the tran-
sient residue is unchanged. Consider the implicit matrix transform illustrated in Fig. 7. In this fig-
ure, 4a*' e statistically orthogonalizes the auxiliaries with respect to one other. We note that the inter-
nal noise components of y n, n = 1,2, ... , N-I have unit power since <Ice* is a unitary transform.
The outputs of the 4ca*a e transform are denoted by y', y', ... Y- We optimally weight each of
these by the wl, w2, .. ., W-, which minimizes the output residue of yo. This weighting does not
affect the transient residue, as discussed in Section 4. Next yo, y 1', . .. , and yk -I are normalized
so that the average power (over all K samples) is equal to 1. This normalization does not change the
normalized output noise power residue. The outputs z0 , Z 1, ... , ZN -I are the result-
ant outputs of this normalization procedure. When conditioned on their respective power levels, these
inputs entering the GSKN canceller are spatially and temporally statistically independent of one
another. More explicitly if Z, = [z,(1), Zn(2), . . , z1 Z(K)] is the input vector of K samples then

E [Zn, (ki) Z*'(k 2 ) = 0, unless n I = n2 and kI = k 2 , (25)

and

K EE|z.(k) I 2 = 1. (26)

It is straightforward to show that

El I zo(k) 121 = ao1o(0 uk + u?), k = 1,2, ... ,K (27)

and

Et IZn(k) C1=n(yn ak + 1), k = 1, 2, .. ,K, n = 1, 2, .. .,N- 1 (28)

11
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MAIN AUXILIARIES

Fig. 7 - Equivalent canceller using correlated inputs
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where

;2 = I K 2k

ae2
a2IYo = -a2

(X0 = [_Yo 0r2 + or]

Un = [IYn a + 1]', n = 1,2,

We define

X(n) =

Io(-Yo U2 + 0?)I

aO(-yO OK + oi)

ao(-yO oK + ao2)

°an (Yn

Can (Yn

OF2+ 1)-

o2+ 1)

an (Yn aOK + 1 )

Thus each sample in a given channel can be characterized by specified variances. The K-length data
vector in nth channel is completely characterized by X(n), n = 0, 1, . . . , N - 1, and the fact that (1)
its elements when conditioned on their respective power levels are spatially and temporally statisti-
cally independent all other data samples, and (2) are complex Gaussian processes. We note that
without loss of generality we can order the or2 k = 1, 2, ... , K as

2 < o2 < or2 . . . < o201 < 2 <03 < K.

7. 2-INPUT GS CANCELLER

The basis for understanding the convergence properties of a GS canceller begins with studying
the 2-input GS canceller. We assume the input data noise model as defined in Section 6 and that
these data satisfy assumptions (1) through (5) given in Section 2. We set Anfn = 0,1,2,... ,N -1

13
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equal to a K x K diagonal matrix, where the kth diagonal elements of An are given by the kth element
of X(n). We write the output residue as Zn. Thus

Znw =X0 - i'XI, (35)
where

W= t . (36)
xlx1

Furthermore, we can show that the normalized X-averaged transient output noise power residue
is given by

t_ Eli Zn. I' I xoaxl}
arnw ~2 (37)

amin

1+ I l2,

lxtxol2
( I x 1 )2

Because the elements of x0 are Gaussian and independent of the elements of xI,

Etnw I xI) =I + (x-x )2 (38)

Now we can write

xl= All/2VI (39)

where v1 is a vector of identically distributed, zero mean, unit variance, independent complex Gaus-
sian r.v.'s with independent real and imaginary parts. Thus

E19nw I VI I = 1 + v 2 (40)

It is shown in Appendix A that

K K
2 ,(K, 2) = 1 + X(0) a(n,k) F ()41),X?4)) (41)

k=1 n=I
nik

14
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where

, 1 < n, k < 2; for K = 2

(x ())K -3

K

l (Xn ) - )
m =1

m *n,k

-; 1 < nk < K; for K > 2

V)4

X~)- >41)
In (l)

8. PRELIMINARY DEFINITIONS AND THEOREMS

Before deriving bounds for the convergence of an N-input canceller, we give preliminary
theorems necessary for obtaining these bounds. Observe X%) < >4") < ... < X)\ and let
e = (el, e2 , ... , eK)T. Define the following K - 1 + 1 length vectors

eL (1) = (el, e2 , *-.- , eK-1+1) (44)

eu (1) = (el, el+,, ... , eK) (45)

The L or U subscript on a vector indicates whether the lower or upper K - 1 + 1 elements of that
vector are used. Let the random vector v, be as defined in Section 7. Define the
(K - 1 + 1) x (K - 1 + 1) diagonal matrices Au', and AL,, whose diagonal elements are given in
order by the elements of V (1) and X2 (1), respectively. The following quantities are defined and are
used in evaluating upper and lower bounds of on"(K, N):

t K= Au, oAu 2v
U(l, K, X('),X(0)) - E I (vA -vl2 5 (46)

-I V'AL, OAL,lVlIL(1, K, ),(1),X(0)) = E VtA ,A ,V |2
C(v'IAu lvl) 

(47)

15
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The following theorems give formulations for U(l, K, X( ),X(O)) and L(1, K, X(l),X(0)).

7heorem 1: Define for I = 1, 2, ... , N- 1

aL(n, k, 1, X(')) = -

au(n, k, 1, X(')) =

I 1 < n, k <
n

[x(I)]K -1-2

K-1+1
Il (X(1) - X 1))

rI (n Mr 
m=1

min n,k

undefined if n = k

I , K- 1 _ n,
n

[W()I]K -1-2

K
Hl (X(O - X(O)rI ~n *mn)

m =l
m #n,k

2, ifK - 1 + 1 = 2

k c K; if K -I + 1 = 2

, 1 < n, k <K K -l + 1 > 2

undefined if n = k

K-! +1
F aL(n, k, 1, X(')) F(X\ln, X )), 1 = 1, 2, ...
n=l
n *k

,N-1;1 _k _ K-1+1,(50)

K
GL(k, 1, X(')) = E au(n, k, 1, X(')) F (X)1

1 )4X)), 1 = 1, 2,... ,N - 1; 1 < k < K,
n=1
n *k

where F(-, ) is defined by Eq. (43). Then

U(l, K, XI1), X(I))

L(l, K, XI1), X(O))

k= X/) Gu(k, 1, XI'),1 = 1, 2, . .. , N -1, (52)

= + X() GL(k, 1,
k=1)

16
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Proof: The proof is given in Appendix B.

We use the following variant of the Poincare' separation theorem [II].

Theorem 2: Let A be a K x K hermitian matrix with eigenvalues XI • X2 ... ' XK. Let B be a
(K - 1) x K matrix with K - 1 orthonormal columns. Let Xq' 1 .. Xk-I be the eigen-
values of B*AB'. The following inequalities hold:

X1 i X' • ' X2 ' X2)' * * ' XK - I ' XKl - I ' OK (54)

Note that if the equality is removed so that X1 < X2 ... < XK, then

XI < XI' < X2 < )X2' < ... < XK -1 < AK -I < XK- (55)

Thus the X,;, n = 1, 2, ... , K - I are distinct if the Xn, n = 1, 2, ... , K are distinct.

Define

X(n) r = (X'i) ', \2") ', ..., XV'0 I). (56)

Theorem 3: If fin) < B i)"' < ) < X~)' < ... < x%"n) < x\n) < Xv), for n = 0, 1,
N - 1, then

L(l + 1, K, X( ), f)) < L(l, K - 1, X(') ', X(°) '

< U(l, K- 1, X(')', X(°)') < U(l + 1, K, X(X), ). (57)

Proof: The proof of this is straightforward and follows by direct comparison of the terms (which are
all positive) in these expressions.

9. BOUNDS FOR NONCONCURRENT GS CANCELLER

In this section, we prove the following theorem pertaining to nonconcurrent GS cancellation in
nonstationary noise.

Theorem 4: If >4n) < X4~) < ... < X%') for n = 0, 1, ... , N-I and assumptions (1) through (5)
hold, then

N-l N-l
Hj [1 + L(l, K, X(N-1), X(°))] < orn(K, N) < HI [1 + U (1, K, X(N-1) X())] (58)

1=1 1=1

Proof: We prove this by mathematical induction. We have shown that the theorem is true for N = 2
(see Section 7 and the definitions of L, U, given in Section 8). Thus, we can assume that the
theorem is true for all integers less than or equal to some upper bound, N - 1. We show that the
theorem is true for N, which implies that it is true for any N 2 2. Recall that the nonconcurrent
inputs are equi-power. In addition the samples of x0 when conditioned on their respective power lev-
els are spatially and temporally statistically independent of the samples in the auxiliary channels.

17



K. GERLACH

We decompose the GSKN processor as shown in Fig. 5 and further reduced in Fig. 6. Our
methodology is to derive bounds on the output noise power conditioned on XN-1, which we write as
El I Zn" 12 IXN-11. Thereafter, we see that oa2"(K, N) = E Il Znw l 2 is readily derivable. The K-
length output vectors Yn, N = 0...., N - 2 of the channels from the first level are given by Eq.
(12). As discussed in Section 5, the number of concurrent inputs per channel into the succeeding
GSK, N-1 processor is essentially reduced by one. These concurrent inputs are now given by the
(K - 1)-length vector denoted by u,, n = 0, 1, . .. , N - 2 and defined by (14b). It is straightfor-
ward to show that the main channel samples of u0 conditioned on XN_1 and their respective power
levels are spatially and temporally independent of Un, n = 1, .. . , N -2, and that the nonconcurrent
samples, Un, n = 0, 1, . .. , N - 2 are equi-powered. Hence, assumptions (1) through (5) hold for
the reduced input set (note for assumption (5), K - 1 2 N - 1). Hence, the bounds given by
Theorem 5 can be applied for the equivalent GSK-1,N-1 canceller (see Fig. 6) if the temporal corre-
lation matrix for each channel were known.

We define 0 mn2 to be the minimum output residue of the GSK -1, N - I canceller if we use a fin-
ite K in the first level of canceller seen in Fig. 5 and use an infinite number of samples (steady state)
in the GSK -I ,N -I canceller. Let B be a (K - 1) x K matrix formed by using the second thru Kth
rows of 4, which is defined by Eq. (11). Thus

Un = BXn, n = 0, 1, 2,..., N - 2 (59)

An' = E(unun) = B*AnBT, (60)

where A,; in the correlation matrix of u, n = 0, 1, .. , N - 2. Define ,n)', . . . , to
be the eigenvalues of A,. In lieu of the Poincare' Separation Theorem (see Theorem 2) and the origi-
nal assumption on ordering, (55) holds

Thus invoking Theorem 4, which we have assumed is true n c N - 1, since M)"i <
))' < . . . < X)\( l', then the conditional expectation of the noise power can be bounded as

E (lZnwI2 I XN_1

Nfa2 [1 + L(l, K -1, X(N-I-1)% X(o)?)] < -2

I1 =I amin

< II [1L + U(l, K-i, X<(Nll-)i, X(O)i)j (61)
l1=1

We outline the remainder of the proof. The bounds given by (61) can be bounded by those
2

given by Theorem 3. The amin is multiplied through all the new bounds. Next, the joint probability
distribution function (p.d.f.) of the elements of XNI is multiplied through all the bounds and
integrated out. Finally Etarinj, is bounded by using the results of Section 7. As a result, Theorem 4
follows. End of proof.

We have derived upper and lower bounds of the expected value of the output noise power resi-
due of the GS canceller that depend on the values of the elements of X(n), n = 0, 1, . . . , N - 1. As
shown in Section 6 these elements depend on a., -y,, n = 0, 1, . .. , N - 1, or;, and

18
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o2, k = 1,2,... ,K. Furthermore, tn,,yn, and ao depend on Caae2 Cam,e a~n, and o2
k = 1,2, ... ,K. We can generalize these bounds by considering ak, k = 1,2, . .. . K to be random
variables with a joint distribution function Pi (U2, U2,... , g2). We can consider U2o(KN) to be
the expectation for the normalized canceller output residue conditioned on o2, k = 1,2,... ,K, and
define orn (K,N) to be the expectation of the normalized canceller output residue. Mathematically
this is expressed by

o,,.(K,N) = o, (KN) dPo, (ao, .1 . . ,Uk) (62)

We note that defining a joint distribution function for al, o2, .. ., or changes the original assump-
tions on the input processes. The input process is no longer Gaussian and independent from sample
to sample. However the input process conditioned on oa, ay2, ... a2 is Gaussian, and the uncondi-
tioned input process is uncorrelated from sample to sample. Defining a joint distribution for
a2, , ., allows a variety of nonstationary interference scenarios to be modeled and evaluated
(for example, finite-state jump Markoff processes, continuous or discrete time processes, mixed distri-
butions). Bounds on orn(KN) are found by integrating the lower and upper bounds given by (58)
over dP,2((l I a2 ,**, oj).

Finally, we note that one of our assumptions is that Xi), X\), .. ., X\, n = 0, 1, .. , N - I
are distinct, i.e., • XQ (n) for i * j. We can approximate with arbitrary accuracy the case when
these values are not distinct by merely adding or subtracting a small perturbation about each non-
distinct >4W to make it distinct. These bounds can then be evaluated to within an arbitrary accuracy
of the true value of the bound.

10. SUMMARY

Convergence results for the Sample Matrix Inversion (SMI)/Gram-Schmidt (GS) canceller algo-
rithm in temporally nonstationary noise was investigated by using the GS canceller as an analysis tool.
Lower and upper bounds for the convergence rate of the canceller's average output noise power
residue normalized to the quiescent average output noise power residue were derived. These bounds
are a function of the number of independent samples processed per channel (main or auxiliary), the
number of auxiliary input channels, and the external noise environment. The external noise environ-
ment was modelled as Gaussian, with a power level specified at each sampling time instant. Further-
more, this model was generalized in the sense that a joint probability distribution function is defined
for the power levels over a canceller processing batch. This leads to the capability of modeling and
evaluating the SMI/GS canceller in a variety of interference scenarios such as continuous or discrete
time processes or a mix of these.
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Appendix A

DERIVATION OF 2-INPUT GS CANCELLER NOISE POWER

In this appendix we find an exact expression for aon"(K, 2). Starting from Eq. (38), we can
write

E I Xj= 1 + ; X)
k =l

Xk 1x2

(XtX) 2
(Al)

where without loss of generality, we have set x = x1 and x =

I Xk 12 IXk I2

-k -(XtX) 2 L _ 2 k

| Xk1| + r, I Xn 12

n=1knWk J

We find E IUk 1, k = 1, 2, . .. , K. Define

Zl = 1Xk12

K

Z2 = n= IXn 12 .
n=l
n +k

Thus

(xI, x2 , . . ., XK)T. Set

k = 1, 2, ... , K.

Z +

-k-(Z I + Z 2 )2 

It is shown in Appendix C that if ), k = 1, 2, . . ., K are distinct, then zI and Z2 have the
following p.d.f.'s:

zI

Pz,(zl) = (I)e

Z2
K --

Pz,(Z2) = , a(n, k)e n
n =1nk

z 1 2 0 (A6)

Z2 2 0 (A7)
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where

1
, for K = 2

(A8)

;k n,forK > 2.
m= (X(1 ) -3 M)mI * in - m

m =l
m #n,k

E[Cik] = Il w (z + )2 Pz, (zI)pz2(Z2 )dzIdZ 2 .

Substituting (A6) and (A7) into (A9) results in

Etcek) = F ~f )a(n, k)FO(Xn, Xk) ,
n =1nk

where we define

FO ()n) X41)) X= I I 1 0 S 0
TZI ~+Z2) e ~z,

Let u I = z IAil), u2 = z2 /Xn() With this change of variables the double integral in (All) becomes

FO(X') X )) -= ) S 0 o o U I e-u 2dU dU2.

(W'UI + X.4l)U 2)
2 e ud u.

G(Xn), ) - 1I eO -U-U2 dU+dU2
0l)=I 0 V)U 1 + nI2

FO()\ , X41)) = aG(O), Xi')
aV

22

a(n, k) =

Thus

(A9)

(A 10)

(All)

Define

(A12)

Note that

(A13)

(A14)
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We now find an expression for G(O)Xn, 41)). By setting z -= X')u 1 , Z2 = X( )u2,

zI Z2

G(O), X4)) - 1 1 e dzI dZ2. (A15)
V 4) ~o o 0ZI + Z2

Now

G(O) 41)) - E {j + I (A16)

where z 1 and Z2 are independent random variables with

Pz, (zi) = - e , (A17)
Xk

and

Z2

Pz2 (Z2) = (1) e" . (A18)
n

An expression for E t(zI + z2 ) -1 is derived in Appendix C, and its form is given by (C12). Thus

G((), 41)) -) 1 ln (Al9)
n XM ~~- 411) 41)

By using (A14), it follows that

F0(Xn('), 4) - - X|n . (A20)

Define F(X('), 41)) - X4) F_ (4k), X4)) or equivalently

F (Xn l), Xi')) = XM ) XVl) 1 _ XM) XV) In Xil) (A2 1)

Substituting F(')\, Xi'))/Xi') for F0 ()nl), X41)) in (A10) and then substituting (A10) into (Al) results
in

K K
or. (K, 2) = 1 + X X(?) a(n, k) F(Q4), 41)). (A22)

k=1 n=1nk
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Appendix B

PROOF OF THEOREM 1

We outline a derivation of U(l, K, X('),X(0)). The derivation of L(1, K, X(l),X(°)) follows the
same methodology, so it will not be presented. Starting with (46), we write

vtAu, Au, ov _

(V AL,IJVI

K-I +1

k =l

K-I+1
= E

k =l

+k-I Xftlk-i I Vk I'A 2
(vtAL,lv)2

k - I Y+k - I

Xkl'

where without loss of generality we have set v = vI and v = (vI, v2 , . . ., VK-I+ )T. Set

Xk = (k))" 2 Vk k = 1, 2, ... , K - 1 + 1

X = (XI, X2, . . ., XKI+,)T.

Substituting (B2) into (Bi) and taking the expected value of both sides

Er v'A UvI
t (VALV)2 J

K-1+1
= k

k =l

_°+_-_ _ _k-l E |xk |

X4 L (xtX) 2 J

1Xk 12

ak = (XtX) 2 (B5)

General expressions for Etakd were derived in Appendix A. The upper bound given in Theorem 1
follows by using these general expressions with the proper index with respect to 1.
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X4) I Vk 12

(VtALV) 2
(B1)

(B2)

Set

(B3)

(B4)





Appendix C

DERIVATION OF EQS. (A6), (A7), AND (A19)

We derive an expression for Et 1 /x'xl where x = (xI, X2 , . . . , XK)T and each xk is an indepen-
dent, zero-mean, complex Gaussian random variable with variance equal to Xk. We assume that
Xk, # Xk2 for kl k2 and K 2 2. Set

Z = jXI 12 + jX2 12 + + IXKI2 (C1)

and

Uk = Ixk 12 , k = 1, 2, ... ,K. (C2)

Now Uk is real and has a p.d.f. given by

Uk

PUk (Uk) = -e , Uk Ž 0 (C3)
Xk

and characteristic function:

PUk.,) = -- (C4)
Xk j 1

Hence since the Uk are independent, the characteristic function of z is given by the product of the
characteristic functions of Uk, k = 1, 2, . . ., K or

P(w)= ( 1 )K i Xkl .1 (C5)

Xk

By using a partial fraction expansion of P,(w) and the inverse characteristic function transform,
it can be shown that

z
K X

P2(Z)= sake , z> (C6)
k=I

where

xK -2
ak k (C7)

K

rf (Xk - Xn)
n =1
nik
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We now show that

E | _ } ak In (C8)
LX X k=1 Xk

Set wk = I /Xk, k = 1, 2, ... , K. Define a function of F such that

o K e-Ck2
F(&,1, 2' , CK) = X ° ak dz, (C9)

k=I Z

K
where ak, k = 1,2, ... ,K are arbitrary constants satisfying the constraint E ak = 0. We note that

k=1
K

for the ak defined by (C7), F(w 1,w 2 ,... ,&k) = Efl/xtx} and E ak = 0. We can show that F
k=1

exists if all Cok > 0. Note that the summation and integration cannot be interchanged in (C9) because
the resultant would be unbounded. It is straightforward to show that aF/aCk, k = 1, . .. , K exists
and is equal to -ak/CJk. Furthermore, we can show that the only form of F that satisfies these K par-
tial derivative equations is

K
F(coI, '2, . K) = ak In Wk + C (ClO)

k =I

where C is a constant to be determined. Since

K

E ak = 0, (C 1)
k=1

for all Wk equal to u) using (C9), it follows that F(w, c, . c. , a) = 0. By using this fact and (Cli)
in (C10), C = 0 and (C8) follows.

Substituting the expressions given by (C7) into (C8) results in

ri~~~~ K XK 2lnk
E I 1 k In Xk

X X k=1 rI (Xk - X.)

n =1nk

We note that for K = 2,

( I'X} Iln X, (C12)
LXtX XI1X2 X2
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