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CONVERGENCE PERFORMANCE OF ADAPTIVE DETECTORS,
PART 1

1. INTROCDUCTION

The matched filter detector (MFD) is a commonly used in deciding whether a desired signal is
present or not. Figure 1 shows a schematic of the MFD. The output of N sensors is input to the

MED. If the covariance matrix R,, of the inputs x, x;,...,xy is known a priori and the desired
crimmn] ~nm ko eameacamdad ey s ne A7 lamadl srmmdme o= 4o ol o oa b1 £210 0 corntblas - ~ P
Bigildi Cdlil UC [CPICHCINCU UY UHIT dil /Yy-iCiigtii VOLtul b, LHCH WIC Aol 10T WOIEgIS 1, o3, .« , Uy

are given by a = R! s, where a = (a, a3, ...,ay)’ and T denotes transpose [I1]. The output of

the matched filter is a™ x, where x = {(x,x5,...,xy)7 and H denotes conjugate transpose. This

output is square-law detected and compared against a threshold. A detection is declared if this thresh-
old is exceeded.

For a known covariance matrix, threshold, and signal-to-noise power ratio, the detection proba-
bility Pp, and false alarm probability Pr have been derived [1]. In some applications the covariance
matrix is not known a priori and is estimated. The matched filter weighting is then determined by
using what has been termed the sampled matrix inversion (SMI) algorithm {2j. Convergence results

for the output noise power residue of an adaptive matched filter that uses the SMI are given in Refs.
2to4.
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KARL GERLACH

Kelly [51 derived an adaptive detector under the Gaussian assumption by using the maximum
likelihood (ML) estimator for the unknown parameters of the likelihood ratio test, i.e., the unknown
covariance matrix and the unknown signal amplitude. This detection scheme is known as the general-
ized likelihood ratio test [1]. The desired signal’s amplitude was assumed to be nonrandom. Input
data consisted of a primary data vector of length N that might contain the desired signal and a number
of secondary data vectors that do not contain the desired signal. R, is estimated from these secon-
dary data vectors by using the SMI algorithm. Reference 5 presents convergence resuits for P and
Pr. Expressions for Pp and Pp were derived that are a function of the number of statistically
independent secondary data vectors, the number of input channels &, the detector threshold, and the
input signal-to-noise power ratio. Note that Pr did not rlpnpnd on R, (a statistical measure of the

external noise env1ronment). Hence this detector exhibited the desirable constant false alarm rate
(CFAR) property of having the Py be independent of the covariance matrix. References 6 and 7 con-

tain additional research in this area.

Here we consider a different form of CFAR adaptive detection that employs a mean level detec-
tor (MLD) [8,9]. For this detection scheme (as in Kelly [5]), a fixed number of secondary data vec-
tors that do not contain the desired signal are used to estimate R,,. A number of primary data vectors
are processed through the matched filter, and square law is detected. Thereafter, one of the resultant
outputs is selected as a candidate for detection; the remaining output powers are averaged and multi-
plied by an arbitrary number to form the threshold. Also in this report, we address the random
desired signal. In particular, we present results for the Rayleigh target model. Formulas for Pp and
Py are derived for what we term as the mean level adaptive detector (MLAD), and again we show
that this detector exhibits the CFAR property of the Pr being independent of the input covariance
matrix.

The pertinant assumptions for this analysis are the following:

(1) Input noises are complex zero-mean stationary Gaussian random variables (RV). The real
and imaginary parts of a given input noise sample are independent and are identically dis-
tributed (IID). An RV with these characteristics is called a circular Gaussian process.

(2) Input noise samples are temporally statistically independent.

(3) The secondary data is statistically independent of the primary data.

(4) The desired signal is present in the candidate primary data vector. It is not in the sec-
ondary data or the primary data vectors used to form the threshold.

Assumptions (1) through (4) were also used in Ref. 5.
2. MEAN LEVEL ADAPTIVE DETECTOR DESCRIPTION (MLAD)

Figure 2 shows a schematic of MLAD. A batch or block of input data (called secondary input
data) is used to calculate the adaptive weights. On each of the N input channels, we measure X tem-
porally independent samples.
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Define
X = N X K matrix of secondary input data. The nth now represents the K temporally

independent samples on the nth channel. The samples in the kth column are
assumed to be time-coincident;

s = desired steering vector of tength N; and
R;x = N X N estimated the input covariance matrix.

The opiimal estimate w of the optimal N-length weighting vector is given by [2]

w=R.s, )

where

~

R, = xx'y-L. (2)

Equations (1) and (2) are essentially the SMI algorithm for computing the matched filter, or Weiner
weights,
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This optimal estimate is then applied to another temporally independent set of data called the
primary input data. The primary input vectors are of length N and their elements are assumed to be
temporally independent. Let

X = candidate primary input data vector of length N;
x; = Ith MLD primary input data vector of length N;

L = number of MLD primary input data vectors; and
T = MLD threshold constant,

The MLAD rule is given mathematically as

H)
~H = L .H
W x[22 T [w x| 3
where |-| denotes magnitude, Hy is the hypothesis that no desired signal is present, and H, is the

hypothesis that a desired signal is present. Note that with this detector, the standard CFAR procedure
of normalizing the candidate primary test statistic is by the average of the estimated power of the
other primary test statistics (i.e., 1/L has been incorporated into 7). The probabilities of false alarm
and detection probabiiities are defined as

~H i, L H
Pe=Prob { |w x| >TY¥ |wx|°| Hyy, )

=1

o]
Fu

L
Pp = Prob {|\7VHXFZ>TE |\'=‘vHx;]2 ]Hl}. %)

=1

We now introduce a matrix transform on the input channels that does not change P, or P, but
greatly simplifies the analysis. Let R, be the N X N covariance matrix of the input channels.
Assume that the matrix is nonsingular. There exist an N X N matrix 4 [2], which (1) spatially
whitens the N input channels, (2) normalizes each input channel to have noise power equal to one,
and (3) places all of the signal energy in the first channel such that the transformed signal vector s is
given by

§=As = (u, 0,0, .., 07T, (6)

where u represents the transformed desired signal voltage.
Define

Z = AX = N x K matrix of transformed input data. Each sample is temporally
and spatially independent with variance equal to one;
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candidate primary input data vector.

W
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1t is straightforward to show that the optimal estimate w of the transformed data is given by

w=(AdH!w

Figure 3 shows a schematic of the transformed MLAD rule. It is given by

H,
H,_ |2 > L H 2
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Fig. 3 — Transformed mean level adaptive detector
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By substituting for w, z, and z; with (A™)~' W, Ax, and Ax,, respectively, we find that Eq 3)
results. Hence, the equivalence of the two decision rules is proven. Thus

Py = Prob j([w z|2>TE |wH 7, (2 (HO} %)
i=1 J
and
- L ™
Pp=Prob < W z(?>TY (wlg|? H, } (10
=] J
We see from Eq. (8) that an arbitrary scaling factor multiplying both sides of the decision rile
does not change the rule. Henceforth, we set the first element of w equal to one and define
w=(1, wy, wy ..., wy)'. (1
Finally we note that as K — oo, then w, — 0, n = 2, 3,...., N — 1. This is so because the

Weiner weights are effectively achieved after the transformation by A4 [4]. Hence the adaptive
weights computed after this transformation are perturbations about their optimal values, which are
ZEro.

3. PROBABILITY OF FALSE ALARM
In this section, we derive Pr and show that the adaptive detection scheme discussed in Section 2

does indeed exemplify the qualities of a CFAR processor, i.e., the Py is independent of the external
noise environment. To this end, define

P (F|w) = probability of false alarm conditioned on knowing w.

H
y= 22 (12)
¥
and
WH Z;
vy=——1=12, ..., 1L, (13)
[[wl]

3
The doricinn rale oivan hy Fa (8 can he rowr Q
A Ll Wl DAV ) L Wi El'vl‘ UJ } kil 1PN A A YT LI R CLLY
H,
2 > = 2
W22 TE )t 14)
=1
Hy

[=
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For the above decision rule, it is well known {8] that

L I
2 AU S 5
Prob {11}] >T§] }vﬂ} AT T (13)
Thus
P FIW) = ——, (16)
{1 +7T)
and
Pr= b an
Fra+ e

We note that Py is a function only of the arbitrary threshold T, and L is the number of MLD samples.

4. DETECTION PROBABILITY

Here we derive the detection probability Pp associated with the MLAD. Under H,,
z=(u +ny,ny, A3,... 0810, (i8)

alamaant

wrha and
wi dbivl CILRLIGLLL

o ¥ == (31, " A e additius anecian nad L s oo
VIS &1 — \ﬂ}, 1L2, PR ,H.N_l) D dll ALy Le Lrausol A,

an noise vector with zero mean
variance equal to one and u is the desired signal voltage through the mairix transform 4. Under H,,
define

DHETY | ommr 45 o= wxin
s | W, By = pr

Note we are assuming that the desired signal is not present in the CFAR primary data vectors. Equa-
tiont 13 defines v;, { = 1,2, ... L. Also set

= WH Z _ W § WHD — u WH n
T e T e T e (19)
We set
o = n:,u* 20)
and
o ¥n
SRR @
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Now v is a circular Gaussian process with a mean equal to u¢ and variance equal to one. As before,
v; are IID, circular Gaussian processes with zero mean and variance equal to one. They are also

independent of v.

The decision rule given by Eq. (8) can be rewritten as

H
I
lug + v’ 2 T X w2 22)
HO f=]
Set
r=lug +v'|? (23)
and
L 2
Zsz:]V;]. (24)
i=i

Let the unknown phase of « be uniformly distributed between [0, 27). Under the IID Gaussian
assumption, Ref. 1 shows that the probability density function (PDF) of r, denoted by p,(r), is given
by

priry = e D gV, @5)

where I, is the modified Oth-order Bessel function of the first kind. The distribution of z is the x*
distribution with PDF given by

- - * _ JL-1,-z/T
p:(z) = TEL 1! 2" e . (26)
Now
Prob{r > z} = gom Lm p.(r} p,(2) dr dz, 27N
and

PID| w, u} = P {D|up} = Probir> z}. (28(a))

Define
do = — (28(5)

Iwi*’

~in
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where the quiescent (K = o) output noise power of the Ist channel z; is equal to 1. Thus,
ug = uvgo. (29)

Brennan and Reed [3] showed that g, has the following PDF.

K!

P = Tk v ¢ ) a0 s g0 st 30

Set ¢ = Vgq. It is straightforward by using elementary probability theory to show that

! 2\N -2 UK ~N)+1
p.(q) = K - , 0=<gq=<l. 31
D= SR IIK N 97 7 S

Thus the joint PDF of |u | and g, which are assumed to be independent random variables, is
given by

Pluldlul,a) =p(lu])pyla) (32)
At this point, we note that
PD|w,jul)=PD | |up]) =P D] lul.g. (33)

Thus knowing the PDF of {ug| is not necessary since we have the joint PDF of p |, | ,(l# |, ¢).

Finally the detection probability is found as

-] 1 ‘
Pp={ § PO lul. qpuiqlul. @) dgdiul, (34)
or
w .1 .0 . [r+ﬂil'z_} " }2
Po=el Bh et T {2 g \/;J 35
cyl=lgmyiTy — gV RGN (Ve dy dg du ),
where
c= K1 1
2N -2VK -N+ ) by -t (36)

We note that the signal parameters are contained in P, ([« |} and that the power of {u [ is com-
puted by using the input signal parameters, the desired signal vector, the matrix transform A, and the

9
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fact that the output noise power residue of the matched filter (K = o) is normalized to one. The

quantity {u |2 is actually the output signal-to-noise ratio of the matched filter for a constant input sig-
nal amplitude.

5. DETECTION PROBABILITY: RAYLEIGH SIGNAL

In this section, we derive an expression for Pp for the special case when the envelope of desired
input signal « is Rayleigh distributed. We define v; as done by Eq. (13) and v as done by Eq. (19).

Implicit in the assuraption that |u | is Rayleigh distributed is the fact that u is a circular Gaussian

process with zero mean and variance equal to 02, Thus v is circular Gaussian with zero mean and

2
2 . _u
oy = - + 1L (37

The decision rule given by Eq. () can be rewritten as

H, .
>
vi* 2 T Eiui® @38)
HO t=1
We define z as in Eq. (24) and
r={vi|2 (39)
The PDF of r is given by
p(r) = —!2— e (40)
a\’

~L
P (DIw) = Problr > z} = "1 + ihl @1
L et
Again set ¢ = 1 /||w||>. Thus Eq. (41) becomes
T -1
PD|iw)=PDigy) = ‘:1+~—————2 } . “42)
gy go T 1
We define
—%J = o2 = optimal signai-to-noise power ratio of the test statistic z,.
opt

10



NRL REPORT 9311

We note that (5/N),,, 1s also the optimal signal-to-noise power ratio of the output of the matched filter
where the optimal linear weight is given by w,,, = ' s. The PDF of qg is given by Eq. (30). It
follows that

-L
K! ! T N=2 gK-N+1
Py = 1 - d 43
D= WK <N (s] ., (= 90) qo- (43
g0 + 5 Tl
LNJ opt
By using Eq. (17),
T=P;Vl —1, (44)
This expression substituted into Eq. (43) results in
i gp + @ L
- N-2 _K-N
PD—CEU (%4_5} (1 — gg)¥ ™% gk ~V*! dgq, {45)
where
rs'w -1
a= ||, (46)
\-n_} ot
~. Y- 1
b= |=| Pt 47)
(N opt
and
K!
= : (8)

N =21 K - N+ DI
Furthermore, if we set g, = go + b, then
poo= g0t L N=-2 K-N+1 ~L
Dhcjb (qr +a-by (1 +b—-q)""%g, - b) g1 dqq. 49

If we expand the integrand

iyt

3
'D
3
3.
<‘.
L¢]
5
=
(1]
]
+
2,
T
n
A
frd
"
>
"
Cl“
=
i
¥
]
)}
',
]
)
]

the abov Cgra: DY USIRg Uie

v. 11
expansion in term of powers of g results. These may be integrated yielding the following:

D = (_l)£+K+N+1 ¢ &L (1 + b)N—Z bK—N-H

L N-2E-N+t [L N— K-N+1
= ng [1} ["J [ : J( 1),+m+,,F(l+m+n L5 so)

1=0 h=0 o (1 + by b

i1
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where (1) is the binomial coefficient of its arguments,

-1 1
_ |5 T _
o {NJ (Pr 1), (51)
ogt
and F(-, ) is a function defined as
Pl g
SEn ) ARl A
. 1+6 i+1
Fa o) =§ — qidg = | 52
in [1+-5J, [ = —1.

We note that as K — o, then gg ~ 1. Thus the quiescent P, denoted by P’ is given by

~L
P = |1+ —T—] . 3
ST
U'Izn'm
By using Eq. (44) and (S/N),,; = 0%/0%,, then
-L
_t
Pt -1
P = |1+ ~—— . (54)
i S
—1\_{1 +1
L L p

6. RESULTS

In this section, we present some results on the detection probability Pp of the MLAD vs the
independent parameters: the probability of false alarm Pg; the steady-state signal-to-noise output
power ratio of the matched filter (S/N),,,; the number of independent samples per channel K used to
calculate the sample covariance matrix; the order of the adaptive matched filter N; and the number of
samples L used to set the mean level threshold. We found that the sofution for Pp given by Eq. (50)
though exact is numericaily unstable for computer evaluation. Hence the integral solution given by
Eq. (43) was evaluated.

We set K == MN where M is a positive integer and use M as an independent parameter called
the order factor. Plots of Pp vs (S/N),, and M for Pp = 10761070 and various N are shown in
Figs. 4 through 13. We note that for these figures, we have set L = K ~ 1. This might be a logical
choice for the number of samples used to set the threshold since all the samples except the candidate

12
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primary input data in a given batch are used to set the threshold. Note that as M — oo, then
L — oo, and that {11
-1
s
{1 e~ )J

Kelly [3] defines the (S/N) loss of an adaptive detector as the difference of required (8/N) to
obtain a given Pp between a steady state (M = o) detector and transient state (M finite) with all
other independent parameters being equal. Define M4 to be the order factor such that (S/N) loss is
nearest to 3 dB. We make the following observations from Figs. 4 through 13.

(1) The MLAD is slower to converge to its optimal Pp (M = oo) for lower ordered matched
filters. For example, for most Ppy’s (0.1 t0 0.9), Pr = 107%, if N = 2, then M3gp = 6;
if N = 10, then M35 = 3.

(2) There are diminishing returns in convergence by using a larger order factor.

(3) Convergence slows for decreasing Pg. For example, for most Pp (0.1 t00.9) and N = 2,
if Pr = 1078, My 45 = 6, if P = 1071, M3 = 10.

We note that these trends were also observed by Kelly [5] for his adaptive detection algorithm.

Since, in general, the number of samples L used to set the mean level detection threshold is
arbitrary, we present two sets of curves (Figs. 14 and 15) where L is not related to K. For these
curves, L = 10. Note that Eq. (54) and not Eq. (55) is used to evaluate P{J’.
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7. SUMMARY

Convergence resuits for a mean level adaptive detector (MLAD) have been presented. The
MLAD consists of an adaptive matched filter (for spatially correlated inputs) followed by a mean
level detector (MLD). The optimal weights of the adaptive matched filter are estimated from one
batch of data and applied to a statistically independent batch of nonconcurrent data. The threshold of
the MLD is determined from the resultant data. Thereafter a candidate cell is compared against this

A A A nf tha th hnld faon
threshold, Probabilities of false alarm and detection were derived as a function of the threshold fac-

tor, the order of the matched filter, the number of independent samples-per-channel used to calculate
the adaptive matched filter weights K, the number of samples used to set the MLD threshold L, and
the output signal-to-noise power ratio of the optimal matched filter. A number of performance curves
were shown and discussed. It was shown for the particular case when L = K — 1, the MLAD is
slower to converge to its optimal value for lower-ordered matched filters, there are diminishing
returns in convergence performance when using more independent samples per channel, and conver-
gence slows for increasing probability of false alarm.
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