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PULSE COMPRESSION DEGRADATION DUE TO
OPEN LOOP ADAPTIVE CANCELLATION,

PART III

1. INTRODUCTION

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller is derived in Ref. 1. The pertinent assumptions of that
analysis are

1. the adaptive canceller is implemented using the Sampled Matrix Inversion (SMI) algorithm
[2] or its equivalent, the Gram-Schmidt canceller [3]

2. the input noises are temporally independent and Gaussian

3. the desired signal's input vector (or code) is completely contained within the samples that
were used to calculate the adaptive weights and is only present in the main channel, and

4. the adaptive weights are computed from the same data set to which they are applied (con-
current processing).

Earlier research has shown that because of finite sampling, the quiescent compressed pulse
sidelobe levels are degraded by preprocessing the main channel input data stream (the uncompressed
pulse) through the adaptive canceller. It was also shown that the level of degradation is independent
of whether pulse compression occurs before or after the adaptive canceller under assumption 3.

The exact expression It] for pulse compression degradation requires computer assistance to
evaluate this expression. In Ref. 4, we derived a "rule of thumb" expression that is a good appToxi-
mation of the exact expression.

This report considers the case where the desired signal input waveform (or code) can extend
over any number of processing batches of the adaptive canceller. An exact result for the adaptive
range sidelobe level is derived and its associated good approximation is given. In addition, it is
shown that the same analysis can be used to predict the canceller noise power level that is induced by
having the desired signal present in the canceller weight calculation.

2. BACKGROUND

Figure 1 shows a functional block diagram of an adaptive canceller followed by a pulse
compressor. The adaptive canceller linearly weights the auxiliary channels with weights that are cal-
culated from a batch of sampled input data. The main channel consists of desired signal plus noise

Manuscript approved April 4, 1991.
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MAIN CHANNEL (desired signal only)

.1 Al iiXl!ARIE
S " 'm

I X2 fN-1

GS K,N

S' (perturbed desired signal)

MATCHED
FILTER:s,

. OUTPUT

Fig. I - GS canceller followed by a matched filter

that mrea or mav not be correlated.nt vih thei aruxlvidaro rhlnnneiv It x .zAQ showun [II that ihzn ~nnll7Enfl
the pulse compression degradation, it is only necessary to consider the interaction of the main
channel's desired signal with the random variables in the auxiliary channels (Fig. 1). Thus, for
analysis purposes, the adaptive weights of x", n = 1, 2, ... , N - I are only a function of the
desired cional v and the sanmnles of r FuirthermnreP as the nurmher of indenendent eamnle's ones to

infinity, the auxiliary adaptive weights go to zero [14.

In Fig. 1, s represents the desired signal vector (or code), and xl, n = 1, 2, s., N - I
represents the nth auxiliary random data vector of length K. The cancel[er used is the Gram-Schmidt
(GS) algorithm [34. We denote it by GSKN, where K is the number of samples per channel used to
calculate the canceller weights and N is the number of input channels (main and auxiliaries).

The pulse compressor is essentially the matched filter for a given radar waveform. Most of the
energy in the received radar waveform is compressed into a given single-range cell and, thus, the sig-
nal level can be increased significantly for detection purposes. However, some energy does leak into
the sidelobes of the compressed pulse response, resulting in low gain in range cells outside of the
given range cell. If a target or piece of clutter is large enough, it can break through and be detected
in these range sidelobes, falsely indicating a target detection or masking a real target. Thus, it is
highly desirable to maintain a low sidelobe response.

2
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Let r equal the 2L - I output vector of the pulse compressor. If no adaptive canceller is used
then it is straightforward to show that

(1)r-=t's,
where

S = (SI, S 2, .*X SL )T

sT =

SLt

SL -2

0

SL

SL -I SL 0 °

S I S2 S3 . . . St

o Sl S2 . SL-I

o 0 SI ' ' ' SL-2

0 0 0

(2)

and T, t denotes transpose and complex conjugate transpose,
matrix called the autocorrelation function (ACF) matrix of s.

respectively. S is a L x (2L - 1)

We assume for this analysis that the GS canceller processes data in blocks of K data samples per
channel. Thus, the desired signal vector may be spread across a number of sample blocks. To
analyze the resultant GS canceller output for the desired signal, we must subdivide the L length code
into M subcodes each of length K where the first and last subcodes may be partially zero-filled.
Define an augmented vector sa,,g such that

S -= (S(l ) S,2) S(M) ) T (3)

where each subcode vector s "'1, m = 1, 2, ... , M is of length K. The leftmost elements of s(1) and
the rightmost elements of s(M) may be partially zero filled. If K, and K2 are the number of nonzero
filled elements of st1) and s(M) respertivelv then for M > 2

L=(M -2) K+K + K2.

ForM = 1,

L = K,.

3
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KARL GERLACH

For example, if s = (1, -1,
signal vectors into a GS3 N
s -1) _ (1, -1, - 1), and S(4) = (1,

-1, I, 1, -1, -1, 1, 1) where L = 9, K = 3, then the input
canceller could be s(L) - (0, 0, l), s(2= (-1, -1, 1),
1, 0). Here, M = 4 and

Sa"g -I (01 °7 15 _A -1, 1, 1, _L -'_1, 1, l, O)T.

Each subcode vector is input to the GS canceller one at a time. Let st"l' be the resultant output
vector of the canceller for each input sale, m = 1, 2..., M, and s4 be the resultant augmented
output vector, Thus,

S ' =, (,=(1) S(2)t ,S(M)r)T
(uI (6)

is the total result output vector of length KM. This resultant output vector is then inputted to the
matched filter of the vector s, or equivalently, saug. If we set r' equal to the response of sa g match
filtered with s,,g then

r) = Stg~a t 7= uugsLug' (7)

where Saug is defined as the KM x (2KM - 1) augmented ACE matrix of savge

The results and derivations presented are the same whether we use the augmented or non-
augmented notation. Hence, we assume that all vectors are augmented and drop the augmented desig-
nation.

Vector s is often chosen so that the matched filter response has tow sidelobes (i.e., r(im) < <
r(0) for rn * 0). However, if the desired signal is passed through a GS canceller structure, the
desired signal vector is perturbed and degradations occur in the matched filter response. Examples of
codes that have high compression ratios and low sidelobes are the Frank [51, Lewis and Kretschnmer's
PI-P4 [61, and shift register codes [71- All of these codes have an ACF with all sidelobes well below
the matched response. Figure 2, for example, shows the ACF of the 100-element Frank code.

-10-
-om--20 -

09

U)

-40-

-50

-60
1 40 B0 120 160 200

SAMPLE NUMBER

Fig. 2 - Frank code aatocorretation function L = 100,
zero Doppler shift and no bandwidth limitation
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Under the assumption that the signal vector is completely contained within a block of K samples
from which the adaptive weights are calculated (L • K) [1], it was shown that the average pulse-
compressed sidelobe level after adaptive cancellation is given by

SL. (1)= K(K+ I)A II K,AT) S 1) + K (K ± 1) A t 4 2(K,N)I~s,,(1)!I2 , (8)
(K - N + 1)(K - N + 2) ( -N + K N 1)(K- + N 2)

where

SL,,0() is average pulse-compressed sidelobe level after adaptive cancellation of the lth range
sidelobe (sidelobes are numbered ± 1, I = 1, 2, ; these can be related directly to the
elements of r'; for example, I = i 1 are the sidelobes adjacent the match point)

SLq l) is quiescent pulse-compressed sidelobe level of the Ith sidelobe (K = or equivalently no

adaptive cancellation before pulse compression; these can be related directly to the ele-
ments of r)

K is number of independent samples per channel used to calculate the adaptive canceller
weights

N is number of channels (main and auxiliaries)
scJ() is K - Ith column of the augmented ACE matrix, Soug, I * K, and

1lc1X)II, = s'CYl)Scl)-

We note that SL0(I) and SLq(l) are normalized to the mainlobe pulse compression gain (adapted or
quiescent, respectively) that is set equal to one or 0 dB.

The scalars A 1 1 (K,N) and A , 2(K,N) are computed as follows. Consider the two parallel adap-
tive cancellers shown in Fig. 3. Define

uovo = arbitrary K-length main channel input vectors,

UN,VN = K-length main channel output vectors,

x,= (xl(1), x,(2) , ... , x,(K))T, n = 1, 2 ... , N - 1, K-length random data vector

of the nth auxiliary channel.

The elements of x,,, n = 1, 2, . N- 1 are assumed to have the following characteristics:

1. x,(k), n = 1, ... , N - k 1 , ... , K are identically distributed circular Gaussian com-
plex random variables (r.v.)

2. Elx0,(k)1 = 0, Ef I x"(k) I } = I, where E[ I denotes expectation and denotes magni-
tude.

3 FI (r .Efx f)r*(k,)l = ( unlesse' , = n- _ nand L- = kV-

5
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Ui 0

XN 1

... 6

UKN1

V 0 xI x2

1 1

Fig. 3 - Parallel N-input GS cancellers

Define

a =lI _ 2
0, K-n~ + - n( - +1 n = 0 1, ... , N - 2, and

(K - n)(K - n t 1)

It is shown in Ref. 1 that

E uN1 12jvN 1'j
l 11N | 1 V(I v F 2 

FAiI(K,N) A 12(KN)l 0 lU0Vg 1 

LAFIU vOt
2 -V0l2

= L21 (KN)A 22 K, N) i[iu IloiJ

rA 1 (K,N)

A 21 (K,N)

A 32(KN)

A22(KN)j

N -2 [a, bh I

nO Ln an -

(12)

Equations (HI) and (12) resulted from solving the following coupled recursive relationships that were
derived in Ref. 1:

fl u" jv, ij = Et4 tvn 2 I K n ± K-InK-n

+ EfIu., 1/2 l(V' jt2 I I
(K - n)(K - n ± 1)

6

XNI1

* 1

(9)

(10)

where

(11)

(13)

I
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]|| 112 1,V" + 1 1 UtVI? 1 2 1 1Kt(-n+1E[IIUnjdIIII+tiri[H Efl I uZ, 2, j L (K - n)(K - n + 1)]

+ Efllu,111,111 I - K- + (14)K n (K -n) (K - n 

where n = 0, 1, ... , N - 1.

Reference 4 derived a good approximation of SLa(l). It was shown that good approximations of
A 1 1(K,N) and A 1 2 (tK,N) are given by

Al(K,N) Li - N 1) (15)

and

A12 (KN) _ (K-N + 2)(N - 1) (16)
K2 (K + I)

in Ref.; Ii watS shown that

AII(K,N) + A12 (KN) = 2(N -IJ + N(N - 1) (17)
K K(K-~ ' (17

A1 1(K,N) = A,,(KN), (I8)

and

A 12 (K,N) = A- (KN). (19)

3. SIDELOBE DEGRADATION: SIGNAL SEGMENTATION

In this section, we consider desired signals that are segmented and processed through the GS
canceller. We assume that the set of GS weights computed for each K x N data block is statistically
independent from block-to-block. Let the desired signal's input and output vectors so and SN-I of a
canceller be segmented into M vectors such that

S = (SU', sW" SSM)7, (20)

and

SN-I = (s2}'t, Sg 7t. .. , S N $)T. (21)

7



KARL GERLACH

Note that we have set s5 = s and SN 1 = st. Each s¶f) and sT1 I, mn = 1,2, ... , M is of length K
where the end vectors may be augmented by zeros to fill out the K-length vector. Note that so or
sN1 Ican be considered augmented so that their length is KM, and that so is normalized so that
jSo j = 1. Similarly, let SC be a column of the augmented ACF matrix defined as

= - ( 2l )c, ..- S(MiTr (22)

Thus, an expression representing an output r of the matched filter can be given by

r = scs&-17 (23)

and the average adaptive pulse compression level associated with sC is given by

W -EIs. ~ jf241
or a =Et 1 S-.N-- I')

We will derive good approximations of the numerator and denominator of this expression. The
above expectations are a function of two knds of randomness: the first is the nivilinrv channel data
and the second is where in time the code s begins with respect to the first segment. We evaluate the
above expectations first with respect to the auxiliary channel data and denote this expectation by
Eli.

To this end, E, l s~sN I l 21 is decomposed into terms dependent on the individual segments as

E~ |s's -I21 = EX l so 'sOTlt 2

Itm=] 

M A (d if (rn (M) en,)

+ A Exjs, SN t j I E., sc SN-1 (25)

We used the fact that the auxiliary random variables are assumed independent from one batch of K,

N-length sample vectors to the next to separate the expectations in this double summation given in Eq.

(25)}

It is shown in Appendix A that

En (sV' So' 1 = l I - N iJ st''sK" . (26)

8
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Thus, Eq. (25) simplifies to

M

E E41 s(in)is$I) I I 21 -
In = I

+~~ -1 2 M M -7- I - IE E
K In, =1III i 2= I

r N '1- 2 MLKJ IT

However, it can be shown that

M

rl, =lI

(.In,)t s(In) ]s [s t (Isj ] ) * = §SS 2

Ini = I

Using Eq. (1I), it is straightforward to show that

M M
E EX [ I 'S V1 2 - = A I (K, N) E 5st 5 $n) 2

)In = I In = I

M+ A 12(K, N) , IS(".)112 . ISI 12.
Ii =In

Substituting Eqs.
variables results in

(28) and (29) into Eq. (27) and taking the total expectation over all random

Et I SCSNi- I21 = [AiK N) - L i E N Eij ] I Sltsnt) I 2

+ LI -N- Ij2 Islso I 2

+ A 12 (K, N) E E I|st'() 112 jS" 112 .

At the match point, sC = s0 and the summations seen in Eq. (30) are equal so that

El I sN ISN-1 1'2 = L1 -N I I SISo 121 K J

+ LAIK(K, N) + A 12(K, N) - I - K j E 1) jJS £ 14 

9

fE II S'CSNs - I I I 2_
I s0ll0t.S(it20 i 2

1SL So ] [1 S ] (27)

(08)

(29)

(30)

(31)



KARL GERLACH

However, in lieu of Eq. (17) and stso = 1,

EslsNl 2I = - N;- I + (K-N + 1)(N -1) I
Et| N ||= 1 K JK 2 (K + 1)

(32)Ils ) 114 .
Im=1

The expectations seen in Eqs. (30) and (32) are dependent on the signal code. For a signal code
that has uniform amplitude elements, it is shown in Appendix B that

M
Eg I lSn"11 4 =

'I =1

K _ I K + I
L 3 LU 3L1 '

I L _ _

3K 3KL

Note that if either expression given in Eq. (33) is substituted into Eq. (32), the second term of Eq.
(32) is small with respect to the first term. Thus, a good approximation of Etl sN -ISN - 21 is given

by

El I s' -ISN - =_ i _ N - i

For uniform amplitude elements, the expectations seen in Eq. (30) may be upper-bounded by
M

E 1I v s8"' K In fact, this upper bound is a good approximation of the second expectation for

the near-in range sidelobes (small I ). It may not be a good approximation of the first expectation
which is expected to be much smaller than the upper bound. Note also the form of the approximation
of A I (K,N) given by Eq. (15). As a result, it can be shown that the first term in Eq. (30) is small
with respect to the sum of the second and third terms of the equation for the near-in range sidelobe
case. Hence, we delete this term from our approximation.

Close upper bounds to A l(K, N) and A 1 2(K, N) are given by Eqs. (15) and (16), respectively.
If these are substituted into Eq. (30), then for the near-in range sidelobes

(34)

El I S.SN -I 1 21 l

K

KN |I (K -N | 2)(N - 1) E E IIsS' 114
S~~SoK ± ~ K (K ± 1) '=

Dividing by Etl I s IN -l SN - I 2l as given in Eq. (34) results in

SLa - ISr'SoI2 +
(K - N + 2)(N - 1) E M

10

L > K

(33)

L K.

(35)

(36)

lI

1
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We approximate

(K -N + 2)(N- 1) . N- i
(K -N + 1)2(K + 1) (K - N + 1)K(

CM
Furthermore, E S s1") 1I4I can be approximated by a close upper-bound using Eq. (33).

This is

K , L > K

E ILl IN-Ij4} 38
nI | 1, L K.

Thus, substituting Eqs. (38) and (37) into Eq. (36) results in

SLTf() -SLq(I) + KL > K, (39)

and

SL0 l(1) SLq(/) + (K - N + IKK

where SLq(I) and SL0 (l) were previously defined and I is small (near-in range sidelobe case).

We note that if the above approximations do not suffice in some cases (for example, I > > 1),
one can always use the exact formulation of SL0(i) given by the ratio of the expressions given by Eqs.
(30) and (31).

4. RESULTS

In this section, we calculate the number of independent samples per channel K3dB necessary for
the average transient sidelobe level of the maximum quiescent sidelobe level defined by SLq to be
within 3 dB of SL,. We assume that the maximum quiescent sidelobe level occurs in the near-in
range sidelobes (which is normally the case); so that the approximations given in the previous section
are valid. We use this as a performance measure of convergence. If the average adaptive sidelobe
level S, were plotted vs K, it would be found that S4a monotonically decreases with K and is
asymptotic with SLq as K - m. The K = K3dB point is representative of the "knee?+ of this curve
(where SL, decreases slowly with increases in K).

To find K3dB, the following two equations (which result from Eqs. (39) and (40), respectively)

are solved for K3dB:

q SLq (K3dB -N 1 )L' L>K 3 dn (41)

1i
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and

2SL SLq + (K3 d] - N + I)K L S K3da. (42)

Solving Eqs. (41) or (42) for K3dB results in

3dH I + I (N- 1), L > K3dB (43)

and

K3dB I + + I (N - 1), L • K3dB- (44)

Note that the solution for K3dB depends on this solution satisfying the inequalities given with each of
the above solutions. If both inequalities are satisfied, then obviously the first solution given by Eq.

(43) is chosen because this solution is less than the solution given by Eq. (44). Appendix C shows

that at least one of the solutions given above is valid.

It Is also shown in Appendix C that Eq. (43) is the solution for K3dB if

Sf>2 and L >N 0 ,, (45)
q L(L - Naa)

where N0,r = AN - i. If either condition given by Eq. (45) is not true, then the solution given by
Eq. (44) is valid.

We can rewrite Eqs. (43) and (44) as

K3dB 1 + I L > K3 dB, (46)
Ajar ~~L 5 t4LSLq1

and

K-g + 1 1 L•!~K363B. (47)
Ncttc 2 2 Talus SLq

In Fig. 4, K 3 P X/N1 1 x is plotted vs L 84L. Again, this solution is valid if Eq. (45) holds. In Fig.

5, K3t1R / N,, is plotted vs Na, 84,. This solution is valid if Eq. (45) does not hold.

For example, let S84 = 10-0 (or -30 dB), Nadir = 10, and E = 100. In this case, Eq. (45)

does not hold, so we use Fig. 5 to find K3dB /NCl, which approximately equals Hl. As another

example, let SC, = l0 2 (or -20 dB), Na,,, = 10, and L - 100. In this case, the conditions given

by Eq. (45) hold. We use Fig. 4 to find K3dB / Of = 2.

12
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1000

* ~~aux ad>
q L(L-N aux) aux

*L >K d

100

Z'C

Ez

V

10

10-3 ~~10-2 10-1 1 1 0

CODE LENGTH -QUIESCENT SIDELOBE LEVEL, L *SLq

Fig. 4 -3 KdB vs L S

1000

-aux
*SL S or L<N

q L(L-N au) aux

1003d

(IS

CY)

10-2 1o-1 1

NUMBER OF AUXILIARIES * QUIESCENT SIDELOBE LEVEL, Naux * aLq

Fig. 5 - K3dB I/N,,,. VS Nvs SL,
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By examining the solutions for KdaB / N/ X given in Figs. 4 and 5, we make the observations
that for K3dB / NAz 2, either Nag SL or L 4St must be approximately equal to one.

As noted in Refs. I and 4, the preceding analysis of pulse compression and canceller interac-
Lions can also be appijed to quantify the canceller degradation caused by the presence of a desired sig-

nal in the samples used to calculate the adaptive canceller weights. Set

N - I L > K (48)
(K - N ± I)L L

ASLa(KN) -
N -I L-K.(9

(K - N + l)K 4 - ' 9

2
If the desired signal has the power ao, after pulse compression, then the maximum of the average
power residue caused by signal in the K - I range bins not containing the signal can be shown from
our analysis to approximately equal oS2ASL(KN) plus possibly the signal power caused by the quies-
cent compressed sidetobes. Let ao in be the quiescent output noise power level of the canceller (no
desired signal). Define

T2
A- VY I V M\' (can

2 k-my/hl~V)0 min

If 6 > I, then the signal induced power will be greater than the quiescent output noise power of the
canceller. Hence, it is desirable to choose the number of independent input samples K so that 6 • i.
Set K = KS for when 6 = 1. It is straightforward to show that

N-I - LIv
L ,mn j

N - 2 +N - 2 L - S (52)2~~~~~~~~~~~~~~~~~

We note that ao /Jc2j, equals the output signal-to-noise power ratio (S /IN)ot of the adaptive canceller.
Thus, Eqs. (51) and (52) reduce to

i - I S +~u L ) ~N- K- +L~>o(53)
K( =

.N- 1+ <! C - 2 (N-1 L CK (54)
2 V21 N

14
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For the radar designer there is the choice of where to put the pulse compressor: before or after
the canceller. A disadvantage of placing it before the canceller is that a pulse compressor must be
placed in each antenna channel (main and auxiliaries) to maintain channel match (mismatched chan-
nels degrade canceller performance). Another disadvantage is that the pulse compressor must have
the dynamic range of the interference (possibly clutter and jamming) that has yet to be cancelled.
These disadvantages do not occur if the compressor is placed after the canceller. However, as we
have seen, a disadvantage of placing the compressor after the canceller is that the range sidelobes of
the compressed pulse increase because a finite number of samples are used to compute the canceller
weights.

It should be pointed out, however, that this effect also occurs if the desired waveform is
compressed before the canceller. In this case, it was shown 14] that the ratio of signal-induced power
to the quiescent-noise power level is given by

6(pc before) = 2 (K-NUSK'L K. (55)

Note that this is identical for the expression of 6 (pc after) if L C K (see Eqs. (49) and (50)).
Hence, for waveform codes that have length less than the processing batch length (L • K), it is
desirable to pulse-compress after cancellation.

However, for L > K, the issue is not so clear-cut. Even though 6 (pc after) C 6 (pc before)
for L > K, we must remember that the signal induces noise over KM = L samples of output data.
Thus, for M Ž 2, more samples are affected by degradation caused by performing pulse compression
after cancellation. As a result, for L > K, a trade-off study is necessary to determine whether one
does pulse compression before or after cancellation. The cost function associated with this trade-off
study will depend directly on the user's system parameters and needs.

One final note. For some applications, the matched filter is replaced by a filtering scheme
whereby the range sidelobes are reduced at the expense of signal gain at the match point. However,
the results derived in this report are also valid for the use of any filter other than the matched filter
so. We could replace the so seen in the "matched filter" block in Fig. I with a general weighting
function given by the L length vector a with elements a0, a , ... , aL-I . In our analysis, we would
renlace the S matrix defined hv Fn f0' with An A matrix whne ele.ments are riven hy repnlncino the
s s with a s in Eq. (2). The vector s, then would be taken to be any column in A and the analysis
follows as given.

5. SUMMARY

This report has presented an exact expression for the perturbed range sidelobe level, of a
compressed pulse that has been preprocessed through an adaptive canceller. This result is a generali-
zation of Refs. I and 4 where the signal was assumed to be completely contained within the
canceller's processing batch. in this report, we allow the signal to extend over an arbitrary number
of canceller processing batches. A good approximate expression was also obtained for evaluating the
perturbed range sidelobe level. The number of independent samples per channel (main and auxi-
liaries) necessary so that the average adaptive range sidelobe level is within 3 dB of the quiescent
range sidelobe level was derived. Furthermore, the same analysis was used to predict the canceller
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noise power level that is induced by having the desired signal present in the canceller weight calcula-
tion. Placement of the pulse compressor before or after the canceller was also considered. It was
shown that if the desired waveform's code length L is less than or equal to the canceLler's processing
batch width K, it is desirable to place the puLse compression after the adaptive canceller. If L > K,
the issue is not so clear-cut, and a trade-off study is necessary.
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Appendix A

DERIVATION OF EQ. (26)

It is shown in Ref. 8 that if x0 is the main channel K-length vector, then the resultant output
vector yo through a GSKN canceller can be represented as

Vt _- f (A I 

where G is the GS complementary projection matrix and is given by

>7 ,t ,1 _

G =I- ,K z - - - - (A2)
ZIZI Z2Z2 ZN .I ZN - I

In Eq. (A2), 1K is the K x K identity matrix and zt, n = 1, 2, ... , N - 1 is a set of orthogonal
vectors that is an orthogonal basis for the original auxiliary K-length input vectors. If we assume that
the input samples are zero mean independent, identically distributed r.v.s, it is straightforward to
show

{ z I1 for alln. (A3)

Thus

E[G} = I - N ] 'K' (A4)

Thus, for arbitrary K-length vector u

EIu'yOl = Etu'Gx 0) (AN)

-u'E[Gjx 0

= I K j
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Appendix B

DERIVATION OF EQ. (33)

M
In this appendix we derive the expected value of iS Ijsoli4 assuming

tudes are uniform. For any M we can write

/3 = I

1sE11d1M - 2) K- + LT + L2 J 

1Sg,) 114 = I

the code element ampli-

(B 1)

MA -

We distinguish between the two cases, L > K and L • K.

Case 1: L > K

For this case M Ž 2. Thus from Eq. (Bl), if we find expressions for EIM], EIK, I and EIKl
we can find S. Now

L = (M - 2)K + K + K,. (B2)

Therefore

EIM - 21 = I (L - E]K11 - ELK,]).
K 

(B3)

Thus, if we can obtain EIK } and EIK,1, then E]M - 21 can be found by using Eq. (B3). By sym-
metry

ELKIJ = E]K,], EIK2l = EJ2Q. (B4)

Let ProbK, lI,] be the probability that K[ = v, where v can range fromn 1 2, . .., : The start-
ing position of the code within the first code segment is uniformly distributed, so that

Pr d _i l I
K

1.9

(B5)
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K K k I
EIKJ) = k I PrObKLI- = - (K + 1),

K 2

K K k 1
ELKB = k2 Probxkl = ( = (K + 1)(2K + I).

Using Eqs. (B6) and (B7) in Eq. (B3),

EM -2} = L - 1.
K

Using Eqs. (88), (87), and Eq. (B4), we see that

K2

L K

L K

2

3 L

1 (K + l)(2K + 1)
3 L2

+ I
+3L 2

Case 2: L •< K

For this case M = I or 2. For L < K, we start by computing two probabilities: the probabiL-
ity that K1 = L (or equivalently, M = 1) denoted by Prob(K, = LI and the probability that K1I= v
where v is a positive integer less than L (or equivalently, M = 2) denoted by ProbLv and v < LI. It
is straightforward to show that

Prob(K I = (IO)

and

Probjv and v < LI = Probhv I v < I - Probtv < LI

, L - 1
L -l K

= I

K
Thus

v - Y -i- L -1 

E If =U K ~ K

(B11)

= L2 (K - L +± j + ± I (L - l)L (2L - 1).

20
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(B7)

(88)

(R9)

(B112)
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Note for L s K that Eq. (B4) does not hold. Let ProbKjv4 be the probability that K2 v where
v = 0, 1 . L -1. It is apparent that

ProbK,; 101 = Prob[KI = L} K - (B13)

and for v > 0,

ProbK Prob{v v > O) Problv > 01,

(B 14)L-u K K

Thus

L-1
E1K21 = E k2

k =]
V = y -{L - )L (2L- 1).I a a U

Using Eqs. (B112) and (B15), it can be shown that

0 -E K- + K24t 2 

K -L + 1 1 (L -I)L (2L - 1)
K 3 KL2

1iL i_= I - I3- + _

21

(B115)

(B 16)



Appendix C

CONDITIONS FOR CONVERGENCE SOLUTIONS

If the solution given by Eq. (43) is valid, then L must be greater than K 3dB. Thus

K3dB L <L (C1)

Reducing Eq. (Cl) further

I L _L (C2)

L SLa Na.

Now if L s N 0 ,RIL Eq. (C2) does not hold. Thus for Eq. (43) to be a valid solution, L > NaiL,2.
Equauiir (C2)z iai bu tLui1el siMlpHliCU to snow Mat

S > N (C3)qL(L - Naux),

We show that one of the solutions given by Eqs. (43) or (44) is valid. We do this by showing
that if no solution exists, a contradiction results. Assume no solution exists. Thus

K3dB= Naux K + L J Ž L, (C4)

and by using Eq. (44) with NL= N 1,

K3dB = Nam, + </N2 L. (C5)

Using Eq. (C5), we can show that L/N,,,,, > 1.

Solving for SL,, in Eq. (C4) results in

SLqS (C6)

L | _
K. '" J
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and soLving for SL9 in Eq. (C5) results in

I

Naitr

1.
C ~~~~2

IL I I

N,,,, 2 2

< Siz.

Thus, Eqs. (C6) and (C7) imply that

1 1 1

LNL N LNL 
2 -2

Equation (C8) can be simplified to

L

Na.

l r A 2LL _ _L _ IN a, c ) < N,,, 2 J
-I

2

a(t-l)C - a 2 2 '

This inequality results in the contradicting inequality,

no solution exists for K3dB / N,,- must be false.

0 < -4 . Hence, the original assumption that

24

(C7)

Set a = L / N,,,. Thus

(CS)

(C9)

(CIO)


