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BENCHMARKING THE CONNECTION MACHINE

1. INTRODUCTION

Performance of various computers is compared by running programs across different machines
and comparing execution times (benchmarking the computers). Scientific or engineering bench-
marks are usually measured in Mflops (millions of floating point operations per second). The
current state of benchmarking supercomputer architectures is not very clear. Performances of a
specific supercomputer on various benchmarks may vary greatly, making the judgment extremely
difficult. Naturally, certain benchmarks may be more suited to a particular machine's architecture.
Running standard benchmarks, without modification, across various supercomputers can show the
effectiveness of the compilers in using the available resources. This allows comparison with an
optimized code implementation.

To measure the true capability of an architecture may require some restructuring of the code.
This customization for a given machine can provide dramatic increases in performance. Automatic
vectorizing compilers help to alleviate this task of customization but presently cannot look at whole
routines. The performance of highly parallel machines is greatly dependent on communication and
the overall communication network of a particular code. It is important to look closely at the
overall problem/algorithm rather than to make a line-by-line conversion El].

Many installations develop their own set of benchmarks, specific to the particular institution
specialization, and send these to prospective vendors 'Lo copare various 11ach4.ilel[b. IeineItl a
excerpts extracted to be representative of the programs run at a given installation. This report
measures the performance of the Connection Machine model CM-2, manufactured by Thinking
Machines Corporation, relative to other supercomputers and provides some insight into its strengths
ann weaKnesses. Tne Liveriore LoopS were seieteu ctit as tbe rIptSLdLIVC AtiaUtW LU ucrbituidla

the CM-2.

Although there is not a universally accepted set of benchmark programs, the Livermore Loops
are widely used f 91 The Dvnrmore LoopT.sn consist of Fortran kernels that L awrPree Livermore
National Laboratory (LLNL) extracted from actual production codes of a number of representative
application areas [3,4]. Figure 1 lists the kernels.

Machine dependencies, suPch as ni± n fnit/itnit (TI/O) ind memory anagerment are not nresent

in the Livermore Loops. Originally developed to benchmark serial machines, the kernels also form
a good test set for parallel machines. As reported by Frank McMahon of LLNL, the kernels are
good predictors of the actual production performance [4].

Manuscript approved June 22, 1990.
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Kernel Title

I Hydro fragment
2 ICCG excerpt (Incomplete Cholesky - Conjugate Gradient)

3 Inner Product
4 Banded Linear Equatiolls
5 Tridiagonal Elimination, below diagonal
6 General Linear Recurrences
7 Equation of State fragment
8 A.W. (Alternating Direction Implicit) Integration
9 Integrate Predictors
10 Difference Predictors
1U First Sum
12 First Difference
13 2-D Particle in Cell
14 1-D Particle in Cell
15 Casual Fortran
16 Monte Carlo Search Loop
17 Implicit Conditional Computation
18 2-I) Explicit Hydrodynamics fragment

19 General Linear Recurrence Equations
20 Discrete Ordinates Transport
21 Matrix Product
22 Planckian Distribution
23 2-D Implicit Hydrodynamics fragment
24 Find location of first minimum in array

Fig. I - Kernel List
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2. THE CONNECTION MACHINE

The Connnertion Machine model CM-9 is a data parallel marhine made unm of fi4M ( = 1024)

processors. The CM-2 works best on large amounts of data because it is a Single Instruction Mul-
tiple Data (SlMD) computer, which means an instruction may operate in parallel on many data
elements. Another approach to parallel processing is Multiple Instruction Multiple Data (MIMD)
architectures, which can have multiple independent instructions operating on different data ele-
ments. A SIMD architecture like the CM-2 is much easier to program than a MIMD architecture
because SIMD does not require the control synchronization needed by MIMD architectures.

Each CM processor is a 1-bit-wide custom processor with 64K, 256K, or 1024K bits of memory.
It has an arithmetic logic unit (ALU) and a router interface to perform communication among
the processors. Communication among processors is done by a high-speed routing network, and
a much faster grid communication device is used for nearest-neighbor communication. The router
allows any processor to perform data transfer between itself and any other processor. Collisions
occur when several processors send messages to the same processor. In this case there are message-
combining operations (bitwise logical, numerically largest, or integer sum of all messages). Each
CM-2 processor chip contains one router node serving the 16 data processors on the chip. For
a fully configured CM-2. each router node is connected to 12 other router nodes forming a 12-
dimensional hypercube connecting the 4K processor chips. Within a CM processor chip, full
crossbar interconnections are provided.

All program development and execution takes place on the front end (Symbolics, DEC VAX,
or Sun 4). Multiple front-end bus interfaces (FEBIs) from the front end allow, through the Nexus
(a bidirectional switch), multiple users to access separate sections of the CM-2 (one per section
of 8K or 16K processors). The number of simultaneous users depends on the number of FEBIs
(maximum of 4). Symbolics is a single-user machine.

The commands that direct the CM-2 are issued from the front end. These commands make
up the Parallel Instruction Set (Paris), which is similiar to the assembly language instruction set
of a standard computer. The Paris instructions from the front end are broken down by the CM
microsequencer into low-level data processor operations. Each parallel processing unit or section,
either 8K or 16K processors, has its own sequencer. Depending on the overall machine size, a section
has either 8K or 16K processors. A 64K machine would have four sections of 16K processors, and
a 32K machine would have four sections of SK processors. On the 32K machine a user could
have 1, 2, or 4 sequencers corresponding to 8K, 16K, or 32K processors. The configuration of the
sequencers is dependent on the Nexus, which can be quickly reconfigured.

The CM-2 may also have a floating point accelerator (FPA) option (single or double precision)
that increases the rate of floating point calculations by more than a factor of 20. The coprocessors,
manufactured by Weitek, consist of a memory interface unit and a floating point execution unit.
Each coprocessor is assigned to two CM-2 processor chips (32 physical processors). The floating
point execution chip can store 32 values of a given precision. The chip is used for operations such
as integer multiply, floating point multiply, and addition. Two memory references are required
for each 64-bit floating point processor. The extra memory reference is required since the floating
point processor's data path is only 32 bits wide. A large degradation in performance results if
the data type does not match the associated floating point processor data type. A 32-bit (64-bit)
floating point data type uses 23 (52) bits for the significand, 8 (11) bits for the exponent, and 1
(1) bit for the sign. Douglas et al. [5} thoroughly discuss the CM-2 data processor architecture.

3
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A physical processor's memory may be partitioned and serially executed to simulate a machine
with more processing nodes than the actual number of physical processors. This virtual processor
(VP) mechanism is transparent to the user [5,6J. For example, on a machine with 64K physical
processorsn a - lT st+ of size (1fACA 1flA) A.,--.1.-1 r4uk.a ek py-sWic - -. 1 .i - 4 10

vi~nnotno a i oi tt 0LC alrykur~IULk±
1

1U-tJ WUUALU £!-I{L.U1V thLC6, 'UAAL jiiIJD1MUO JflJItza0tVi b1ILUU~at xv

virtual processors. This VP set is said to have a VP ratio of 16 and have 16*64K = 1024K virtual
processors. The maximum VP ratio is dependent on the physical processor memory for a particular
machine. The use of virtual processors can dramatically increase the performance of floating point
operations by nllowing the Bloat ing point chips to pipeline. Douglas et al. T5] showr hfat a ratve

of 2600 Mflops would be expected for a 32-bit floating point multiply if the physical processors
would cycle through their virtual processors one at a time. Since the memory and float bus are
idle at different stages of the multiply, they can be used to start the next virtual processor, causing
pinpeining and increasing the Mflni rate to 300. Rpference 6 gves more details of tlhe CM-9
hardware.

The programming environment consists of three high-level languages *LISP, C*, and CM For-
tran. *LISP and C* are parallel extensions of Common LISP and the C programming language,
respectively. CM Fortran [7) consists of the majority of Fortran 77 with some of the array exten-
sions and removed extensions outlined in the draft S8 of the ANSI Fortran 8x standard (x3.9- 198x)
[8,9). ADl three languages compile into Paris. The programming environment also includes three
interfaces for calling Paris (LISP/Paris, C/Paris, and Fortran/Paris) along with library packages
such as *Render (a graphics processing package) and CMSSL (a scientific subroutine library). For
a program written in C/Paris, standard C code directs the front-end (serial) operations whereas
the Paris calls direct the handling of data residing on the CM-2 and any transfers of data between
the CM-2 and the front end. LISP/Paris and Fortran/Paris are similar interfaces except the serial
operations are programmed in Common LISP and Fortran 77, respectively. The Livermore Loops
are coded in release 0.7 of CM Fortran.

3. CM FORTRAN

CM Fortran [7) consists of a mixture of serial and parallel array operations. Serial operations
are executed by the front-end computer by using its own memory and CPU. The parallel opera-
tions are executed on the CM-2 where each processor concurrently executes its own data point.
Multidimensional arrays are allocated on the CM-2, one element per processor.

Major array features that have been adapted from the proposed 8x standard (Sj include array
assignment, constructors, and sections (Fig. 2). The where statement and block where construct,
Fig. 3, are also featured. These allow you to operate conditionally on array elements depending on
their values. Especially useful in CM Fortran are the scan operations, or parallel prefix operations,
sum and spread (Figs. 4 and 5), where the dimension the scanning is done across is specified.
The advantage of these scanning operations is that while communicating, the processors perform
a combining operation (add, min, max, ...). Sum is a scan-with-addition combining operation,
andl spread is a special scan that adds a dimension by copying data. Other useful functions are
eoshift (end off shift) and cshift (circular shift), which shift elements of an array along a specified
dimension (Fig. 6). The following declarations are assumed in Figs. 2-8 below which compare
code written in both Fortran 77 and CM Fortran.

4
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real a(n),b(n),c(m,n),d( m,n)
integer il(n),i2(n)

CM Fortran

Id = c * 30.0 l

Fortran 77

do 10 i= ,m
do 10 j=ln
d(ij) = c(ij) * 30.0
10 continue

Fig. 2 - Do Loops

Fig. 3 - Where

*Fortran 77 CM Fortran

= = 0.0 n = sum(a*b)
do 10 i=I,n

10 q = q ± a(i) * b(i)

Fig. 4 - Sum

The removed extensions that have been implemented include vector-valued subscripts and the
forall statement. The forail statement can do indirect addressing and scattering of data along
with cnamnnta crannc in whicih nnrtial rociltsc ro rnemnitoel C pila tiron of the gfnr-'n statemet+

generates a get (send) router communication if the addressing is done on the right-hand (left-hand)
side of the assignment statement. Figs. 7 and 8 show this get and send communication, respectively.
The send router communication is approximately twice as fast as the get router communication.

5

Fortran T7

do 10 i-In
if (a(i) .ne. 0.0) then
b(i) = 3.0/a(i)
else
b(i) = 0.0
10 endif

CM Fortran

where (a .ne. 0.0)
b = 3.0/a
elsewhere
b = 0.0
end-where
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I CM Fortran I

c = spread(a,1,m)

Fig. 5 - Spread

ICM Fortran I

Id = cshift(cdim=2,shift=2)

Fig. 6 - Cshilt

|M Fortran

forall (i=l:n) a(i) = d(il(i),i2(i))

Fig, 7 - Fornll (get)

CM Fortran

fora" (i=l:n) a(il(i),i2(i)) = d(i)

Fig. g - Forall (send)

6

Fortran 77

do 10 i=1,n
do lOj=lm
10 c4,!) = a(i)

IFortran 77

do 10i=1,m
do 20 j= ,n-2
d(i;j) = -ct;j2)

20 continnue

d(i,n-1) = c(ijl)
d(ln) = c(i,2)
10 continue

Fortran 77

do 10 i=1,n

a0i) cdtilni)ei2(i))
I0 tcontinue

* Fortran 77

do 10 i=1,n
\ri I (-A (?t3i3 = Xi)

|113 continue.I
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4. CODING PROCEDURES

On serial computers, the Livermore Loops are executed without modification. The massively
parallel architecture of the CM-2 requires that the loops be explicitly changed to use the array
features of CM Fortran. The original Fortran kernels were converted to CM Fortran (see the
Appendix) and in most cases the same algorithm was used. Most of the code conversion involved
a simple mapping of each element of a vector or matrix to a virtual processor and then performing
simultaneous operations on these elements as in Figs. 2-6. A few of the kernels (5, 11, 19, 23)
involved recurrence and were coded with a cyclic reduction algorithm [101. With recurrences it
becomes more difficult to generate an 0(1) (i.e., a single array statement) solution, so a cyclic
reduction method of O(logn) was used to increase performance for the sequential 0(n) problem.
This involved the only major change to the algorithmic structure of the kernels (5, 11, 19, 23).
Fig. 9 shows this cyclic reduction technique.

Fortran 77 CM Fortran

x() = a(1) * x()+d() x= d
do I j=2,n xO = x(0)
x(j) = a(j) * x(j-1) + d(j) do i=IlJog2n
I continue =-(2**l i1))

x = x + a * eoshift(x,1j,xO)
a = a * eoshift(a,1j,0.0)
enddo
x(n) = x(n) + xO * a(n)

Fig. 9 - Cyclic Reduction

General communication, handled by the router, can be a bottleneck when implementing code
on the CM-2. Programs that transfer or access data randomly would use general communication,
whereas programs with a more structured communication involving neighboring processors would
use the much quicker grid communication. The best performance will usually be obtained by mini-
mizing router communication and using grid communication when needed. Grid communication is
approximately 16 times more efficient than general communication t71. The particular communica-
tion that will be used for a CM Fortran statement can be found by inspecting the Paris commands
in the assembler output generated by the compiler.

The cshif! and eoshif) commands under compilation generate either a general communication
or a series of grid communications, depending on whether the distance of the shift is less than
17. The communication costs involved in the assignment of array sections are similiarly dependent
on the offset involved. The following declarations are assumed for Fig. 10 which shows when
interprocessor communication (either general or grid) is required.

real a( 16384),b( 16384),c( 16000)

7
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Fig. 10 - Communication

A general data exchange routing routine was required to perform the communication required
in kernels 13 and 14. In kernel 21 (matrix multiply), the dimensions of the vy matrix were increased
to put an element in each virtual processor, thus providing a better evaluation of the CM-2 on
large matrix multiplication.

5. RESULTS

Tables 1, 2, 3, and 4 list the single (32-bit) and double (64-bit) precision Mflop rates for a 16K
and 32K CM-2 with 64-bit FPA and 64K bits of memory per processor. Results are presented
for different VP ratios. Assignment of weights to floating point operations was made according
to MrcMahon (4], '+, -, * = 1; /, sqrt = 4; exp, sin, etc. = 8; if(x.rel.y) = 1.' The extra
computation required for the cyclic reduction algorithm used in kernels 5, 19, and 23 was not
counted in computing a Mflop rating. A table entry denoted by a '*' indicates that the VP ratio
could not be raised to this level because of insufficient memory.

The highest Mfiop performance occurred for kernels 1, 3, 7, 8, 9, 10, 12, 15, 18, 21, and 22, which
include the most computationalty intensive kernels. Although the computational resources remain
fixed, efficiency increases for larger problems, as reflected by the higher Mflop rate vs VP ratio. This
results from filling up the pipeline of the FPAs. However, efficiency of kernels involving recurrence
does not improve across VP ratios because of a communication bottleneck. Communication-bound
problems fare poorly on the CM-2, and ways to minimize router communication must be explored.

Presently, the performance of the recurrences showed little if any improvement as the VP ratio
increased because of a communication bottleneck. It is possible to code Kernel 11 with a single
Paris scan instruction. We tried to improve the other somewhat more involved recurrences (5, 194
23) by using Paris scans. Although being very efficient for small vector lengths (<1000), this effort
became impractical for larger vector lengths. A multiply scan is needed in which the number of
consecutive multiplies grows linearly with the vector length. To perform these multiplies would
require more bits in the exponent field thus creating a nonuniform data type that would run
dramatically slower (as discussed in Section 2.).

8

Statement

a=b
4a1:16000) = c
a(17:16016) = c
a(1:16000) = b(2:16001)
a(1:16000) = b(7T:16616)
a(1:16000) = b(18:16017)

Communication

cost = 0 no communication
cost = 0 no communication
cost = 16 grid communication
cost = 1 grid communication
cost = 16 grid communication
cost = 17 general communication
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Table I -

16K CM-2 (64-bit hardware) Single Precision Performance in Mflops

Kernel VP ratio
1 2 4 8 16 32 64

1 102.33 179.58 288.33 369.09 473.73 544.11 586.88
3 92.05 171.89 299.30 468.06 655.39 813.60 915.39
5 1.44 1.50 1.47 1.48 1.23 1.21 0.74
7 135.53 250.97 340.94 471.29 534.28 584.43 613.80
8 260.18 283.12 321.48 348.08 356.12
9 558.21 777.22 863.48 906.63 938.14 941.45 946.45
1U 212.53 231.29 239.780 247.82 247.82 25U.96 252.78

11 1.35 1.43 1.43 1.41 1.35 1.19 0.70
12 100.81 170.21 220.54 242.73 259.26 273.08 278.88
13 0.36 0.36 0.32 0.31 0.27 0.24
14 2.51 2.68 2.23 1.15 1.05 1.01 *

15 100.11 155.30 162.62 165.88 163.66 170.14 170.54
18 274.46 366.77 431.21 487.43 508.03 * *
19 1.93 2.16 2.08 1.85 1.72 1.13 1.11
121 106.86 164.21 213.22 266.92 312.13 339.02 347.49
22 4Z. 4j 7.J6 484.UZ 49 1. 89 U 498.0 5.J 3 U 1. 7 U
23 5.15 4.76 4.29 2.64 2.59 * *
24 37.93 60.24 70.47 84.01 101.60 J99.29 117.82

* Memory exceeded (64K bits per processor)

Table 2 -

16K CMn2 (AA=Af+ b-A-rnr\ Double Pre,-;.-cin Perfnrmrnce I Aldflnnc

Kernel -' VP ratio
1 2 4 8 16 32 64

1 60.77 105.32 170.18 214.40 271.24 316.39 351.33
3 46.71 84.38 148.63 234.76 325.61 406.10 456.11
5 .72 .80 .85 .89 .80 .74 .49
7 68.44 123.41 170.52 234.18 267.52 290.39 307.17
8 130.43 141.29 163.56 173.23 * * *
0 0;110 ')O0 AA A 4I A31 A 1l A 451.1 A' 1. A 70.1 A '

10 105.56 119.40 119.64 122.30 t24.87 126.45
11 .72 .76 .81 .83 .87 .74 .45
12 59.25 101.22 129.93 146.12 155.02 112.89 164.98
1 3 0.22 0.23 0.22 0.22 0.21 * *

14 1.51 1.73 1.46 1 .82 .72 * *

15 49.01 77.24 78.33 82.48 83.29 83.92 *

18 137.41 183.39 216.19 243.91 * * *

19 .98 1.18 1.19 1.07 1.08 .71 .71
LI UL.IL O1.OL IUnU.DLn 13Lr1 n 1 QQ.Oi Id 1(On tn

22 245.39 270.25 274.13 272.64 274.03 275.31 275.92
23 2.66 I 2.67 2.43 1.58 * * *

24 19.73 30.34 36.13 44.02 52.87 55.71 62.31

* Memory exceeded (64K bits per processor)

9
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Table 3 -

32K CM-2 (64-bit hardware) Single Precision Performance in Mflops

Table 4 -

32K CM-2 (64-bit hardware) Double Precision Performance in Mfops

IVICrII~ly ec.euCUeU kiir-x Uii6 per pUV'.btUij

10

Kernel VP ratio
1 } 2 4_______ _ 16 32 64

1 204.38 358.26 569.25 734.75 939.04 1066.65 1183.90

3 184.86 338.68 598.95 938.73 1297.52 1624.29 1822.44
5 2.84 2.98 2.96 2.93 2.51 2.46 1.49
7 267.56 498.39 675.32 939.02 1068.68 1157.24 1224.87
8 519.41 564.85 641.62 692.26 710.66 * *
9 1117.82 1550.83 1725.25 1810.51 1873.20 1880.30 1889.40
in A4l 17 Aa5r71 A75r.5 A09 AOAQP27 A00Qq C3 l 10

11 2.70 2.90 2.86 2.80 2.76 2.33 1.38
12 203.80 342.11 439.40 484.84 519.71 546.87 553.04
13 0.71 0.72 0.62 0.60 0.53 0.46 *
14 5.01 5.27 4.38 2.30 2.08 2.02
15 198.88 310.29 318.86 330.38 337.95 339.71 341.93
18 546.89 731.00 860.75 978.16 . 1020.33 * *

19 3.82 1 4.30 4.15 3.61 3.42 2.24 2.21
21 210.93 326.01 424.66 531.22 622.76 676.76 702.77
22 848.65 932.25 967.94 989.63 993.32 1002.16 1003.26
23 110.14 j 9.68 8.41 ] 5.21_j 5.il 2. j _ * 

24 M 75e59 118.91 138.26 1 e 201.90 b 211.3 233.17 
Memory exceeded (64K bits per processor)

Kernel I|V P ratio _

I I 1 _ 3 ~~2 _ _4, _8_ 116_ 32_ X64_ 
1 121.27 |211.1 341.40 430.21 5b43.34 i030./ (1 .0/
3 92.70 168.55 298.91 :469.99 650.88 811.45 912.12
5 1.445 1.61 1.72 1.77 1.58 1.48 .95
7 135.69 249.59 339.84 468.25 534.91 579.69 612.21
8 . 259.99 282.40 324.42 344.86 * * *
9 561.05 771.64 862.82 9D4.15 934.64 4 940.47 943.49
10 210.97 234.70 238.77 245.10I 249.06 252.03 *
11 1.42 1.54 1.64 1.67 1.72 1.47 .88
12 118.39 201.02 260.17 289.46 310.12 324.30 330.92
13 0ot .42 0 .45 1 0.43 0 .42 0 .40 I * 

14 O3.02 3.383 2.89 1.61 1i43| * 4*

15 96.23 154.83 '158.77 162.24 165-11 167.38 *
18 273.24 368.64 433.22 487.65 * * *

19 1.98 2.33 2.36 2.16 2.15 1.41 1.40
21 104.88 '161.04 212.74 266.50 310.78 334.32 355.65
22 490.23 540.67 547.43 543.18 546.44 551.22 551.88
23 5.27 5.32 4.84 1 3.i3 * * *
24 38.43 60.77 71.82 88.23 106.64 111.33 123.66

* .~--.k.~J eCAr Lt..
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Before a critical point, the efficiency for many of the kernels is much lower at smaller VP ratios

(shorter vector lengths). This is due to underutilization of the memory bandwidth, and to the start-
up and shutdown costs of the FPA pipeline (64 cycles), which constitute a much higher percentage

of the overall time required to do a floating point operation at the smaller VP ratios. Data must
be processed through a "transposer" chip upon entry and exit from the FPA. A future release of

CM Fortran is expected to alleviate this problem and to reduce the start-up and shutdown costs of

the FPA pipeline to 2 cycles, greatly increasing the efficiency of code running on small VP ratios.

Table 5 shows the double-precision Mflop results for the Cray X-MP/1 for large vector lengths

(43. Since the Cray is a vector machine, increasing the vector length would result in no measurable
performance increase.

Table 5-

Cray X-MP/1 Double Precision Performance in Mflops 110]

6. CONCLUSIONS

For applications involving large vector lengths, a large amount of computation, and minimal
general communication the CM-2 performs extremely well. For half of the kernels (1, 3, 7,8, 9, 10,

12, 15, 18, 21, 22, and 24), the CM-2 outperformed by a wide margin the Cray X-MP/1. Kernels 2,

4, 6, 16, I1, and 20 were not implemented because they were either strictly sequential or involved

a very small number of floating point operations. References 10, 11, and 12 further discuss vector

and parallel architectural results. The results presented in this report are scalable when run on a

64K CM-2 and would allow the Mflop rates to increase by a factor of two. References 13, 14, and

15 compare performances involving actual applications on the CM-2 and other supercomputers.

11

Kernel Vector Length
1000

1 164.58

3 151.70
5 14.36

7 187.75
8 145-79
9 157.52
10 61.21
l1. 12.68

12 74.34
13 5.83
14 22.22
is 5.18
18 110.57
19 13.36
21 108.94
22 65178

23 13.88
24 3.56
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Appendix
CONVERTED CODE

Kernel I (Hydrodynamics fragment)

Fortran 77

do k=l,n
x(k) = q + y(k) * (r * z(k+1o) + t * z(k+11))

CM Fortran

n = nvec - 11

x = q + y * (r * z(11:n+10) + t * z(12:n+11))

Kernel 3 (inner Product)

Fortran 77

do k=ln
q = q + z(k) * x(k)

Kernel 5 (Tridiagonal Elimination)

Fortran 77

do i=2,n
xGi) = zGi) * (y(i) - x(i-1))

13

CM Fortran

k2 = log2(nvec)
a = -z
do k = 1,k2 - I
x = x+a*eoshift(x,1,-(2**(k-1)))
a = aseoshift(a,1,-(2**(k-1)D)
enddo
x = x+a*eoshift(x,1, -(2**(k2-1)))
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Kernel 7 (Equation of State fragment)

Kernel 8 (A.D.J. Integration)

Fortran 77

nll = 1
n12 = 2
do kx=2,3
do ky=2,n
dul(ky) -
ul(kxky- 1,nll)
du2(ky) =
u2(kxky-lnll)
du3(ky) =
u3(kxky- 1,nll)

ul(kxky+1,nll)

u2(kx,ky+ 1,nll)

u3(kx,ky+1,nl1)

ul(kx,ky,n12) = ul(kx,ky,nl 1) + all * dul(ky)
+ a12 * du2(ky) + a13 * du3(ky) + sig
* (ul(kx+1,ky~nll) - 2.0 * ul(kxkynll) +
ul(kx- l,ky,nll))

u2(kxsky~n12) = u2(kx,kynll) + a21 * dul(ky)
+ a22 * du2(ky) + a23 * dua3(ky) + sig
* (u2(kx+l,ky,nll) - 2.0 * u2(kx,ky,nll) +
u2(kx-1,kynll))

u3(kx,kyn12) = u3(kx,ky~nll) + al * dul(ky)
+ a32 * du2(ky) + a33 * du3(ky) + sig
* (u3(kx+1,ky,nll) - 2.0 * u3(kx,ky,nll) +
u3(kx-1,kynll))

Kernel 9 (integrate Predictors)

14

Fortran 77

do.k=ln
x4k) = u(k) + r * (z(k) + r * y(k)) + t * (u(k+3)
+ r * (u(k+2) + r * u(k+1)) + t * (u(k+63 +
r * (u(k+51 + r * u(k+4))))

I CM Fortran ]
n = nvec -6
x = u(l:n) + r * (z + r * y) + t * i(44:+3) +
r * ( u(3:n+2) + r * u(2:n+1) + t * u(7:n+-6)
-i- r * ( n~ft:ntS5 + T * u(5__T4_4_

,- .- - . - / I - I -/ / I

CM Fnrtrwn

do kx=2,3
dul(2:n) = ul(kx,l,3:n+1) - ul(kx,l,lan-1)
dn2(2:n) = u2(kxl,3:n+l) - u2(kxl.1-n-l)
du3(2:n) = u3(kx,1,3:n+1) - u3(kx,1l1:n-1)

ul(kx,2,2:n) = ul(kx,1,2:n) + all * dul(2)n
+ a12 * du2(2:n) + a13 * du3f2:n) + sig* ( u1(Ikx+l,1t2:n) -2.0 * ui(kx,1,2:n) +
ul(kx-1,1,2:n) )

u2(kx,2,2:n) = u2(kx,1,2:n) + a21 * dul(2:n)
+ a22 * du2(2:n) + a23 * du3(2:n) ± sig
* ( u2(kx+1,1,2:n) -2.0 * u2(kx,1,2:n) +
u2(kx-l,1,2:n) )

n3(kx,2,2:n) = -u3(kx,1,2:n) ± a31 * dul(2-n)
+ a32 * du2(2:n) + a33 * du3(2:n) + sig* ( n3(kx+1,1,2:n) -2.0 * u3(kx,1,2:n) +
u3(kx-1,1,2:n) )
enddo

Fortran 77
do i=In
px(1,i) = px(3,i) + cO * (px45) + px(6 ,i)) +
dm28 * px(134) + dm27 * px412j,) + dm26 *
px4111i) + dm25 * px(10i) + dm24 * px(9i) ±
dm23 * px(Si) + dm22 * px(74i)

CM Fortran

=pxl dm28 * pxl3 + dm27 * pxl2 + dm26 *
pxll + dm25 * pxlO + dm24 * px9 + dm23 *
pxS + dm22 * px7 + cO * (px5 + px6) + px3
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Kernel 10 (Difference Predictors)

Fortran 77

do i I,n
ar = cx(5,i)
hr = ar -px(5,i)
px(5,i) ar
cr = br - px(6,i)
px(6,i) = br
ar = cr -px(7,i)

px(7,i) = cr
br = ar -px(8,i)

px(8)) = ar
cr = br - px(9,i)
px(9,i) = br
ar = cr- px(l0i)
px(iO4) =cr
br = ar - px(lli)
px( li) = at
cr = br - px(12,i)
px(12,i) = br
px(14,i) = cr - px(13,i)
px(13,i) = er

Kernel 1.

Fortran 77

do k=2,n
x(k) = x(k-l) + y(k)

I (First Sum)

15

CM Fortran

ar = cx5
br = ar -px5
px5 = ar
cr = br - px6
pxG = br
ar = cr - px7
px7 = cr
br = ar - px8
px8 = ar
cr = br - px9
px9 = br
ar = cr - pxlO
pxlO = cr
br = ar- pxll
pxll = aT
cr = hr - pxl2
px12 = br
pxI4 = r - pxl3
px13 = cr

CM Fortran

k2 = log2(nvec)
x =y
do k = I k2
x = x +eoshift(x,l,-(2**(k-1)))
enddo
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Kernel 12 (First Difference)

ICM FortranI
n = nvec - 1
x(I:n) = y(2:n+l) - y(l:n)

Kernel 13 (2-D Particle in Cell)

16

Fortran 77

do k=l,n
I X(k) = y(k+ 1- Y(k)

Fortran 77

do ip=1,n
ii = p(1,ip)

=I p(2 ,ip)
il = 1 + mod2n(il,64)
jl = 1 + mod2n(jl,64)
n(3;ip) = n(3S3 -+ b{il JI)
p(44p) = p(4,p) + c(iljl)
p(jip) = p(lip) + p(3,ip)
p(2,ip) = p(2ip) + p(4,ip)
i2 = p(lip)
j2 = P(24p)
i2 = mod2n(i2 164)
j2 = mod2n02,64)
-fiap) = p(Ijpl + y(i2+32)
p(2jp) = p(2ip) + zJ2-32)
i2 = 12 + e(i2+32)
j2 = j2 + f(j2+32)
h(i2j2) = h(i2,2) + 1.0

CM Fortran

h=0
il = I ± mod2nint(p(ljQA,64)
ji = 1 + mod2n(int(p(2,:)),64)
forall (i=l:n) templ(i)=b(il(i)jl(i))
forall (i=l:n) temp2(i)=ctl(i)jl(i))
(3,-) = p(3.:) + templ

p(4:;) = p(4,:) ± temp2
p(l,:) = p(l,:) + p(3,:)
p(2,:) = p(2 ,:) + p(4,:)
i2 = mod2n(int(p(l,:}},64)
j2 = mod2n(intfp(2,:)),G4)
p(l,:) = p(l,:) + y(i2+32)
p(2,:) = p(2 ,:) + z(j2+32)
i2 = i2 + e(i2 + 32)
j2 = j2 + f0j2 + 32)

call library routine to perform scatter opera-
tion source array to scatteradd 2 is an array of
l's

temp =1.0

call scatter-add ?(hi2j2,temp)
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Kernel 14 (1-D Particle in Cell)

17

Fortran 77

do k=l,n
vx(k) = 0.0
xx(k) = 0.0
ix(k) = int(grd(k))
xi(k) = float(ix(k))
exl(k) = ex(ix(k))
dexl(k) = dex(ix(k))
enddo
do k=l,n
vx(k) = vx(k) + exl(k) + (dexl(k) (xx(k)-
xi(k)))
xx(k) = xx(k) + vx(k) + flx
ir(k) = xx(k)
rx(k) xx(k) -irrk)
ir(k) = mod2n(ir(k),512) + 1
xx(k) = rx(k) + irk)
enddo
do k=l,n
rh(ir(k)) = rh(ir(k)) - rx(k) + 1.0
rh(ir(k) + 1) = rhlir(k) + 1) + rx(k)

enddo

CM Fortran

vx = 0.0
xx = 0.0
ix = int(grd)
xi = float(ix)
exl = ex(ix)
dexl = dex(ix)
vx = vx + exi + (dexi * (xx -xi))
xx = xx + vx + flx
ir = xx
rx = xx - it
i= mod2n(ir,512) + 1
xx = rx + ir

Icall library routine to perform scatter opera-
tion

call scauertad.atl(rh,Jr,1.u-rx)
call scatter.dd.l(rlir& Irx)



CM Fortran

nl =na
n2 = 8
m = .false.

m(2:nl,2:n2-1) = true.
vv(9-n1 n2') = 0)f0
vs(nl,2:n2-1) = 0.0
where(m.and .(eoshift(vh,2,l ) .gt .vh))
t = .053
elsewhere
t = .073
endwhere
wheTe(m.and .(vf.ge.eoshift(vf,l ,-1)))
r = maxfvheoshift(vh,2,1))
8 = vf
elsewhere
T=

maufeoshiftfvhl ?,- i
eoshift(eoshift(vh51, - 1)2,1))
s8= eoshtift(vf,l,-l)
endwhere
where (m)
vy = sqrt(vg * vg + r * r) * t | s
endwhere
m(nl,:) = .false.
where(m .and .(vf.ge .eoshift(vf,2, - 1)))
r = max(vg,eoshift(vg,1,1))
s = vf
t = .053
elsewhere
r=
max(eoshift(vg,2,- 1),
eoshift(eoshift(vg, 1, ),2,- 1))

s = eoshiftQvf,2,-l)
t = .073
endwhere
where (m)
VS = Sqrt(vh * vh + r * r) * t / s
endwhere

M. A. YOUNG

Fortran 77

ig = 7

flZ = rU

ar = .053
br = .073
1S dn 45;J = 29ng
do 45 k = 2,nz
if (ij-ng) 31,30,30
30 vy(kj) = 0.0
irto 45N

31 if (vh(kj+l) - vh(kj)) 33,33,32
32 t = ar
goto 34
33 t = br
34 if (vf(kj) - vf(k-1j)) 35,36,36
35 r = max(vh(k-ij),vh(k-lj+l))
s = vf(k-1,j)
goto 37
36 r = max(vh(kj),vh(k±+1))
s = vf(kj)
37 vy(kj) = sqrt(vg(kj)**2 + T*r) * t/S
38 if (k-nz) 40,39,39
39 vs(kj) = 0.0
goto 45
40 if (vf(kj) - vf(kj-1)) 41,42,42
41 r = max(vg(k~j-l),vg(kIJ-1))
s = vf(kj-1)
t = br
goto 43
42 r = max(vg(k~j),vg(k+l j))
S = vffki)
t = ar
43 vs(kj) = sqrt(vh(kj)**2 + r * r) t*s
45 continue

18
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Kernel 18 (2-D Ezplicit Hydro fragment)

19

VFort.ran 77

kn= 6
in =2
do 70 k-9, n

do 70 i=2jn
za(j,k) = (zp(j-lk+l) + zq(j-l,k+l) -
zp(j-l,k) - zq(-lk)) * (zrQjk) + zr(j-l,k))

I (~'nt'i-1 16 1- 7fl1(-1 kl V8(I..J-n'M -I-- -7r N - 4- I

zb(j,k) = (zp(j-l,k) + zq(j-lk) - zp(j,k) -
zq(jk)) * (zr(jk) + zr(j,k-1)) / (zm(i,k) +

t
J&L'kJ k /

70 continue

do 72 k=l2,kn
Ad 72 j=2,jn

zu(j,k) = zu(j,k) + s * (za(jk) (zz(j,) -
zz(j+lk)) - za(j-lk) * (zz(j,k) -zz(j-ljk))
-zb(j,k) * (zz(jk) -zz(j,k-1)) + zb(j,k+l) *

zvljk) zv(jk) + s * (za(j,k) * (zr(jk) -
zr(j+lk))- za(j-l,k) * (zr(jk) -zr(j-l,k))
-Z tUijIlJ r VZ1 kI - zy'j k / t- f JUJKt1) 

(zr(j,k) - zr(j,k+l)))
72 continue

do 75 k =2,Kn

do 75 j= 2,j
zrtj,k) = zr(j,k) + t i zu(j,k)
zz(j,k) = zz(j,k) + t * zv(j,k)
75 continue

CM Fortran

nl = 8
n2 = nvec
do k9j
za(k,2:n2-1) = (zp(k+ll:n2-2) +
zq(k±1,1:n2-2) - zp(kl:n2-2)
zq(k,l:n2-2)) * (zr(k,2:n2-1) + zr(k,l:n2-2))
/ (7m(k 1-n9-9\ + .m(kL--I Iln9-9.1)
/ \V ' -J 7,-.--\ - -A,

zb(k,2:n2-1) (zp(k,l:n2-2) + zq(k,l:n2-2)
- zp(k,2:n2-1) - zq(k,2:n2-1)) *
!v~r~lr 9+n9-1\ ± qr~lc-1 9n-T19 \ IA 

"fl 9 \-- ,- -IXJ 

(zin(k,2at2-1) + zm(k,1:n2-2))

zu(k,2:n2- 1) = zu(k,2:n2-1)
± s * (za(k,2:.n2-l) ± (zz(k,2:n2-1) -

zzflk,3:n23))- zatk,1:nt2-2} * (zz~k,2:u2-l) -

zz(kl:n2-2)) - zb(k,2:n2-1) * (zz(k,2:n2-1)-zz(k-1,2:n2-1)) + zb(k+1,2:n2-1) *
vz o.k oi n2- 1) d- 1zl -1'2nO 1 1N,

zv(k,2:n2-1) - zv(k,2:n2-1)
+ s * (za(k,2:n2-1) * (zrk,2:L2-1) -

zr l-:rio) -ZatkA I:nLZ ) k zrTk7^:rn2 1)-
zr(k,l:n2-2)) - zb(k,2:n2-1) * (zr(k,2:n2-1)
- zr(k-1,2:n2-1)) ± zb(k+1,2:n2-1) *
(zr(k,2:n2-1) - zr(k±1,2:n2-1)))

zr(k,2:n2-1) = zr(k,2:n2-1) + t *

zu(k,2:n2-1)

zz(k,2:n2- 1) = zz(k,2:n2-i) + t *
zv(k,2:n2-1)
enddo
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Kernel 1 9 (General Linear Recurrence)

Kernel 21 (Matrix Product

CM Fortran

px = matmul('vycx)

20

MI-rtran 77

do 191 k=1,n
b5(k) = sa}k) + stb5 * sb(k)
10q1 kt; - f - otb.

do 193 i=l,n
k=n-i+ 1
h5(k) = sa(k) + stb5 * sb(k)
193 Rth5 = h.5(k)- _b

CMn' Fr-trran
%IxU -VUFGE~l

xOA 0.0
k2 = log2(nvec)

- = sb - 1-0
stb5 = sa
do k= 1,k2 - 1
i2 = -(2**(k-1))
dhtbi-9=ty ienahpogbiSt.1¼th I Pl sfl\n

a=a*eoshift(a,l I2)
enaddo
i2 = -(2**(k2-1}}
stb5 = st5 + a * eoshift(stb5,1,i2,x0O

clean up last one

stb5(nvec)=sth5(nvec)+xO*a(nvec/ 2)

xend = stb5(nvec)
a = sb- 1.0
stb5 = sa
do k=1,k2-1
i2 - (2**(k-1))
stb5=stb5+a*eoshift(stb5,1,i2,xend)
a=a*eoshift(a,142)
enddo
i2 = (2**(k2-1))
stb5=stb5+a*eoshift(stb5,1 42,xend)

clean up last one

stb5(1) = stbt5(l) + xend * a(l)

Fortran 77

do 21 k=1,25
do 21 i=1,25
do 21 j=1,n
21 px(ij) = px(ij) + vy(ik) * cx(kj)
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Kernel 22 (Planckian Distribution)

CM Fortran

y = 20.0
where (u Ilt. 20.0 * v) y = u/v

w = x/(exp(y) - L.U)

Kernel 23 (2-D Implicit Hydro fragment)

1 Fortran 77 1

do 23 j=2,6

do 23 k=2,n
qa = za(kj+l) * zr(kj) + za(kj-1) * zb(kj)
+ za(k+1,j) * zu(kj) + za(k-1j) * zv(k j) +
zz(kj)
23 za(kj) = za(k,j) + .175 * (qa - zakj))

Kernel 24 (Location of First Minimum)

21

Fortran 77

do k=l,n
yk) = 20.0
if (u(k) .1t. 20.0 * v(k)) y(k) = u(k) / v(k)
w(k) = x(k) / (exp(y(k)) - 1.0)

CM Fortran

nl =8
n = nvec
n2 nvec-1
k2 iog2(n)
do j=2,6
qa(j,2:n2) = za(j+1,2:n2) * zr(j,2:n2)
+ za(j-1,2:n2) * zb(j,2:n2) +
za(j,3:n2+l zu" j2::nz 2 ± zz(K t2n2)
- za(j,2:n2)
enddo

a = .175 * zv
za= b
do k=1,k2 - 1

a=a*eoshift(a2(-(2***k(1)))
enddo

I La4-LO-pcrflU~kIXL\LDtli \ t' /J]J

Fortran 77

m =1
do k=2,n
if (x(k) .t. x(m)) mn = k

CM Fortran

integer index(nvec)
index = {1:nvec]
m = minval(index,mask- x .eq. minval(x))
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