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BENCHMARKING THE CONNECTION MACHINE

1. INTRODUCTION

Performance of various computers is compared by running programs across different machines
and comparing execution times { benchmarking the computers). Scientific or engineering bench-
marks are usually measured in Mflops (millions of floating point operations per second). The
current state of benchmarking supercomputer architectures is not very clear. Performances of a
specific supercomputer on various benchmarks may vary greatly, making the judgment extremely
difficult. Naturally, certain benchmarks may be more suited to a particular machine’s architecture.
Running standard benchmarks, without modification, across various supercomputers can show the
effectiveness of the compilers in using the available resources. This allows comparison with an
optimized code implementation.

To measure the true capability of an architecture may require some restructuring of the code.
This customization for a given machine can provide dramatic increases in performance. Automatic
vectorizing compilers help to alleviate this task of customization but presently cannot look at whole
routines. The performance of highly parallel machines is greatly dependent on communication and
the overall communication network of a particular code. It is important to look closely at the
overal] problem/algorithm rather than to make a line-by-line conversion [1].

Many installations develop their own set of benchmarks, specific to the particular institution
specialization, and send these to prospective vendors to compare various machines. Kernels are
excerpts extracted to be representative of the programs run at a given installation. This report
measures the performance of the Connection Machine model CM-2, manufactured by Thinking
Machines Corporation, relative to other supercomputers and provides some insight into its strengths
and weaknesses. The Livermore Loops were selected as the representative k ' ; -

the CM-2.

Although there is not a universally accepted set of benchmark programs, the Livermore Loops

are widelv used f‘ﬂ The Livermore Loons consist of Fortran kernels that Lawrence Livermore
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National La,boratory (LLNL) extracted from actual production codes of a number of representative
application areas [3,4}. Figure 1 lists the kernels.
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in the Livermore Loops. Originally developed to benchmark serial machines, the kernels also form
a good test set for parallel machines. As reported by Frank McMahon of LLNL, the kernels are
good predictors of the actual production performance [4].
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Title

Hydro fragment

ICCG excerpt (Incomplete Cholesky - Conjugate Gradient)
Inner Product

Banded Linear Equations

Tridiagonal Elimination, below diagonal
General Linear Recurrences

Eqguation of State fragment

A.D.I1. (Alternating Direction Implicit) Integration
Integrate Predictors

Difference Predictors

First Sum

First Difference

2-D Particle in Cell

1-D Particle in Cell

Casual Fortran

Monte Carlo Search Loop

Implicit Conditional Computation

2-D Explicit Hydrodynamics fragment
General Linear Recurrence Equations
Discrete Ordinates Transport

Mairix Product

Planckian Distribution

2-D Implicit Hydrodynamics fragment
Find location of first minimum in array

Fig. 1 — Kernel List
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2. THE CONNECTION MACHINE

The Connection Machine model CM-2 is a data parallel machine made up of 64K (K = 1024)
processors. The CM-2 works best on large amounts of data because it is a Single Instruction Mul-
tiple Data {SIMD) computer, which means an instruction may operate in parallel on many data
elements. Another approach to parallel processing is Multiple Instruction Muitiple Data (MIMD)
architectures, which can have multiple independent instructions aperating on different data ele-
ments. A SIMD architecture like the CM-2 is much easier to program than a MIMD architecture

because SIMD does not require the control synchronization needed by MIMD architectures.

Each CM processor is a 1-bit-wide custom processor with 64K, 256K, or 1624K bits of memory.
It has an arithmetic logic unit {ALU) and 2 router interface to perform communication among
the processors. Communication among processors is done by a high-speed routing network, and
a much faster grid communication device is used for nearest-neighbor communication. The router
allows any processor to perform data transfer between itself and any other processor. Collisions
occur when several processors send messages to the same processor. In this case there are message-
combining operations (bitwise logical, numerically largest, or integer sum of all messages). Kach
CM-2 processor chip contains one router node serving the 16 data processors on the chip. For
a fully configured CM-2, each router node is conmected to 12 other router nodes forming a 12-
dimensional hypercube connecting the 4K processor chips. Within a CM processor chip, full
crossbar interconnections are provided.

All program development and execution takes place on the front end (Symbolics, DEC VAX,
or Sun 4). Multiple front-end bus interfaces (FEBIs) from the front end allow, through the Nexus
(a bidirectional switch), multiple users to access separate sections of the CM-2 (one per section
of 8K or 16K processors). The number of simultanecus users depends on the number of FERIs
{maximum of 4). Symbolics is a single-user machine.

The commands that direct the CM-2 are issued from the front end. These commands make
up the Parallel Instruction Set (Paris), which is similiar to the assembly language instruction set
of a standard computer. The Paris instructions from the front end are broken down by the CM
microsequencer into low-level data processor operations. Each parallel processing unit or section,
either 8K or 16K processors, has its own sequencer. Depending on the overall machine size, a section
has either 8K or 16K processors. A 64K machine would have four sections of 16K processors, and
a 32K machine would have four sections of 8K processors. On the 32K machine a user could
have 1, 2, or 4 sequencers corresponding to 8K, 16K, or 32K processors. The configuration of the
sequencers is dependent on the Nexus, which can be quickly reconfigured.

The CM-2 may also have a floating point accelerator (FPA) option (single or double precision)
that increases the rate of floating point calculations by more than a factor of 20. The coprocessors,
manufactured by Weitek, consist of a memory interface unit and a floating point execution unit.
Each coprocessor is assigned to two CM-2 processor chips (32 physical processors). The floating
point execution chip can store 32 values of a given precision. The chip is used for operations such
as integer multiply, floating point multiply, and addition. Two memory references are required
for each 64-bit floating point processor. The extra memory reference is required since the floating
point processor’s data path is only 32 bits wide. A large degradation in performance results if
the data type does not match the associated floating point processor data type. A 32-bit {64-bit)
floating point data type uses 23 (52) bits for the significand, 8 (11) bits for the exponent, and 1
(1) bit for the sign. Douglas et al. {5] thoroughly discuss the CM-2 data processor architecture.
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A physical processor’s memory may be partitioned and serially executed to simulate a machine
with more processing nodes than the actual number of physical processors. This virtual processor
{VP) mechanism is transparent to the user [5,6]. For example, on a machine with 64K physical

ProCessors, a VP set of size (1924,1924} would fﬁqdhc that each yuyou,cu processor simulate 16

virfual processors, This VP set is said to have a VP ratio of 16 and have 16+64K = 1024K virtual
processors. The maximum VP ratio is dependent or the physical processor memory for a particular
machine. The use of virtual processors can dramatically increase the performance of floating point

npn‘rnflnnc .h\r :x“nunn:r ‘ﬂ'\n 'Rnnhng po}_nv C]"I'IPC to p)pnhne nouglas at 3“1. ES} shot‘_lrr that a rate

of 2600 Mﬂops would be expected for a 32-bit floating point muliiply if the physical processors
would cycle through their virtual processors one at a time. Since the memory and float bus are

idle at different stages of the multiply, they can be used to start the next virtual processor, causing
m'nphmn(r and increasing the Mflop rate to 4300. Reference 6 gives more details of the CM-2

Sallly 220 ARV 60 ML SIS

hardware.

The programming environment consists of three high-level languages *LISP, C*, and CM For-
tran. *LISP and C* are parallel extensions of Common LISP and the C programming language,
respectively. CM Fortran [7] consists of the majority of Fortran 77 with some of the array exten-
sions and removed extensions outlined in the draft S8 of the ANSI Fortran 8x standard (x3.9—-198x)
[8,9]. All three languages compile into Paris. The programming environment also includes three
interfaces for calling Paris (LISP/Paris, C/Paris, and Fortran/Paris} along with library packages
such as *Render (a graphics processing package) and CMSSL (a scientific subroutine library). For
a program written in C/Paris, standard C code directs the front-end (serial) operations whereas
the Paris calls direct the handling of data residing on the CM-2 and any transfers of data between
the CM-2 and the front end. LISP/Paris ard Fortran/Paris are similar interfaces except the serial
operations are programmed in Common LISP and Fortran 77, respectively. The Livermore Loops
are caded in release 0.7 of CM Fortran.

3. CM FORTRAN

CM Fortran [7] consists of a mixture of serial and parallel array operations. Serial operations
are executed by the front-end computer by using its own memory and CPU. The parallel opera-
tions are executed on the CM-2 where each processor concurrently executes its own data point.
Multidimensional arrays are allocated on the CM-2, one element per processor.

Major array features that have been adapted from the proposed 8x standard (8] include array
assignment, constructors, and sections {Fig. 2). The where statement and block where construct,
Fig. 3, are also featured. These allow you to operate conditionally on array elements depending on
their values. Especially useful in CM Fortran are the scan operations, or parallel prefix operations,
sum and spread (Figs. 4 and 5), where the dimension the scanning is done across is specified.
The advantage of these scanning operations is that while communicating, the processors perform
a combining operation {add, min, max, ...). Sum is a scan-with-addition combining operation,
and spread is a special scan that adds a dimension by copying data. Other useful functions are
eoshift (end off shift) and cshift { circular shift), which shift elements of an array along a specified
dimension (Fig. 6). The following declarations are assumed in Figs. 2—8 below which compare
code written in both Fortran 77 and CM Fortran.
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real a(n),b(n),c(m,n),d(m,n)
integer 11{n),i2(n)

Fortran 77

do 10 i=1,m
do 10 j=1,n
d(i,j) = c(i) *= 30.0
10 continue

CM Fortran

d =c* 300

Fig. 2 — Do Loops

Fortran 77 CM Fortran
do 10 i=1,n where (a .ne. 0.0}
if (a(i) .ne. 0.0) then b =3.0/a
b(i) = 3.0/a(i) elsewhere
else b =00
b{i) = 0.0 endwhere
10 endif

Fig. 3 — Where
Fortran 77 CM Fortran
q=0.0 q = sum(axb)
do 10i=1.n
10 g = q + a(i} * b(i)

Fig. 4 — Sum

The removed extensions that have been implemented include vector-valued subscripts and the
forall statement. The forall statement can do indirect addressing and scattering of data along

unfh geomanted ceansg. in which nartial resultg are comnnted Comnilatinn of tha forall ctatamant
viLil SCEIenied scalls, 1l Wallil palrtlal Teslils are Commputed, LOMPLALen O vile jorgi statement

generates a get (send) router communication if the addressing is done on the right-hand (left-hand)
side of the assignment statement. Figs. 7 and 8 show this get and send communication, respectively.
The send router communication is approximately twice as fast as the get router communication.
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Fortran 77 CM Foriran

do 18 i=1n ¢ = spread(a,l,m)
do 10 j=1,m

10 ¢(ji) = ali)

Fig. 5§ — Spread

Fortran 77 CM Fortran
do 10 i=1,m d = cshift{c,dim=2,5shift=2)
do 20 j=1,0-2

d(ij) = oij+2)
20 continue
dfi,n-1) = ¢f3,1)
d{i,n) = ¢(i,2)
18 continue

Fig. 6 — Cshift
Faortran 77 CM Foriran
do 101=1mn forall (i=1:n) afi) = 4{(i1{(i),i2(i})

a(l) = d{i1(i),i2(i))

10 continue

Fig. 7 — Forall {get)

Fortran 77 CM Fortran

do 10 i=1m forall (i=1:n) ali1{i),i2(i)) = d(i)
2(i1(1)02(0) = &)

10 continue

Fig. 8 — Forall {send)
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4. CODING PROCEDURES

On serial computers, the Livermore Loops are executed without modification. The massively
parallel architecture of the CM-2 reguires that the loops be explicitly changed to use the array
features of CM Fortran. The original Fortran kernels were converted to CM Fortran (see the
Appendix) and in most cases the same algorithm was used. Most of the code conversion invalved
a simple mapping of each element of a vector or matrix to a virtual processor and then performing
simultaneous operations on these elements as in Figs. 2—6. A few of the kernels (5, 11, 19, 23)
involved recurrence and were coded with a cyclic reduction algorithm [10}. With recurrences it
becomes more difficult to generate an O(1) (i.e., a single array statement) solution, so a cyclic
reduction method of O(logn) was used to increase performance for the sequential O(n) problem.
This involved the only major change to the algorithmic structure of the kernels (5, 11, 19, 23).
Fig. 9 shows this cyclic reduction technique.

Fortran 77 CM Foriran
x{1) = afl) * x{0) + d(1) x=4d
dolj=2,n x0 = x(0)

x(3) = afj) * x(j-1) + d(j) do i=1]og2n

1 continue j= —{2e{i-1))

x = X + a * eoshift(x,1,j,x0)
a = a * eoshift(a,1,,0.0)
enddo

x(n) = x(n) + x0 * a(n)

Fig. 9 — Cyclic Reduction

General communication, handled by the router, can be a bottleneck when implementing code
on the CM-2. Programs that transfer or access data randomly would use general communication,
whereas programs with a more structured communication involving neighboring processors would
use the much quicker grid communication. The best performance will usually be obtained by mini-
mizing router communication and using grid communication when needed. Grid communication is
approximately 16 times more efficient than general communication [7]. The particular communica-
tion that will be used for a CM Fortran statement can be found by inspecting the Paris commands

in the assembler output generated by the compiler.

The cshift and eoshift commands under compilation generate either a general communication
or a series of grid communications, depending on whether the distance of the shift is less than
17. The communication costs involved in the assignment of array sections are similiarly dependent
on the offset involved. The following declarations are assumed for Fig. 10 which shows when
interprocessor communication (either general or grid) is required.

real a(16384),b(16384),c(16000)
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Statement Communication

a=b cost = ¢ no communication
a(1:16000) = ¢ cost = 0 no communication
a(17:16016) = ¢ cost = 16 grid communication
a{1:16000) = b(2:16001) cost = 1 grid communication
2(1:16000) = b(17:16016) cost = 16 grid communication
a{1:16000) = b{18:16017) cost = 17 general communication

Fig. 10 — Communication

A general data exchange routing routine was required to perform the communication required
in kernels 13 and 14. In kernel 21 {(matrix multiply), the dimensions of the vy matrix were increased
to put an element in each virtual processor, thus providing a better evaluation of the CM-2 on
large matrix multiplication.

5. RESULTS

Tabies 1, 2, 3, and 4 list the single {32-bit) and double {64-bit) precision Mflop rates for a 16K
and 32K CM-2 with 64-bit FPA and 64K bits of memory per processor. Results are presented
for different VP ratios. Assignment of weights to floating point operations was made according
to McMahon (4], +, —, * = 1; /, sqrt = 4; exp, sin, etc. = 8; if{x.rely) = 1. The extra
computation required for the cyclic reduction algorithm used in kernels 5, 19, and 23 was not
counted in computing a Mflop rating. A table entry denoted by a ™’ indicates that the VP ratio
could not be raised to this level becaunse of insufficient memory.

The highest Mfiop performance occurred for kerneis 1, 3,7, 8, 9, 10, 12, 15, 18, 21, and 22, which
include the mast computationally intensive kernels. Although the computational resources remain
fixed, efficiency increases for larger problems, as reflected by the higher Mflop rate vs VP ratio. This
results from filling up the pipeline of the FPAs. However, efficiency of kernels involving recurrence
does not improve across VP ratios because of a communication bottleneck. Communication-bound
problems fare poorly on the CM-2, and ways to minimize router communication must be explored.

Presently, the performance of the recurrences showed little if any improvement as the VP ratio
increased because of a communication bottleneck. It is possible to code Kernel 11 with a single
Paris scan instruction. We tried to improve the other somewhat more involved recurrences (5, 19,
23) by using Paris scans. Although being very efficient for small vector lengths (<1000}, this effort
became impractical for larger vector lengths. A multiply scan is needed in which the number of
consecutive multiplies grows linearly with the vector length. To perform these multiplies would
require more bits in the exponent field thus creating a nonuniform data type that would run
dramatically slower (as discussed in Section 2.).
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Table } —

16K CM-2 (64-bit hardware) Singie Precision Performance in Mflops

Kernel | VP ratio

T 4 8 16 32 64

1 102.33 | 179.68 | 288.33 | 369.09 | 473.73 | 544.11 | 586.88
3 92.05 | 171.89 | 299.30 | 468.06 { 655.35 | 813.60 { §15.39
5 1.44 1.50 1.47 1.48 1.23 1.21 0.74
7 135.53 { 250.97 | 340.94 | 471.29 | 534.28 | 584.43 ; 613.80
8 260.18 | 283.12 | 321.48 ; 348.08 | 356.12 * *
9 558.21 | 777.22 | B63.48 | 906.63 | 938.14 | 941.45 | 946.45

10 212,63 | 231.29 | 239.78 | 247.82 | 247.82 | 250.98 | 202.78

11 1.35 1.43 1.43 141 1.35 1.19 0.70
12 100.81 | 170.21 | 220.54 | 242.73 | 250.26 | 273.08 | 278.88
13 0.36 0.36 0.32 0.31 0.27 0.24 *
14 251 2.68 2.23 1.15 1.05 1.01 *
15 100.11 | 155.30 | 162.62 | 165.88 | 163.66 | 170.14 | 170.54
18 274,46 ) 366.77 | 431.21 | 487.43 | 508.03 * *
19 1.93 2.16 2.08 1.85 172 1.13 1.11
21 106.86 | 164.21 | 213.22 | 266.92 | 312,13 | 339.02 | 347.49
22 426.88 | 467.36 | 484.02Z | 491.89 | 408.05 | 501.43 | 501.70
23 5.15 4.76 4.29 2.64 2,69 * *
24 37.93 J 60.24 | 70.47 | 84.01 § 101.60 | 99.29 | 117.82

* Memory exceeded (64K bits per processor)

Table 2 —
18K CM-2 (84-bit hardware) Double Precision Performancs in Mflops
Kernel VP ratio
1 2 4 8 16 32 64
1 60.77 | 105.32 | 170.18 | 214.40 | 271,24 | 316.39 | 351.33
3 46.71 84.38 | 148.63 | 234.76 | 325.61 | 406.10 | 456.11
3 72 .80 .85 .89 .80 74 .49
7 68.44 | 123.41 | 170.52 | 234.18 | 267.52 | 290.39 | 307.17
8 130.43 | 141.29 | 163.56 | 173.23 * * *
t 281.12 | 388.44 § 431.23 | 451.10 | 468.23 | 470.17 | 472,53
10 106,56 | 11940 | 11984 § 122.30 | 124 87 | 126.45 *
11 72 76 .81 83 87 .74 45
12 59.25 { 101.22 { 129.93 | 146.12 | 155.02 | 112.89 { 164.98
13 0.22 0.23 0.22 0.22 0.21 * *
14 1.51 1.73 1.46 82 T2 * *
15 49.01 77.24 78.33 82.48 83.29 83.92 *
18 137.41 § 183.39 | 216.19 | 243.91 * * *
19 .98 1.18 1.19 1.07 1.08 71 71
21 92.12 81.82 | 106.62 | 132.51 | 166.81 | 167.72 ; 173.28
22 245.39 | 270.25 | 274.13 | 272.64 | 274.03 1 275.31 | 275.92
23 2.66 2.67 2.43 1.58 * * *
24 | 1973 7 3034 | 3613 ] 4402 | 5287 | 5571 62.31

* Memory exceeded (64K bits per processor)
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Table 3 —

32K CM-2 {64-bit hardware) Single Precision Performance in Mflops

Kemel VP ratio
1 2 4 8 16 32 84
1 204.38 | 358,26 | 568.25 ( 734.75 7 938.04 | 1066.65 | 1183.80Q
3 184.86 { 338.68 | 598.95 | 838.73 | 1297.52 | 1624.29 | 182244
5 2.84 2.98 2.86 2.83 2514 246 1.49
7 267.56 ¢ 498.3% { 675.32 | 838.02 | 1068.68 | 1157.24 { 122487
8 51941 | 564.85 [ 641.62 | 69226 710.68 * *
g 1117.82 | 1550.83 | 1725.25 | 1810.51 | 1873.20 | 1880.30 | 1889.40
10 421,17 1 48571 | 47555 49263 49873 ! 49983 ! 50119
11 2.70 2.90 2.86 2.80 2.76 2.33 1.38
12 203.80 | 34211} 43940 ! 48484 | 51971 | 54687 553.04
13 0.71 0.72 0.62 0.60 D.53 D.48 *
14 5.0 5.27 4.38 2.30 2.08 2.02 *
15 198.88 310.29 318.86 33D.38 337.95 339.71 341.93
18 546.89 | 731.00 | B860.7b | 978.16 | 1020.33 * *
19 3.82 4.30 4.15 3.61 3.42 2.24 2.21
21 21093 | 326.01 424.66 | 531.22 | 622.76 ] 876.76 | T02.77
22 848,85 | 932,25 ] 967.94 ] OB9.83 | 993.32 ) 1002.16 j 1003.20
23 10.14 9.68 8.41 521 5.11 * *
24 75.59 1 118.91 138.26 | 167.69 1 20180 ) 211.36 ) 233.17

* Memory exceeded (64K bits per processor)

Table 4 —

32K CM-2 {64-bit hardware) Double Precision Performance in Milops

Kernel VP raiic
1 2 4 8 16 32 64
1 121.27 | 211.10 | 341.46 | 430.21 | 543.34 | 63D.71 | T01.67
3 9270 | 168.55 | 298.9]1 | 469.99 | 650.88 | 811.45 12.12
5 145 1.61 1.72 1.77 1.58 1.48 .05
7 13569 | 24950 | 339.84 | 468.25 | 534.91 | 579.69 | 612.21
8 250,99 1 282,40 | 324.42 | 344.86 * * *
9 561.05 | 771.64 | 862.82 | 904.15 | 934.64 | 940.47 § 943.49
10 210.97 | 23470 | 238.77 | 245.10 ) 249.06 | 2b2.03 *
11 1.42 1.54 1.64 1.67 1.72 1.47 ]
12 118.39 ] 201.02 | 260.17 | 289.46 | 310.12 | 324.30 | 330.92
13 D.42 0.45 (.43 0.42 0.40 * *
14 3.02 3.38 2.89 161 1.43 * *
15 06.23 | 154.83 | 158.77 | 162.24 | 165.11 | 167.38 *
18 273.24 | 368.64 ) 433.22 | 487.65 * * *
19 1.98 2.33 2.36 2.16 2.15 1.41 1.40
21 104.88 1 181.04 | 212.74 | 266.50 | 310.78 | 334.32 | 355.65
22 490.23 | 540.67 | 547.43 | 543.18 | 546.44 ) 551.22 | 551.88
23 5.27 5.32 4.34 3.13 * * *
24 38.43 60.77 71.82 83.23 | 106.64 | 111.33  123.66
* nA v exceeded fRAL Lit agosr

1¥l

eINory eXceede
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Before a critical point, the efficiency for many of the kernels is much lower at smaller VP ratios
(shorter vector lengths). This is due to underutilization of the memory bandwidth, and to the start-
up and shutdown costs of the FPA pipeline {64 cycles), which constitute a much higher percentage
of the overall time required to do a floating point operation at the smaller VP ratios. Data must
be processed through a “transposer” chip upon entry and exit from the FPA. A future release of
CM Fortran is expected to alleviate this problem and to reduce the start-up and shutdown costs of
the FPA pipeline to 2 cycles, greatly increasing the efficiency of code running on small VP ratios.

Table 5 shows the double-precision Mflop results for the Cray X-MP/1 for large vector lengths
{4]. Since the Cray is a vector machine, increasing the vector length would result in o measurable
performance increase.

Table 5 —

Cray X-MP/1 Double Precision Performance in Mflops [10]

Kernel | Vector Length
1000
1 164.58
3 151,70
3 14.36
7 187.75
8 145.79
9 157.52
10 61.21
11 12.68
12 74.34
13 5.83
14 22.22
15 5.18
18 110.57
19 13.36
21 108.94
22 65.78
23 13.88
24 3.56

6. CONCLUSIONS

For applications involving large vector lengths, a large amount of computation, and minimal
general communication the CM-2 performs extremely well. For half of the kernels (1, 3,7, 8, 9, 10,
12, 15, 18, 21, 22, and 24), the CM-2 outperformed by a wide margin the Cray X-MP /1. Kernels 2,
4, 6, 16, 17, and 20 were not implemented because they were either strictly sequential or involved
a very small number of floating point operations. References 10, 11, and 12 further discuss vector
and parallel architectural results. The results presented in this report are scalable when run on a
64K CM-2 and would allow the Mflop rates to increase by a factor of two. References 13, 14, and
15 compare performances involving actual applications on the CM-2 and other supercomputers.

11
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Appendix
CONVERTED CODE

Kernel 1 (Hydrodynamies fragment)

Yortran 77 CM Fortran
do k=1,n n = avec — 11
x(k) = q + y(k) # (r * 2(k+10) + t * z(k+11)) x=q+y=*(r*z(11:n+10) + t % z(12:n411))

Kernel 3 (Inner Product)

Fortran 77 CM Fortran
do k=1, q = dotproduct(x,z}
g = q + z(k) = x(k)

Kernel 5 (Tridiagonal Elimination)

Fortran 77 CM Fortran

doi=2n k2 = log2(nvec)

x(i) = 2(0) * (y(i) - x(i-1)) I
dok=1%k2-1

x = x+axeoshift(x,1,—(2**(k—1)))
a = axeoshift(a,l,—(2**(k—1}})
enddo

x = x+aseoshift(x,1,—(2*¥*(k2-1)))

13



M. A. YOUNG

Kernel 7 (Equation of State fragment)

Fortran 77

do k=1

x{k)=ulk) + r*{z(k} + r*y(k}) + t * {u{k+3)
+ o (u(k+2) + ¢+ u(k+1)) + ¢t » (w(k+6) +
T * (u(k+5) + 1 % u(k+4))))

CM Fortran

n = nvec —6
x=wllm)+rx{z+tr+y)+t*uldntd)+
r# (u(3m42) + v+ u{2m41) + Uk w(Tinds)
+ 1% { u{8m45) + 1 % u(5:nd4)))

Kernel 8 (A.D.1. Integration)

Fortran 77

nll =1

niz2 =2

do kx=2,3

do ky=2,n
dul(ky) =
ul{kxky—1,n11}
du2(ky) =
w2(kx ky—1mn11)
du3(ky) =
u3(kx ky—~1,n11})

ul{kxky+1,011) -
u2{ks ky+1,n11) -

u3{kx ky+1,011) -

ul{kxky,ni2) = uifkxky,nit) 4+ all « dul(ky)
+ al2 x du2(ky) + al3 * du3(ky) + sig
* (ullkx+1kynll) — 2.0 * ul{kxky,nll) +
ul{kx—1,ky,ni1})

u2(kx.kynl12) = u2(kx ky,nil) + a2l * dul(ky)
+ a22 x dul(ky) + a23 * dul(ky) + sig
* {u2(kx+1kynll} ~ 2.0 % u2(kxkynll) +
u2{kx—1,ky,nil})

u3{kx ky,n12}) = udlkx ky,n11) + 231 » dul{ky)
+ a32 x du2(ky) + a33 = duld(ky) + sig
¥ {(u3(ko+1,ky,nil) — 2.0 * u3{kxkynil) +
u3(kx--1kyni1))

CM Fortran

do kx=2,3

dul{2:m) = ulfkx,1,3m+1) — ullksx,i,lm-1)
du2(2:m) = w2(kx,1,3:n+1) - u2(kx,1,1:n-1)
du3{2:n) = v3(kx,1,3:04+1) — w3(kx,1,1:n-1)

ul(kx,2,2:n) = ul(kx,1,2:n) 4 all * dul{2:m)
+ al2 + du2(2m) + al3 * dud(Zm) 4+ sig
[ ul(kx+3,1,2:n) —20 * wi(kx,1,2:n) +
ul{kx—1,1,2:n}) )

u2(kx,2,2:n) = u2(kx,1,2m} + a2l * dul{Z:m)
+ a22 x du2(2m) + a23 x dud(2mn) + sig
* [ u2(kx+1,2,2:n) —2.0 » w2(kx,1,2:n) +
u2(kx—1,1,2:n) )

u3(kx,2,2:n) = w3(kx,1,2:n) + a3l * dul{2:mn)
+ a32 * du2(2mm) + a33 * dud(2:n) + sig
* ( wd(kx+1,1,2:m) —-2.0 % w3(kx,1,2m) +
u3d(kx—1,1,2:n) )

enddo

Hernel 9 (Integrate Predictors)

| Fortran 77

doi=1l,n

px{1,i) = px(3,i} 4+ <0 * (px{5,:) + px(6,}} +
dm28 * px(13,) + dm27 * px{12,i) + dm26 «
px{11,1) + dm25 * px(10,i) + dm24 x px(9,i) +
dm23 * px{8,i} + dm22 ¥ px{7,i}

14

CM Yortran

pxl = dm28 % px13 4+ dm27 % pxi2 + dm?26 =
pxll + dm25 * px10 + dm24 * px9 + dm?23 «
px8 4+ dm22 * px7 + ¢ * (px5 + px6) + px3
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Kernel 10 {Difference Predictors)

i Fortran 77 CM Fortran
doi=1,n ar = ¢x5
ar = cx(5,i) br = ar — px5
br = ar — px(5,1) px5 = ar
px(5,i) = ar cr = br — px6
cr = br — px(6,i) px6 = br
px(6,i) = br ar = cr — px7
ar = cr — px(7,i) px7 = cr
px(7,1) = er br = ar — px8
br = ar — px(8,i) px8 = ar
px(8,) = ar cr = br — px9
cr = br — px(9,i) PX9 = br
px(9,i) = br ar = ¢cr — px10
ar = cr — px(10,i) px10 = cr
px(10,i) = er br = ar — px11
br = ar — px{11,i) px1l = ar
px(11,i) = ar cr = br — px12
cr = br — px(12,i) px12 = br
px(12,i) = br pxld = ¢r — px13
px(14,1) = cr — px(13,i) px13 = cr
px(13,i) = er

Kernel 11 (First Sum)
Fortran 77 CM Fortran
do k=2.n k2 = log2(nvec)
x(k) = x(k=1) + y(k) x=y

do k = 1,k2

enddo

x = x +eoshift(x,1,—(2**(k—1)))

15
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Kernel 12 (First Difference)

Fortran 77

do k=1,n
x(k) = y(k+1) — y(k)

CM Fortran

n =nvec — 1
x(1:m) = y(2:n+1) — y{l:n})

Kernel 13 (2-D Particle in Cell)

¥ortran 77

doip=1,n

i1 = p(L,ip)

i1 = p(2/ip)

i1 = 1 + mod2n(il 64}

jl = 1 + mod2r(j1,64}
p(3;ip) = p(3;ip) + b(il 1)
p{4,p) = p{4,ip) + cfilji)
p(1,ip) = p(1,p) + p(3,ip)
p(2,ip) = p(2ip) + p{4.ip)
2= p{lriP)

j2 = p(2p)

12 = mod2n(i2,64)

j2 = mod2n(j2,64)

p(1p) = p(Lip) + y(i2+32)
p(2,ip) = p(2,ip) + 2{j2+32}
12 = i2 + e(i2+32)

j2 = j2 + 1(32+32)

h(i2,j2) = h(i2,2) + 1.0

16

CM Fortran

h=20

il = 1 4 mod2a{int({p{1,:)),64)

j1 = 1 4+ mod2n{int(p(2,:)),64}
forall (i=1:mn) templ(i}=b{i1(i),j1{i))
forall {i=1:m} temp2(i)=c{il{i},j1{i})
p{3,:) = p(3,:) + templ

P(4r:) = p(4,) + temp2

p(]ﬂ:) = P[l?:) + P(31:)

p(2;) = p(2,) + pl4y)

i2 = mod2n{int{p(1,:}},64)

j2 = mod2n(int{p(2,:}},64)

p(1;:) = p(1;) + y(i2+32)

p(2,)) = p(2,)) + 2(j2+32)

i2 =02 + e(i2 + 32)

32 = 32 + (32 + 32)

call library routine to perform scatier opera-
tion source array to scatter_add_2 is an array of
1’s

temp = 1.0
call scatter_.add _2(h,i2,j2,temp}
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Kernel 14 (1-D Particle in Cell)

Fortran 77

do k=1,n

vx(k) = 0.0

xx(k) = 0.0

ix(k) = int(grd(k))
xi(k) = float{ix{k))
ex1(k) = ex(ix(k))
dex1(k) = dex(ix(k)}

enddo

do k=1n

vx(k) = vx(k) + ex1{k) + (dexl(k) * (xx(k) —
xi(k)))

xx(k) = xx(k) + vx(k) + fix

ir(k) = xx(k)

rx(k} = xx(k) — ir(k)

ir(k) = mod2n(ir(k),512) + 1

xx(k) = rx(k} + ir(k)

enddo

do k=1,n

th(ir(k)) = rh(ir(k)) - rx(k) + 1.0
thiir(k) + 1} = th{ir(k} + 1} + rx(k}
enddo

17

CM Fortran
vx = (.0
xx = 0.0

ix = int{grd}

xi = float(ix)

exl = ex{ix)

dex1 = dex(ix)

vx = vX + ex1 + (dexl # {xx —xi))
xx = xx + vx + flx

Ir = XX

X = Xx — ir

ir = mod2n(ir,512) + 1

XX = IX + ir

call library routine to perform scatter opera-
tion

call scatter-add-1(rh,ir,1.0-rx)
call scatteriadd-1(ch,ir+1,rx)
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Kern {Casu
Fortran 77 CM Foriran
noe — 7 nl — nyor /R
l.la — 1] Ak X l.i."'\."\.a, ™)
nZ =1 nz2==8
ar = .053 m = .false.
br = .073 m{2:n1,2:n2-1) = .iroe.
15da 45 ] = 2.ne vy{2m1n2) = 0.0
oJ bl = RN ? ri
do 45 k = 2,uz vs(nl,2:n2—1) = 0.0

if (j—ng) 31,30,30

30 vy(k,j) = 0.0

31 if (vh(k,j+1) — vh(k,j)) 33,33,32
321 =ar

goto 34

331t =br

34 if (vi(k,j) — vi(k—1.)) 35,36,36
35 1 = max{vh(k—1,),vh{k—13+41))
s = vi(k—13)

goto 37

36 r = max{vh{k,1},vh{l,i+1})

s = vi{(k,j}

37 vy(k,j) = sqrt{vg(kj)**2 4 t*r) * t/fs
38 if (k—nz) 40,39,39

39 vs(k,j) = 0.0

goto 45

40 if (vi(k,j) — vi(k,j—1)) 41,42,42
41 r = max(vg(k,j—1),vg{k+1,-1))

s = vi(k,j—1)

t = br

goto 43

521 = max(vg(k),ve(k+1))
s = vi(k,)

t = ar

43 vs{k,j) = sart{vh{kj}*™2 + r = r} % t/s
45 continue

18

where(m.and .(eoshift{(vh,2,1).gt.vh})
t = .053

elsewhere

t = .073

endwhere
where{m.and.{v{.ge.eoshift{v{,1,—1}}}
r = max(vh,eoshift{vh,2,1))

g = vi

elsewhere

T=

max(eoshift{vh,1,-1),
eoshift{eoshift(vh,1,-1),2,1)}

s = eoshift{v{,1,—1)

endwhere

where {m)

vy = sqrt{vg x vg +r*1) ¥t [ s
endwhere

m(nl,:} = false.

where(m.and .{v{.ge.eoshift(v{,2,—1}}}
r = max{vg,eoshift{vg,1,1))

s = vl

t = .053
elsewhere
Ir=

max{eoshift{vg,2,~1),
eoshift{eoshift{vg,1,1},2,—1}}

s = eoshift(v{,2,—-1)

1 =.073

endwhere

where (m)
vs=sqrt{vh x vh + r*1) %t /s
endwhere
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Kernel 18 (2-D Ezplicit Hydro fragment)

Hn'TnL' 2 kn

Lgnll

da 70 j=2,in
za(j,k) (zp(j=1.k+1) + zq(j—1k+1)

zp(j—1.k) — zq(j—1,k}} * (ar(j.k) + 2r(j—1.k)})
[ (2mli—1 1:\ + 7-m(1_1 k41N

FERE 2 LAy EXL oM )

Zb(.]7k) = (Zp(j—l,k) + ZQ(j_lak) - Zp(j7k) -

zq(jk)) * (zr(k) + ze(ik-1}) / (zm(3k) +

rrmr1_1 [T}
i8]

70 contmue

do 72 k= 2kn

An 79 21—

O E) < (i) + 5 (k) » (za(3) —
ZZ(j+l,k)) - Z&(j——l,k) * (Zz(jsk) - Zz(jilsk))
() + () = 2a(1-1) + DG+ »

Fonli LY _ omfd 10 1A1Y
U‘“Uf"‘) 7N S o J'J')

zv(jk) = zv(j,k) + s * (za(j,k) * (zr(j,k) —
ar(i+1K)) — 7a(i~1k) * (ar(ik) - ax(i~Lk))
—u;m\_;,n; E (Zru,n; - .ﬂu n-—.LH + Luu,n-i-l) *

(z1(j,k) ~ zr(jk+1)))

T2 continue

do 75k = Zkn

do 75 j = 2,jn

2r(),k) = zr(k) + t * zu(ik)
zz(j,k) = zz(j,k) + t * zv(j,k)
7H continue

b

$

CM Yortran

nl =8

n2 = nvec

do k=26

za(k,2m2-1) = (zp(k+1,1:n2~2)  +
zq(k+1,1:n2~2) — zp(k,1:n2~2) —
zq(k,1:02—-2)) * (zr{k,2n2-1) + zr{k,1:n2-2))
! (zmlk ,lm2— ‘)\ + 7m(1(-1-1 ,1m2— ‘7“

PR TNl FZ2R0Y

zb(k,2:n2—1) = (zp(k,1:n2-2) + zq(k,1:n2-2)
—  zpk2m2-1) - zq(k,2:n2-1)) *
ff)r”(‘.)n')-.—'l\ -+ 71'(]:—1 ‘)n‘?—.‘l\\ /

yein i = gleaid i

(zm(k 22-1) + zm(k,1: n2 2))

zu(k,2:n2—1) =

+ s * ({za(k22m2-1) +
z2{k,3:n2}) - za{k,1m2-2) * (zz(k,2mn2- 1) -
zz(k,1:n2-2)) — zb(k,2:n2~1) * (zz(k,2:n2-1)

- zz(k 1,2m2— 1)) + zb(k+1,2m2-1) =

zulk,2m2-1)
(zz(k,2m2-1) -

[4Xes -

zv(k,2:n2-1) =
+ s * (za(k?n? 1) * (zr{k,2m2-1} -
ZI( Ii )) — m:z.(n 12— 4} * {ZT{A,A'HL—lj —
zr(k,l.n2 2)) — zb(k,2:02~1) * (zr(k,2:n2-1)
—  zr(k-1,2m2-1)) + =zb(k+1,2m2-1} =«
(zr(k,2:n2-1) — zr(k+1,2:m2-1}))

zv(k,2in2-1)

zr(k,2:n2-1) =
zu(k,2m2—1)

er(k,2m2-1) + t =«

zz{k,2m2—-1) =
zv(k,2:m2-1)
enddo

zz{k,2m2—-1) + t =
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Kernel 18 (General Linear Recurrence)

do 1891 k=1,n

b5{k} = sa(k) + stbd * sb{k)
191 stb5 = b5{k) — stbs

do 193 i=1n

k=n-i+1

b5(k) = sa(k)} + stb5 % sb(k)}

x0 = 0.0

k2 = log2({nvec)
a=sb - 10
sthd = sa

do k=12 — 1

i2 = —{(2%*%(k-1}}
sth5=stb5+a*eoshift(sth5,1
a=axeoshift{a,1,12}

enddo

i2 = —(2¥*(k2~-1))

stbs = sth5 + a * eoshift(stb5,1,i2,x0)

<

clean up last one

stba{nvec)=stb5({nvec)+x0+a{nvec/2)
xend = stb5{nvec)

a=sb—10

sths = sa

do k=1,k2—-1

i2 = {2**%(k-1))
stb3=stb5+axeoshift(stb5,1,i2,xend)
a=axeoshift(a,1,2)

enddo

i2 = (2¥¥(k2-1))
stb5=stb5+-areoshift(stb5,1,i2,xend )

clean up last one

stb5(1) = stb5(1) + xend * a{l)

Kernel 21 (Matriz Product}

| Fortran 77

do 21 k=125

do 21 i=1,25

do 21 j=1m

21 px(1,) = pr(ij) + vy(i.k) * ex(kj)

20

CM Fortran

px = matmul{vy,cx)
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Kernel 22 (Planckian Distribution)

Fortran 77

do k=1,n

(k) = 20.0

if (u(k) Jt. 200 = v(k)) y(k) = u(k) / v(k
w(k) = x(6) / (exp(y(K)) - 1.0)

)

L -

CM Fortran

y = 20.0
where (u .1t. 20.0 x v) y = u/v

|w = x/(exp(y) - 1.0)

Kernel 23 (2-D Implicit Hydro fragment}

Fortran 77

do 23 j=2,6

do 23 k=2,n

qa = za(k,j+1) * zr(k,j) + za(k,j—1) * zb(k,j)
4+ za(k+1,3) * zu(k,j) + zak—1,j) * zv(k,j) +
zz(k,j)

23 za(k,j) = za(k,j) + .175 * (qa — za(k,j))

CM Fortran

ni =8

1 = nvec

n2 = nvec—1

k2 = log2(n)

do j=2,6

ga(j,2n2) = za(j+1,2m2) =
+ za(j—1,2:n2) *
za(j,3:m2+1) = zu(j,2m2) + zz(k
— za(j,2:n2)

enddo

oy mrrn | oa

enddo

zr(j,2:n2)

Kernel 24 (Location of First Mintmum)

Fortran 77

m=1
do k=2.,n
if (x(k) Jt. x(m)) m =k

CM Fortran

integer index(nvec)
index = [l:mvec]
m = minval(index,mask= x .eq. minval(x))

21
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