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GENERAL FORMS AND PROPERTIES OF ZERO
CROSS-CORRELATION RADAR WAVEFORMS

1. INTRODUCTION

Modern radars generally .illb"_P rate pulbt} LUIlllJleblUu waveforms to obtain the desired range
resolution while avoiding puises having large peak powers. Puise compression waveforms are exem-
plified by the Barker, pseudo-random shift register, chirp, and the polyphase codes {1-3]. This report
describes new waveforms that have been recently investigated for use in radar systems. Of particular
interest are multiple dissimilar waveforms having very low sidelobes after processing. Low sidelobes
are desired to prevent the masking of weak targets in the sidelobes of strong targets or clutter returns.
The multiple waveforms (whose number we set equal to M) are processed by individually match-
filtering, time aligning, and summing the results.

The multiple waveforms considered in this report are derived from either complementary or
noncomplementary waveforms. Complementary waveforms [4-9] are coded sequences (complex
numbers in general) having autocorrelation functions (ACFs) (or equivalently the output of pulse
compressors consisting of filters matched to the coded sequences) that sum to zero everywhere except
at the match point when time atigned and added together. This is shown in Fig. 1 for M = 2.

In Refs. 2 and 3, new multiple waveforms were discussed that have zero cross-correlation
response after combining the individual responses when filtered by a filter matched to a different

wnvafnrm nf thse ot Thace waval{nrm bava nnfanti
waveform of the set. These waveforms have potential applications in cancelling stationary clutter

from ambiguous ranges in a medium or high PRF radar and/or in reducing mutual interference
between radars that are operating in the same frequency band in proximity to each other.

This report is an extension of that work presented in Refs. 2 and 3. Here we give general
forms for both the complementary and noncomplementary zero cross-correlation waveform sets. In
addition, various properties of these codes and their relationship to zero sidelobe periodic codes are
stated and proved. A radar application using these codes is presented.

2. DEFINITIONS

In this section, we define our nomenclature and review the concept of periodic coded
waveformis. A cade word a is defined as a vector of length N, and

B =

a=(ag ay ...,ay_y}, 1

Manuscript approved September 1, 1989.
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Fig. 1 — Complementary code example

where a,, n =0,1,... ,N — 1 are the elements of the code word. This code word modulates a
carrier frequency and is match-filtered at baseband upon reception. The aperiodic autocorrelation
function (ACF) of a is given by

N-1-k

rpky = ¥ alay, k=0,1,...,N -1,
i=0
N-l-k
r(—6)= ¥ atna, k=1,2,..., N—1 @

i=0

where * denotes complex conjugation. The k = 0 value of r, (k) corresponds to the match point, and
the k 0 values correspond to the right and left side sidelobes of the compressed pulse.

A periodic code is one that repeats the code word 2 indefinitely. Hence, if a,, is the periodic
code associated with a then
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a,  =aoaoa... (3)

PC
where the symbo!l ‘0™’ denotes concatenation. On reception, a periodic code is match-filtered with
its code word. The output of the correlation process is also periodic with a period, N. Hence, the

matched-peak response repeats every N unit time delays as does the sidelobe response. We define the
N point periodic autocorrelation function as

N -1
rp(k) = E a’{‘aﬁH)deN 5 k =O, 1,...,N - 1. (4)
i=0

Note that the i + k subscript is taken modulo N. Thus we are computing the residue of i + * with
respect to the number of subpulses contained in the code word. For our development, we always
compute the subscript with respect to the code order and drop the mod N notation from the subscript,
thus ay,; = @;.

Define the vectors hy, &k = 0,..., N — 1 as

h{) = ((10, a]a IR} aN—])!
h) = (ay, az, ..., ay_1, agd, &)

h2 = (a2, ap, ---> Ay 1 aor, al),

hy_1 = @x-1, a0, @1y - -, Oy -2),
where these vectors are the circular ratations of a. Equation (43 can be rewritten as
r,k)y =hth/ |, k=0,1,... N -1 (6}
where T denotes the vector transpose operation.
A zero sidelobe periodic code (ZSPC) has the property that

k) = hgh =0, fork * 0. 7

If all the code elements of a ZSPC have unit amplitude, the code is called a perfect periodic code
[1,2].
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We now consider muitiple waveforms. Define the code matrix C as an M X N matrix of code
words:

€qa €o1 <.+ CoN-—1
C10 n s CLN-d

C= . . . (3
| €M -10 CM-11 ... M-1N-1 ]

Let there be M code word of length N, where the mthcode word n = G, 1,..., M — 1) is defined
by the M + 1th row of C or

€y = (Cmﬂa c.ml, reey Cm,.N—l)' (9)
We define the aperiodic cross-correlation vector (CCV) between ¢, and ¢, as
ehat, = OV 7R gy FE™ L A Y 10

where the bold asterisk » denotes the linear convolution operation, ~ denotes the time reversal of the
sequence ¢, , and

N-1-k
Tk(mn} = E c‘,‘;,ic,,,,-_,_k, k => D, (Il)
i=0
(mn) N-1-%
mn) __
rift = Y chiitays k>0 (12}
i=0q
Note that in oeneral | 28080 2 1,8} yplace m = »
Note that 1 general | 1 Vo#E 1 E2 unless m n.

In addition, the summed CCV is defined as

M-1
- 1
T ctane =@ _n.9%-2»-ad al?. ... adli). (13)

m=0
We note that if

Nth position
M-1 J
Y ckag, =(0,0,...,1,0,0,...,0), (14)

m ={}
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then the code words of C form a complementary code set. If |gY]| = |¢{’] , then the summed
CCV is called magnitude symmetric. Furthermore, if

M-1
nk X —
“m¥ml T

0

i ' L N i
v, ¢ F U, L1

1

m

where 0 is a vector of 2N —1 zeros, then we call the code words of C a zero cross-correlation code
(ZCC).

In the following sections we consider periodic codes that are formed by concatenating the M
rows of C. Thus a code word a is formed as

a =oCy0C; O...0C_1. (16)

3. PROPERTIES OF ZCC COMPLEMENTARY WAVEFORMS

The relationship between ZCC complementary codes and their associated periodic code is stated
in the following theorem.

and the summed CCV is magnitude symmetric, then the rows of C form a ZCC code.

Proof: Let us form the periodic code associated with C
hy = (cop, Co1s - Con-1, €105 €125 -5 CLN-15 €20, -+ » Cy—1N—1)- (17

The circular rotations of hy are defined by Eq. (5).

Let! =1y N + I, where [,=I mod N and set r %) = 0 for all m,n . It is straightforward to
show that for a ZSPC, [ # 0

M-1 M-
{mm+!) m,m+{ +1)
hﬁh!T = r;l Yo+ r_(N_Iz)l = 0 (18)

m=0 m=0

where m +{; and m + I; + 1 are taken modulo M. Now from Eq. (13) we know that

. M-1 .
qj(.l) —_ E rj{m,m+:)' (19)

m =0

Note that ¢ ) = 0 because r % = 0 for all m, n. It is instructive to write Eq. (18) out for
successive values of / by using Eq. (19)
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wyhi =4 +4q9_,

hghi =40 +4%_y =0
hihi_ =4¢®; +4¢8} =0
bbf - P -0
hghi, = gV + q@By_yy =0
hihi,, = ¢ + 9% =0

(207

hghly_ = ¢+ q@ =
hthdy = g + ¢ =
Wiy = a2 + ¢Shoy =

We note that every Nth equation of (20) is of the form hihl = ¢ ™ + ¢V =
n=12,...,N -1 Since gV =0, it follows that gf =0 forn =12,...,N — 1. Itls
seen that if the code words of C are complementary then ¢/® = 0 for j #0. Thus using the first
N — 1 equations of (20) imply that ¢¥) = 0forj = 1,2,...,N — 1. If the summed CCV is
magnitude symmetric, then g =0 for ji=12,. N ~1. Hence by using the (¥ + Dith
through (2N — [jth equation of (20), it follows that qw = (. This argument can be repeated to
show that ¢ = 0 for all i, j except for wheni = j = 0. Hence the theorem follows.

The following two theorems can be shown by using the same arguments:
Theorem 2: If C is a ZCC code and complementary, then C is also a ZSPC.

Theorem 3. If C is a ZCC code and a ZSPC, then C is complementary.
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Next, consider the matrix

K zeros
-
Cao Col Cm v CU,N-—l aa... Oﬁ'
€10 Cn cp ot cy-1 00...0
Cong = : . . e 21
| eM-10 CM-11 CM-12 777 CM-1N-1 0o... OJ

where K is an arbitrary positive integer. This C,,, matrix is merely the original C matrix augmented
with an M X K block of zeros. We will show that

Theorem 4: If C is a ZCC code and complementary, then C,,, is a ZSPC.

is elementary to show that if C is a ZCC code and complementary, then C,,, is a ZCC

Proof: 1t is
ode a__d com .n]Pmanrv Hence hv nﬂ‘.‘mo Theorem 2 the theorem follows,

[}

4. GENERAL FORM OF ZCC COMPLEMENTARY WAVYEFORMS

Consider the following N X N code matrix C where an element of C is defined by

Coi = )\md,'_{_lWl\Aérmj, m,i = 0, 1, [ N — 1, (22)
where
i
N
Wy =e ", (23}
Ne{l, Wy, Wi, ..., WN™Y,
dy dy ..., dy_; are arbitrary complex numbers, and M' is an integer relatively prime to N. We
show that

Theorem 5: The matrix C as defined by (22} is ZCC complementary code.

Proof. Using (11) and (12}, we can show that

N—1-k )
) = E N d; 4 WAF ™ N d g WARC R

N—1-k )
=MW dfedi WY T, e2)
i=0
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N-1-k . .
ro = E Oy g VE NG W

N g W @5)
i=0
Thusifwesetn =m + 1, then
(m m+y ;\t WM (m+l)k E d:+]dz+k+1WI€!w= (26)
i=0
(m my kiW—-Mmk _‘é—kd,_Hd +k+1WN . )
i=0

From these equations, it can be shown that

N-1 (N-1 N-1-k
(3 - , N _ M'mk Mk
g = 3 orfmmth LEW J N Wy T dadigen®y (28)
m =0 i=0
@ =& mmin Wy bk V- k M
9—}‘ = Yriy = E E di ¥ W - (29)
me=e i=0
Since
N-1
v wMmk g am
“ & A F
m =

for M’ relatively prime to N and k 0, it follows that q¥ =qQ =0fork,!{ #0. Fork =0

nmd I o 0} tha corsamd afio hoth 72y and (2O e nf tha

ana { #F£ J, e second summalion in BoWn {25 and {2Y) 158 Oof Ine same Iorm as {39} 1Us
g = gf™ = 0fork = 0and! # 0. Hence the theorem is proven.
We note that for A = d; = d,... =dy = M’ =1 the general form reduces to the Frank

atrix, which was shown in Ref 2 to be 2 ZCC rnmn]pmpqmﬂf wavaform. In addifion. if the

matrix SLE I %7 F¥ LE 2 ¥ axx TERisEaitairady aax AX

Lewis- Kretschmer P4 code {1] has a length that is a square integer N2, and the elements of this code
are put into square matrix form where the concatenation of the rows generate the P4 code, then it is
straightforward to show that this code also fits the general form given by (22} and hence is a ZCC

nnmnlerppnrnrv cade

Awakin W,
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5. ZCC NONCOMPLEMENTARY WAVEFORMS
In this section the foliowing theorem is proved:

Theorem 6: If C has the form

i |
aghy  aohy aghy
ayby  ab, T agby oy
c=1. . e (31
ay-1bo ay_1by - ay by
- .
P e ~ s e v n mowes oidolalia ol din anda shou st wanin At A Lasen. o TFOIY LT
Ui a4 = g, 41, ,uM_.l) & L LET SIUCIUUE PENIVUEL LURE, INET IRE FUWo U W JUFTA G LU0 LUW

We call the code given by (31) an inner-outer code, hecause a given inner code of subpulses
represented by byb, ....by_y is modulated on a pulse-to-pulse basis by an outer code given by
608 ...,04_1. We note that these waveforms have the value that M is arbitrary, whereas for the
ZCC complementary waveforms, the number of code words in the matrix C always must be equal to
the number of elements in a row of C.

Pronf The individual caode alamente are oiva ]
Progf: The individual code elements are given by
Coy =ayb;, mi=0,1... N -1 (32)
Using (11) and (12), it follows that
N-1-k
rim = atbta,b; ., k =0, (33)
N-1-k
plmn) — a%b¥* ab, , k >0. (34)
i=0
Thus settingn = m + 1
. s Cee o N s =
(1) M-—-1 (m m-H') i 1 « N 1—-K *
Iy = E e = Qmfm 4t btbi+k k=0, (35)
m=0 m=0 i=0
p M-1 ) M-1 N-1-—4
LY —
¢4=%¢ r% = | ¥ a%an4 6¥.xbi | Lk > G (36)
m=0 m=0 i=0

9|
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Since a is a ZSPC,

M-1
Y a%a,,, =0forl 0.

[rv—
FE =

Hence g and g ] are equal to zero and the theorem follows.

6. RADAR APPLICATION EXAMPLE

In this section a radar application using the complementary or inner-outer waveforms described
in the previous sections is briefly discussed. Only codes that are unit amplitude (or zero if the code
element is turned off) are considered. These codes have the practical advantage that they are energy
efficient on transmit. Thus for the general form of the ZCC complementary code given by (22), we

stipulate that d;, d,, -+, dy_; must be on the unit circle.

Most radar waveforms do not have 100% duty cycles but have off-times that are used to listen
for or receive the waveform. Hence the actual pulse train associated with the matrix C may look as
shown in Fig. 2. Here each row of C forms a pulse (or group of subpuises). We define the code of
the mth subpulse associated with the m + 1 row or pulse as

€ = Cnos Cm1r 7> CmN—1)- 3D

Each pulse is separated by a given pulse repetition interval (PR{,) where there are “'07’s
transmitted between the end of one puise and the beginning of the next. Normally this “‘off”’ time is
greater than the pulse ‘‘on’’ time. All of the code words are transmirted in PRJ, seconds.
Thereafter, they may be repeated with a period PRI, for multiple burst processing.

One application of the ZCC complementary codes, which was first presented in Refs. 2 and 3
and is also applicable to ZCC inner-outer codes, is in removing ambiguous range radar returns for
medium or high PRF radars. An example of this for a single burst is shown in Fig. 3 for N = 4.
The waveforms are transmitted as shown in Fig. 3 according to the rows in C, but the return signals
are processed only during the indicated processing interval in multiple channels having filters matched
to the indicated codes in each pulse repetition interval. That is, after transmitting ¢, in the processing
interval, all received signals are processed by filters matched to ¢, €3, ¢, and ¢; in channels § to 3
respectively, and so on. The result is that channel O is matched to the first unambiguous range inter-
val and rejects stationary returns (those that have almost zero doppler shift) from the 2nd, 3rd and 4th
time around range intervals. Likewise, channels 1, 2, and 3 are matched to the 2nd, 3rd and 4th time
around returns and reject stationary clutter from the other range intervals. If the waveforms are com-
plementary, stationary targets in the matched intervals have no sidelobes. Note that the fill pulses
¢, €, and €3 are necessary for this processing scheme (as they would be for any ambiguous ctange
radar). However, if multiple bursts are used in a particular look direction, then these fill pulses
would be unnecessary, because the preceding single burst wauld provide the fill puises for the current
burst.

For example, the matched-filter response for a single burst of ZCC complementary waveforms
ig shown in Fig, 4 and for noncomplementary ZCC waveforms is shown in Fig. 5. From Fig. 4, we
see that there are no sidelobes for the ZCC complementary waveforms. From Fig. 5, we observe

10
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Fig. 3 — Exampie of orthogonal waveform processing for N = 4
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Fig. 4 — ACF for ZCC complementary waveforms
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Fig. 5 — ACF for noncomplementary ZCC waveforms
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that the sidelobes are nonzero only in the first N — 1 near-in right and left sidelobes about the match
point for the noncomplementary ZCC waveforms. In fact, these sidelobes correspond to the sidejobes
of the autocorrelation function {ACF) of the codeword b times M where the sidelobes level is meas-

ured relative to the match point gain MN. Finally, we note that for clutter having a small spectral

spread about zero doppier, the nonambiguous range clutter can be reduced by using MTI processing.
The PRI of the MTI canceller would equal PRI,.

7. SUMMAR

Y

In this report we have described the properties of zero cross-correlation waveform codes, i.e.
the cross-cortelation responses sum to zero everywhere. These codes, in turn, are related to periodic
cades having zero sidelobe autocorrelation functions. These ideal periodic codes are important in
themselves because the underlying aperiodic codes usually have useful attributes such as low sidelobes
and/or good doppler tolerance. This is exemplified by the Frank, P4, and shift register codes.

Two general forms of the zero cross-correlation codes were described. The first form consists
of a sequence of dissimilar waveforms that have the additional property of being complementary. The
second form consists of a sequence of waveforms that are identically coded except for an outer code
that results in a different phase being associated with each repetitive waveform.

A processing scheme using multiple waveforms was described that uses the zero cross-
correlation codes to eliminate zero doppler ambiguous range clutter that might occur in a2 medium or
high PRF radar. For clutter having a small spectral spread about zero doppler, the nonambiguous
range clutter is reduced in a manner similar to MTI processing. A detailed assessment of the trade-
offs, and the ability to resolve the true range of a target is the subject of future work.
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