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GENERAL FORMS AND PROPERTIES OF ZERO
CROSS-CORRELATION RADAR WAVEFORMS

1. INTRODUCTION

IvLverln radars gencrially IIcol.alpUlatC pLUse cop11eiCMun WdVCIUIIIs to OuLaIll Ulu UDeiIvu range

resolution while avoiding pulses having large peak powers. Pulse compression waveforms are exem-
plified by the Barker, pseudo-random shift register, chirp, and the polyphase codes t 1 -3]. This report
describes new waveforms that have been recently investigated for use in radar systems. Of particular
interest are. multiple dissimilar waveforms having very low sidelohes after nrocessing. Low sidelobes
are desired to prevent the masking of weak targets in the sidelobes of strong targets or clutter returns.
The multiple waveforms (whose number we set equal to M) are processed by individually match-
filtering, time aligning, and summing the results.

The multiple waveforms considered in this report are derived from either complementary or
noncomplementary waveforms. Complementary waveforms [4-9] are coded sequences (complex
numbers in general) having autocorrelation functions (ACFs) (or equivalently the output of pulse
compressors consisting of filters matched to the coded sequences) that sum to zero everywhere except
at the match point when time aligned and added together. This is shown in Fig. 1 tor M = 2.

In Refs. 2 and 3, new multiple waveforms were discussed that have zero cross-correlation
response after combining the individual responses when filtered by a filter matched to a different
waveftokrmr rf +e s.~ Thtese wavrtnor e Iovstav rvnthutg acatnirnns- 

4n r'uc'r:inn rot-*inn'cnlusttr
from ambiguous ranges in a medium or high PRF radar and/or in reducing mutual interference
between radars that are operating in the same frequency band in proximity to each other,

This report is an extension of that work presented in Refs. 2 and 3. Here we give general
forms for both the complementary and noncomplementary zero cross-correlation waveform sets. In
addition, various properties of these codes and their relationship to zero sidelobe periodic codes are
stated and proved. A radar application using these codes is presented.

2. DEFINITIONS

In this section, we define our nomenclature and review the concept of periodic coded
waveforms. A code word a is defined as a vector of lenath Al, and

a = (, a,, .- e aNI1) (I)

Manuscript approved September 1, 1989.

1



GERLACH AND KRETSCHMER
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Pig. I - Complementary code example

where a,, n = 0, 1, ... - I are the elements of the code word. This code word modulates a
carrier frequency and is match-filtered at baseband upon reception. The aperiodic autocorrelation
function (ACF) of a is given by

N - I-k
r0(k = E a apka k, =OI,...,N-I

i=o

N-1-k
ra(-k) = E at+kaJ, k = 1, 2,... , N-1 (2)

i =n

where * denotes complex conjugation. The k = 0 value of ra(k) corresponds to the match point) and
the k * 0 values correspond to the right and left side sidelobes of the compressed pulse.

A periodic code is one that repeats the code word a indefinitely. Hence, if apr is the periodic
code associated with a then

2
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apc = a oa oa... (3)

where the symbol "o" denotes concatenation. On reception, a periodic code is match-filtered with
its code word. The output of the correlation process is also periodic with a period, N. Hence, the
matched-peak response repeats every N unit time delays as does the sidelobe response. We define the
N point periodic autocorrelation function as

N -1
rp}k = I C(i+k),d k = O. 1, N. -N 1. (4)

i =0

Note that the i + k subscript is taken modulo N. Thus we are computing the residue of i + k with
respect to the number of subpulses contained in the code word. For our development, we always
compute the subscript with respect to the code order and drop the mod N notation from the subscript,
thus aN+i =a;.

Define the vectors hk, k = 0, ... ,N - as

ho = (ao, a1, .- , aNl-),

h= (a,, a2, -. , 0N1, 00) (5)

h2= (a2, aio. N aN'j 00, al),

h-bN-= (NzN-, aoQ aLr - . aN-2)

where these vectors are the circular rotations of a. Equation (4) can be rewritten as

rpk) = h~[k , k = 0O 1, N...,N- )

where T denotes the vector transpose operation.

A zero sidelobe periodic code (ZSPC) has the property that

rp(k) = hth[T = 0O for k *0 C. (7)

If all the code elements of a ZSPC have unit amplitude, the code is called a perfect periodic code
[1,21.

3
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We now consider multiple waveforms. Define the code matrix C as an M x N matrix of code
words:

[coo C01 ... ]o_
COO r41 ... C1Nl-
CIO c li ... CIN-1

C= * l *. . (8)
CM-1,0 CM-..l ,. CM-1,N-1]

Let there be M code word of length N, where the mth code word (m =0, 1,.. M - 1) is defined
by theM + lth row of Cor

CM7 ~- ( Cml ., Cmi )- .- (9)

We define the aperiodic cross-correlation vector (CCV) between ,m and c, as

C**ck = (r2'pLn1 , rLtf 2X, ... , rd' rlm") 3, ... , r4p . (10)

where the bold asterisk * denotes the linear convolution operation, - denotes the time reversal of the
sequence cn, and

N-I-k
Fl = j-C* l- c, k+, k > 0, (11)

1=o

N-I-k
rt}~~I = M,i~kcl,i k > 0. (12)

i=a

Note that ingener af4irmnl 1 rl g 1 unless m =

In addition, the summed CCV is defined as

M-]
c*: * Z. +1 = (q (%j( -1)q _( 'N -2), q *s 4), , q -1,) * (13)

m=o

We note that if

Nth position
M-1
SC* *m = (0, 0..., 1, 0, 0,. .. , 0), (14)

m -

4
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then the code words of C form a complementary code set. If 1 q 2a 1 = 1 qk(1)1 , then the summed
CCV is called magnitude symmetric. Furthermore, if

M-1
.iV C % 1F( CIL

mn =0

where 0 is a vector of 2N -1 zeros, then we call the code words of C a zero cross-correlation code
(ZCC).

In the following sections we consider periodic codes that are formed by concatenating the M
rows of C. Thus a code word a is formed as

a = co cl o...0 ocM-1. (16)

3. PROPERTIES OF ZCC COMPLEMENTARY WAVEFORMS

The relationship between ZCC complementary codes and their associated periodic code is stated
in the following theorem.

Theorem 1: if the rows of C form a zero sidelobe periodic code (ZZSPQ, are a complementary code,
and the summed CCV is magnitude symmetric, then the rows of C form a ZCC code.

Proof. Let us form the periodic code associated with C

c= (COO, CO], .- . CoN-4, CO, C12, .. Cc-lN, C20, .CN-1N1)- (17)

The circular rotations of ho are defined by Eq. (5).

Let I = lI N + 12 where 12=I mod N and set r = 0 for all mn . It is straightforward to
show that for a ZSPC, I * 0

hthT= rrtin+l) + 0 =0 (18)
m=O m=O

where m +l1 and m + 11 + I are taken modulo M. Now from Eq. (13) we know that

M-I
qj() - E ri rMi+i). (19)

m =O

Note that q~flv = 0 because r$) = 0 for all m, n. It is instructive to write Eq. (18) out for
successive values of I by using Eq. (19)

5
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hthf
h tb

h PAT'1

hfhN+l

11th2TN

hTI

= qjU)

= qi

= qO)
= 41)

= q 2I)

= q- +
= q1$) +
= q P +

+ q"(N-1)

+ qLj)-2)

= 0

=0O

-=O

+ qfd)

+ q-1)
+ q (N-2)

q PI

4 (3)N - 1

= O

(20)

_=0

We note that every Nth equation of (20) is of the form h Th = 1) + qAn) = 0,

n = 1,2,..., N - 1. Since qk-"3 0, it follows that qfl) = 0 for n = 1,2,.. ., N - 1. It is
seen that if the code words of C are complementary then qJ(0) = 0 for j *0. Thus using the first
N -1 equations of (20) imply that qfl) = 0for j = 1, 2, ... ,N - 1. If the summed CCV is
magnitude symmetric, then qJt) 0 O for j = 1, 2, ... , N -1. Hence by using the (N + 1)th
through (2N - l)th equation of (20), it follows that q 1• = 0. This argument can be repeated to
show that qj(f) - 0 for all i, j except for when i = j = 0. Hence the fteorem follows.

The following two theorems can be shown by using the same arguments:

Theorem 2: If C is a ZCC code and complementary, then C is also a ZSPC.

Theorem 3: If C is a ZCC code and a ZSPC, then C is complementary.

6
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Next, consider the matrix

K zeros

f COO Cot C02 ... CO1N-. °

CIO C11 C12 C. CON 0..0

Caug = . . . . .1)

CMI1,0 cM-1l1 CM1,2 .* CM -,N - 0 0.. 0

where K is an arbitrary positive integer. This Cag matrix is merely the original C matrix augmented
with an M x K block of zeros. We will show that

Theorem 4: If C is a ZCC code and complementary, then Caulg is a ZSPC.

Proof: It is elementary to show that if C is a ZCC coe and complementary, then Cau8 is a ZCC
rode nnd rnom~nenmentmrv 1-fence hv voiS;no Theorem 7 the. theorem fnllnwC

4. GENERAL FORM OF ZCC COMPLEMENTARY WAVEFORMS

Consider the following N x N code matrix C where an element of C is defined by

Cmi = XindiiWA/t, mJ = 0, 1, ... N - 1, (22)

where

2ir

WN = e , (23)

eE1l, WN, WN, ... ,WN 1,

d1 d2 . . dAy are arbitrary complex numbers, and M' is an integer relatively prime to N. We
show that

Theorem 5: The matrix C as defined by (22) is ZCC complementary code.

Proof. Using (11) and (12), we can show that

N-l-k
rn = L Xn++~tr)%d Ik WM (i+)4~m > = E (P di+ I WN ) (V di + k + N 

j=1^

= IN-in wMtnk E d tdIt+1k+zWNk'(n- in) (24)
i -O

7
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N-I-k
r = Is (xindwM'lw$(mi+k))*( wM'ni)

1 =0

V-MW 14~~Y It.~

y Mi ;s d?+k+d+lWNM(n
-0

Thus if fwe setn = mi l , I then

m,m+1) = VJ WN m+Lik d n

rk, N X' WM~kd~+l+ditk+IWffN
i=O

Fa-1o -
.tmkm+') _ WWNMa dj1d j+l+k1WN )'

i =O

From thiese equations, it can be shown that

N-1
1: o = E rkl'M +I) =

N- I

rn-a

rN-1 N-I-kL Wrnkt l Xi Wu drl di+k+l Wmli

wmi 9 i ==0

W N-1-k~~~~+

N-l
r WM'rnk - 0

r n- U 

for M' relatively prime to N and k * 0, it follows that qk(l) = q (I; = 0 for k, l * O.
-- A I -.. A #th a nannnA nn - n-tn in 4 kn l (Q \k -A (O X Q ~ n f din - n fnr i 

K.d -J f-, UVk' I Yfl A UIYU1iQtui i11 DOML k.) ad is ofA.WM J 13 I 'S W LJ SWK 3WLL J as 4

q,() = q-() - 0 for k = O and I * 0. Hence the theorem is proven.

(3n3

For k = 0
flfAX ThUS

We note that for X - di = d2... = dN4 M' = I the general form reduces to the Frank
matrty- hnciih wuas owIrnn in Ref 7 tn he a 7CC rnivmn.em.entenr wiuuef~,nrm In %clditjinn if the

A & ft 1 l T W I-J *F U1 -J~t . -VA A A A A t-A "-~- - 1 - - -. - '.

Lewis-Kretschmer P4 code f 1] has a length that is a square integer N2, and the elements of this code
are put into square matrix form where the concatenation of the rows generate the P4 code, then it is
straightforward to show that this code also fits the general form given by (22) and hence is a ZCC
rnmninlme ntarv rOMe

. 8
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(26)

(27)

Since

(28)
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5. ZCC NONCOMPLEMENTARY WAVEFORMS

In this section the following theorem is proved:

Theorem 6: lf C has the farm

aob0 anb1
albO albl

am -lbO am-lb,

*-- albNl1

. a b
* * aM -IbN-I

(31)

Wilt U - tUQ, £1f 1aM-I) la 4 VCCU tUtLUuUr JCtUULtC (uU, tLat1L Iir 1uwi VJ j JUl1rI u L cu (sAut.

We call the code given by (31) an inner-outer code, because a given inner code of subpulses
represented by b 0'b,... ,bN-I is modulated on a pulse-to-pulse basis by an outer code given by
a0 a1 ,. .. . -1. We note that these waveforms have the value that M is arbitrary, whereas for the
ZCC complementary waveforms, the number of code words in the matrix C always must be equal to
the number of elements in a row of C.

Proonf The incdividAvol oMde Ploeme-ntfs are gn;ven hy

(32)

Using (1 ) and (12), it follows that

N-I-k
r(mn) = E a$ btafib+k,

i =O

N-I-k
r (") = Z* bqr;nna bj = E amb?+kab

i =0

Thus setting n = in + I

(I) = E M -1) _

m =O

M-1
g _11 = E r~mkwm +') _

m =O3

r._ . - r, I- ; I
LMI a*.ar+) K ;i hbbi +k k Ž! 0,

ym=O a I i=O J 

M-1 -1-k 

F, tl Im I kbE+;ij , k > O.
M=( _ =OJ

91

k Ž 0, (33)

k >0. (34)

(35)

(36)

c�,j = am bi, mi = 0, 1, ... , N - 1.
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Since a is a ZSPC,

M-1
r aarn+, = O for I * 0.

Hence qk1) and q 2t are equal to zero and the theorem follows.

6. RADAR APPLICATION EXAMPLE

In this section a radar application using the complementary or inner-outer waveforms described
mn the nrevious rsetins ir hrieflyv discused.P Only r.cdes that are- unit amnlihtde (or zero if the code
element is turned off) are considered. These codes have the practical advantage that they are energy
efficient on transmit. Thus for the general form of the ZCC complementary code given by (22), we
stipulate that dl, d2 , - -*7 dNl- must be on the unit circle.

Most radar waveforms do not have 100% duty cycles but have off-times that are used to listen
for or receive the waveform. Hence the actual pulse train associated with the matrix C may look as
shown in Fig. 2. Here each row of C forms a pulse (or group of subpulses). We define the code of
the mth subpulse associated with the m + I row or pulse as

'Cm -~ (Cm 0, Cml I, CMN rl- ) (37)

Each pulse is separated by a given pulse repetition interval (PR!p) where there are "0"s
transmitted between the end of one pulse and the beginning of the next. Normally this "Off" time is
greater than the pulse "on" time. All of the code words are transmitted in PRJC seconds,
Thereafter, they may be repeated with a period PRI, for multiple burst processing.

One application of the ZCC complementary codes, which was faist presented in Refs. 2 and 3
and is also applicable to ZCC inner-outer codes, is in removing ambiguous range radar returns for
medium or high PRF radars. An example of this for a single burst is shown in Fig.. 3 for N = 4.
The waveforms are transmitted as shown in Fig. 3 according to the rows in C, but the return signals
are processed only during the indicated processing interval in multiple channels having filters matched
to the indicated codes in each pulse repetition interval. That is, after transmitting cO in the processing
interval, all received signals are processed by filters matched to co, C3, c2, and el in channels 0 to 3
respectively, and so on. The result is that channel 0 is matched to the first unambiguous range inter-
val and rejects stationary returns (those that have almost zero doppler shift) from the 2nd, 3rd and 4th
time around range intervals. Likewise, channels 1, 2, and 3 are matched to the 2nd, 3rd and 4th time
around returns and reject stationary clutter from the other range intervals. If the waveforms are com-
plementary, stationary targets in the matched intervals have no sidelobes. Note that the fill pulses
el, £2, and C3 are necessary for this processing scheme (as they would be for any ambtguous range
radar). However, if multiple bursts are used in a particular look direction, then these fill pulses
would be unnecessary, because the preceding single burst would provide the fill pulses for the current
burst.

For example, the matched-filter response for a single burst of ZCC complementary waveforms
is shown in Fig. 4 and for noncomplenentary ZCC waveforms is shown in Fig. 5. From Fig. 4, we
see that there are no sidelobes for the ZCC complementary waveforms. From Fig. 5, we observe

10
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Fig, 3 - EKample of orthogonal waveform processing for N = 4
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Fig. 5 - ACF for noncomplementary ZCC waveforms

12



NRL REPORT 9120

that the sidelobes are nonzero only in the first N - 1 near-in right and left sidelobes about the match
point for the noncomplementary ZCC waveforms. In fact, these sidelobes correspond to the sidelobes
of the autocorrelation function (ACE) of the codeword b times M where the sidelobes level is meas-
uirAd reahtiuv in the matchI nnpoint gMin DN Pinalil lrv nnte tbnet fnr rliittpr tvimc %n a m!all echnprt;l

spread about zero doppler, the nonambiguous range clutter can be reduced by using MTI processing.
The PRI of the MTI canceller would equal PRIC.

7. SIIMMAkRY

In this report we have described the properties of zero cross-correlation waveform codes, i.e.
the cross-correlation responses sum to zero everywhere. These codes, in turn, are related to periodic
codes having zero sidelobe autocorrelation functions. These ideal periodic codes are important in
themselves because the underlying aperiodic codes usually have useful attributes such as low sidelobes
and/or good doppler tolerance. This is exemplified by the Frank, P4, and shift register codes.

Two general forms of the zero cross-correlation codes were described. The first form consists
of a sequence of dissimilar waveforms that have the additional property of being complementary. The
second form consists of a sequence of waveforms that are identically coded except for an outer code
that results in a different phase being associated with each repetitive waveform.

A processing scheme using multiple waveforms was described that uses the zero cross-
correlation codes to eliminate zero doppler ambiguous range clutter that might occur in a medium or
high PRF radar. For clutter having a small spectral spread about zero doppler, the nonambiguous
range clutter is reduced in a manner similar to MTI processing. A detailed assessment of the trade-
offs, and the ability to resolve the true range of a target is the subject of future work.
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