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DESIGN OF AN EXPANDABLE DIGITAL SIGNAL PROCESSOR (DSP)
BASED ON THE TMS320C25

INTRODUCTION

This report presents the design of an expandable digital signal processor (DSP) developed at the
Naval Research Laboratory (NRL) for real-time emulation of digital telephones. The expandable DSP
can be composed of a variety of basic DSP units operating in parallel. The basic DSP units are based
on the Texas Instruments TMS320C25 microprocessor. Each basic DSP unit is identically equipped
with random-access memory (RAM), electrically erasable and programmable read-only memory
(EEPROM), global memory buffers, and an analog input and output (I/O) interface. The basic DSP
units can operate independently or concurrently through global memory. Important attributes of our
design include expandability, high throughput, and compact size.

BACKGROUND

The NRL DSP was developed to emulate various voice-processing algorithms [1] as part of our
secure-voice program. Because voice information flows in real time, a newly developed voice algo-
rithm must be tested in real time to determine speech intelligibility, quality, and communicability.
Real-time simulation is also useful for early detection of computational pitfalls or undesirable speech
effects created by numerical errors. Thus, real-time testing has always been an essential step in the
development of voice algorithms (Fig. 1).

Algorithm
Refinement <—l
Voice .
Processing —pm{ FORTRAN Real-time Test &
Algorithm Simulation Emulation Evaiuation

Y

Algorithm Performance
Specification Specification

Fig. 1 — Voice algorithm development phases. An engineering prototype (indicated by the thick-
lined block) allows us to test a new voice-processing algorithm extensively under various operating
conditions. From test results, we can establish the expected performance of the algorithm prior to
its specification for production by industry. This procedure has been successfully used for the
development of two voice processors currently deployed by the Navy.
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Until recently, whenever a new voice-processor was needed, the Navy had industry build special
processors because off-the-shelf hardware was not available. For example, the Navy procured a spe-
cial processor from ITT to emulate the 2400-b/s LPC algorithm used in the Advanced Narrowband
Digital Voice Terminal. Similarly, the Navy procured a processor from TRW to emulate the
16,000-b/s linear-predictive-coding algorithm developed for the Navy Secure Conferencing Project
and another processor to emulate a very-low-data-rate voice algorithm. At times, and at considerable
expense, the Navy has asked industry to generate software based on Navy-developed algorithms.

With the availability of inexpensive and powerful microprocessors made specifically for digital
signal processing, we can now design and build our own DSP that is suitable for real-time emulation
of voice-processing algorithms. Recently, we developed a DSP that is powerful yet flexible enough
to emulate a range of complex voice algorithms.

ARCHITECTURE

Figure 2 is a block diagram of the DSP we implemented to test and demonstrate digital voice-
processing algorithms. Each basic unit of the DSP is equipped with a Texas Instruments TMS320C25
microprocessor, RAM to execute its software, EEPROM to store programs and data permanently, and
an analog I/O interface for connecting to microphones and speakers. Each DSP unit can run in a
stand-alone configuration with the software stored on the EEPROM, or the TMS320C25 microproces-
sor can be emulated with the software stored on a host computer.

Basic DSP units, whether powered by TMS320C25 microprocessors or emulators, can operate
in parallel while communicating through a global memory. Global memory is attached to each
microprocessor via the global memory bus. Buffers reside on each microprocessor board to connect
each basic DSP unit’s data and address buses to the global memory bus. Since only one microproces-
sor can communicate with global memory at a time, arbitration of the bus is decided by logic circuitry
residing on the global memory board.

Basic DSP Unit
Speech In —=1 A/D
P TMS320C25 Data Memory o
Microprocessor 64K RAM Additional
I % Units
§ (as needed)
Global £ Program Memory
Memory Wmv‘; 5 16K RAM
Interface 32K EEPROM

Fig. 2 — DSP designed and fabricated at NRL to emulate voice-processing algorithms. The ability of basic DSP units to
operate in parallel makes this a powerful yet flexible computer. This parallel processing ability allows the computer to
accommodate complex algorithms well into the future by expanding to fill our processing needs.
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The driving forces of this architecture are expandability and flexibility. It is difficult to predict
future computational needs, so it is desirable to be able to increase the processing power as it
becomes necessary. Since the microprocessor is already being run at its maximum speed, greater
processing capacity is achieved by partitioning the algorithm into subprograms that can process in
parallel. Many voice-processing algorithms are, by their nature, suitable for partitioning. These dif-
ferent subprograms can be distributed among enough processors to achieve real-time operation. The
advantage of our DSP architecture is that basic DSP units can be added until adequate processing
capacity is achieved. The DSP hardware configuration would include as many basic DSP units as
needed to implement the algorithm in real time. Our prototype DSP is capable of having three basic
DSP units running in parallel; the only limit to the number of these units operating together is based
on timing, which is discussed later.

HARDWARE

Physically, each basic DSP unit is composed of two circuit boards—the microprocessor board
and the EEPROM board. The microprocessor board contains the TMS320C25 microprocessor, 64K
of data RAM, 16K of program RAM, buffers for the global memory bus, a 40 MHz oscillator,
memory select logic, and a wait-state generator. The EEPROM board contains 32K of program and
32K of data EEPROM and the analog 1/O circuitry. Basic DSP units operating in parallel (Fig. 2),
communicate with each other by global memory that is resident on a separate circuit board.

All the circuit boards of the DSP have the same physical dimensions. Each board has a 122-pin
edge connector that fits into the backplane of the DSP’s cardcage. The edge connector physically
secures the circuit board into the cardcage while providing signal, power, and ground connections.
The two circuit boards comprising the basic DSP unit are paired interchangeably in the cardcage.

The TMS320C25 microprocessor, data and program RAM, data and program EEPROM, and
the global memory buffers are all directly attached to the address and data buses. The analog I/O cir-
cuitry consists mainly of a Texas Instruments TLC32044 codec that provides analog-to-digital (A/D)
conversion, digital-to-analog (D/A) conversion, and filtering on one chip. The address bus, data bus,
and analog 1/0 bus between the two circuit boards are connected through the backplane of the card-
cage.

TMS320C25 Microprocessor

The TMS320C25 microprocessor is a very-large-scale-integration (VLSI) chip that is capable of
multiplying two 16-bit numbers into a 32-bit accumulator in a single instruction cycle time of 100 ns.
Thus, the TMS320C25 microprocessor is ideally suited for computation-intensive applications where
vector products are often carried out. These products include speech processing, spectral analysis,
modulation/demodulation, digital filtering, convolution/correlation operations, and graphic/image pro-
cessing. In addition, the A/D and D/A converters can be interfaced with the TMS320C25 micropro-
cessor through either a serial or a parallel port (Fig. 3).

Besides having 544 words of on-chip RAM, the TMS320C25 microprocessor is capable of
addressing up to 64K words of external data memory and 64K words of external program memory.
The TMS320C25 microprocessor provides the necessary control lines for interfacing with other pro-
cessors. Also, the software has the capability to allocate global data memory in place of its local data
memory. Once global memory has been allocated, the storage or retrieval of data to either local or
global data memory is software transparent.
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Fig. 3 — Processor board schematic. This is one of two circuit boards needed for each basic DSP unit; it contains a TMS320C25 microprocessor,

program and data RAM, global memory buffer, memory-select circuitry, and a wait-state generator.
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that is filtered on this board at the input to the chip. The analog ground is shared with the digital
ground, but they are connected at only one point to reduce the possibility of noise.

Global Memory

To run in parallel, each microprocessor must be able to communicate with the others. The
TMS320C25 is designed to do this by sharing global memory (i.e., memory that can be accessed by
all microprocessors). Each microprocessor can map global memory onto its own data memory space
with a software command. Afterwards, global-memory access is software transparent. The micropro-
cessors share 1K words of global memory (Fig. 6).

Each microprocessor, by being part of a basic DSP unit, is connected to global RAM through
the global memory bus. Since only one microprocessor can use the bus at a time, buffers between
global and local memories reside on each microprocessor board. Arbitration for the global memory
bus is done asynchronously by logic on the global memory board. This logic sequentially checks the
bus-request lines coming from the microprocessors.

When a bus-request signal is detected from a microprocessor wanting access to global memory,
arbitration logic returns an acknowledge signal to that microprocessor board. The microprocessor
making the request is in a wait state until the bus-request signal is acknowledged. After acknowledg-
ment, the microprocessor comes out of the wait state and gains control of the global memory bus. It
has access to the global memory for one instruction cycle. At the end of the cycle, control of the glo-
bal memory is relinquished by the microprocessor, and the arbitration logic begins to check the other
bus-request lines.

By arbitrating the use of the global memory bus asynchronously, each microprocessor has an
equal opportunity to gain access to global memory. Since the duration for a global access is controlled
by that microprocessor’s instruction cycle time, microprocessors running at different speeds can still
share the same memory and still be able to run in parallel.

The disadvantage of the asynchronous arbitration, compared to a synchronous arbitration
scheme, is the extra time needed, on average, to gain access to global memory. The arbitration logic
sequentially cycles through the bus request lines. A microprocessor must wait its turn for a request to
be detected and acknowledged, even if no other requests are being made. But, as in any situation
involving a shared bus, a microprocessor must wait if another microprocessor is already controlling
global memory. Of course, more microprocessors attempting to use global memory at the same time
require a longer waiting period for each.

The advantage of this asynchronous design is that all microprocessors have equal priority (no
microprocessor can lock up global memory, and no microprocessor needs to wait longer than any
other). No special software is needed to prevent access to global memory by the other
MiCroprocessors.

Our global-memory arbitration circuitry allows up to three basic DSP units to be attached to glo-
bal memory, but the design is open-ended. Additional DSP units can be accommodated by expanding
this circuitry. The penalty for expanding is an increase of the average time for each microprocessor to
make a global-memory access.
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This board is required only when the basic DSP units are operating in parallel.
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Memory-Select Logic

Memory-select logic (shown on the left-hand side of Fig. 3) decodes the signals coming from
the microprocessor and selects the appropriate memory chips. Memory chips to be selected include
program RAM, data RAM, program EEPROM, data EEPROM, and global RAM. In addition, logic
signals the microprocessor when wait states are needed and initiates the wait-state generator.

Memory-select logic provides the DSP units with the capability of remapping program and data
memory spaces. Memory-select logic determines how the memory is mapped by the signal on the
microprocessor’s software-controllable output pin. The signal on this pin, in conjunction with the
address of memory being accessed, controls whether a RAM or an EEPROM device is selected.

Timing restraints play an important part in the design of memory-select logic. The memory de-
vices need to have the address lines active before data are written. When data are being read, the
memory chips must be shut down well before the next instruction cycle begins. This prevents the
possibility of the memory devices driving the data bus too long, which would cause a conflict with the
microprocessor. Meeting these criteria is a critical function of the memory-select logic.

Wait-State Generator

The wait-state generator (shown in the lower left-hand side of Fig. 3) allows the microprocessor
to communicate with the slower EEPROM and global memory by extending the length of the
microprocessor’s memory access. The microprocessor’s memory access time is designed to be
extended by the initiation of what is called a wait state. A wait state is a condition in which the
microprocessor drives the signals to its external memory devices for an extra instruction cycle.

When the wait-state generator, through memory-select logic, detects the microprocessor begin-
ning an access to slow memory, the wait-state generator signals the microprocessor to go into a wait-
state. After the wait-state generator stops signaling for wait states, the memory access is completed by
the microprocessor. Wait states can occur consecutively, as in the case of an access to EEPROM that
requires four consecutive wait states. The program and data RAM run fast enough that no wait states
are needed. RAM on the global-memory board is actually fast enough to run without any wait states,
but gaining control of the global memory bus requires at least one, and usually several, wait states.

The wait-state generator provides wait states for two conditions. The first condition is when an
EEPROM device is selected; as previously stated, four wait states are induced in the microprocessor.
The second condition requiring wait states is a global-memory access. During a global-memory
access, the microprocessor must wait an indeterminate amount of time for control of global memory
to be granted. Since the number of wait states needed is unknown, wait states are generated from the
time a global bus request is made until after the acknowledge signal from the global-memory arbitra-
tion circuit is received. After the acknowledge signal is received, one extra wait state is generated to
ensure adequate address set-up time for the global memory.

Backplane and Layout

Because our DSP is a prototype, the circuits have all been built on wirewrap circuit boards.
Any future implementations would be laid out on printed circuit boards, but the configuration would
probably be the same. A single DSP unit resides on two circuit boards—a microprocessor board and
an EEPROM board. These two boards are paired together to form each basic DSP unit (Fig. 7).

10
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Fig. 7 — Backplane of DSP (rear view) showing the connections on the backplane of a DSP in which three
processors are operating in parallel (Fig. 8 shows the fabricated DSP). The microprocessor boards and
EEPROM boards may occupy either an A or a B slot, but they must be placed in pairs. When using an emu-
lator, the emulator board may occupy any slot except the global memory position (see Fig. 9).
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Fig. 8 — Two basic DSP units and the global-memory board

When operating in parallel, a global-memory board must be added. The global-memory board must
be inserted into the first slot of the cardcage. Remaining circuit-board slots are wired together as
pairs.

Three separate sets of connections are on the backplane of the cardcage. They are the global-
memory bus, address and data buses, and analog I/O connections (Fig. 7). The address and data
buses and analog I/O connections join the microprocessor board/EEPROM board pairs. Because the
global-memory bus and wires for power and ground extend to every slot in the cardcage, micropro-
cessor boards can be inserted alongside EEPROM boards in either position within the pair. It does

not matter which pair of slots the boards occupy. In addition, vacant pairs of slots do not affect
operation.

SOFTWARE DEVELOPMENT

The software development process requires frequent testing and rewriting. Development services
are provided by a host computer and the TMS320C25 emulator (Fig. 9). Our host computer, a VAX
11/780, provides the utility resources necessary to write, compile, and store the DSP’s software
(Table 1 is an example of software generated for the DSP described in this report). When the machine
language software is ready to be tested, it is downloaded from the host, through the emulator, to the
emulator board’s RAM. The software can then be run with the emulator. For more extensive testing
and for parallel operation, the software can be run on a microprocessor by using the emulator to over-
see operations through the global memory.

For parallel operation, software must be written and tested in segments. Although it is possible
to attach a separate emulator to each DSP unit, using multiple emulators is not always necessary or

12
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Table 1 — An Example of Software Written for the DSP. This particular software was
developed for removing undesirable DC bias created by the A/D converter resulting from
component aging. This DC filter has a zero at z = 1 and pole at z = 31/32. Thus, the
transfer function is H(z) = (1— z ~!1/[1~(31/32)z ~1)]. This software was written by Larry
Fransen of NRL.

ERE SRR RS RS R S SRS R R R RS R R AR RSS2SR SRS R T

DC REMOVER

DIMENSION A2DBUF(0:IFRMX2-1)
DIMENSION XDCGON(O:IFRMX4-1)

DO 50 I=0,IFRMX3-1

50 XDCGON( 1) =XDCGON( I+ IFRAME)
J=TFRAME
IF(XBUFSW.EQ.0) J=0
K=0

DO 100 I=0,IFRAME/2-1
XDC1B=A2DBUF (J)

XDC2=(A2DBUF (J)-XDC1A)+(31,/32)*XDC2
XDCGON (K)=XDC2

J=J+1

K=K+1

XDC1A=A2DBUF(J)

XDC2=(A2DBUF (J)-XDC1B)+(31/32)*XDC2
XDCGON (K ) =XDC2

LR SR S B 20 20 BN 25 20 20 2N BN 2N BN BRSNS VA Vi P Oy

J=J+1
K=K+1
100 CONTINUE

RETURN

BANZ DC1,*-,0

SPM 0
RET

LR 0 2R b SR S 25 20 I B 2R B BN N NN N R 2R NN N NN EE Y

LRSS RS s R R e RS RSS2SR 2RSS 2222228

DC SOVM *SET OVERFLOW MODE
SPM 3 *SHIFT MULTIPLIER RIGHT 6 PLACES
SSXM *SET SIGN EXTENSION MODE
*
LARP 1 *ARP=1
LRLK 0,XDCGON *AR0O PTS TO XDCGON(O0)
LRLK 1,XDCGON+IFRAME *AR1 PTS TO XDCGON(IFRAME)
LRLK 2,IFRMX3-1 *AR2=IFRMX3-1
DCAA LAC *+,0,0 *ACC=XDCGON ( I+IFRAME) , ARP=0
SACL *+,0,2 *XDCGON ( I ) =XDCGON ( I+IFRAME) ,ARP=2
BANZ DCAA,*-,1 *BRANCH, ARP=1
*
LRLK 1,XBUFSW *AR1 PTS TO XBUFSW
LAC *,0,0 *ACC=XBUFSW, ARP=0
BNZ DCA *BRANCH
LRLK 0,A2DBUF *ARO PTS TO A2DBUF(0),FIRST BUFFER
B8 DCB *BRANCH
DCA LRLK 0,A2DBUF+IFRAME *AR0 PTS TO A2DBUF(IFRAME), SECOND BUFFER
DCB LRLK 2,XDCGON+IFRMX3 *AR2 PTS TO XDCGON(IFRMX3)
LARK 3, IFRAME/2-1 *AR3=IFRAME/2-1
LALK >7BFF *ACC=31/32,(Q15)
SACL TMP1 *TMP1=31/32
LT TMP1 *T=31/32
DC1 LAC *+,9,2 *ACC=A2DBUF(.), (Q9),ARP=2
SACH XDC1B,7 *XDC1B=A2DBUF(. )
SUB XDC1A,9 *ACC=A2DBUF(.)-XDC1A, {Q9}
MPY XDC2 *P=(31/32)*XDC2, (Q15]}
APAC *ACC=(A2DBUF(.)~-XDC1A)+(31/32)*XDC2, {Q9)
SACH XDC2,7 *XDC2=ACC
SACH *+,7,0 *XDCGON( . ) =ACC, ARP=0
LAC *+,9,2 *ACC=A2DBUF(.), {Q9]},ARP=2
SACH XDC1A,7 *XDC1A=A2DBUF(. )
SUB XDC1B, 9 *ACC=A2DBUF (. )-XDC1B, {Q9]
MPY XDC2 *P=(31/32)*XDC2,(Q15}
APAC *ACC=(A2DBUF(.)~-XDC1B)+(31/32)*XDC2, {Q9)
SACH XDC2,7 *XDC2=ACC
SACH *+,7,3 *XDCGON( . } =ACC, ARP=3

*BRANCH, ARP=0

*NO MULTIPLIER SHIFT
*RETURN
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Fig. 9 — The basic DSP unit operated with an emulator and host computer. Although the
basic DSP unit shown in Fig. 2 can run as an independent computer, it can also be operated
with the host computer and emulator as shown here. The signal-processing software is gen-
erated on the host computer where it can be altered and stored easily. This setup also allows
the programmer to monitor the execution of software and hardware.

desirable. As each segment is completed it can be stored in EEPROM and be run on a DSP unit,
independent of and in parallel with the host computer. :

Independent operation of basic DSP units, whether the units are in parallel or alone, requires
two utility programs. The first utility program, the EEPROM loading program, controls the process
of writing software to EEPROM. The extra long timing requirements of an EEPROM write cycle pre-
clude simply downloading the software to EEPROM as is done with RAM. The timing requirements
are better handled with software, rather than with hardware. The EEPROM loading program provides
the extra timing delays and data validation necessary when writing to EEPROM. The second utility
program, the boot program, is required by basic DSP units to operate from RAM when running
independently. The boot program copies the software from EEPROM to RAM just after power is
applied to the DSP. Both the EEPROM loading program and the boot program are attached to and
compiled with the signal processing program on the host computer. These three programs are down-
loaded as one program to the emulator board’s program RAM. When run, the loading program,
through the emulator, copies the boot program and the signal processing program to EEPROM. After
these two programs are placed in EEPROM, the EEPROM board can be placed alongside the
microprocessor board. The boot program will, at power-up, automatically place the signal processing
software into RAM, and the program will begin running.

CONCLUSIONS

Our expandable DSP is designed to suit a wide variety of signal-processing tasks. It has good
flexibility in implementing software because of its unique combination of features. Each DSP has
32K words of program and data EEPROM, 16K words of program RAM, and 64K words of data
RAM. With the capability of remapping external memory by software, each microprocessor is capa-
ble of running at 10 MIPS. When more processing power is needed, additional basic DSP units can
be added that are capable of communicating with each other through 1K words of global RAM. In
addition, each basic unit of the DSP has software-controlled analog I/O circuitry with A/D and D/A
conversion rates that can be set independently from 1 to 20 kHz.
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