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ADAPTIVE HUMAN-COMPUTER INTERFACES

INTRODUCTION

In many computer applications people frequently are presented with exhaustive amounts of data
and must make critical decisions in brief time intervals. Such situations are often made worse since
the users lack the knowledge and experience to be effective. Because of this and because hardware
and applications are becoming more complex, the area of human-computer interface (HCI) technology
is becoming essential to the operational success of many systems. Unfortunately, the technology to
support the development and implementation of effective user computer interfaces is lacking. At least
one authority warns, "unless we pay close attention to the user interface, users will become hope-
lessly lost and ineffective ... the complexity of the systems should be transparent to users" [1]. To
underscore the problem further, Defense Advanced Research Projects Agency (DARPA) officials now
contend that interface research is lagging while other fifth-generation research efforts are progressing
[2]. Some HCI guidelines exist [3, 4], but they are not designed to provide the necessary information
for determining the effectiveness and appropriateness of specific interfaces.

At least three major factors underly the inadequacy of HCI technology. The first is that inter-
face software is generally not viewed as part of the system but rather as a software package between
the system and the user [5]. This traditional approach keeps both the interface and the user external
to the system rather than part of it. The result is a fragmented operation in which an interface is fre-
quently not well suited to the system or to the user, and more often to neither.

The second factor contributing to the inadequacy of HCI technology is that the design of effec-
tive interfaces is a difficult problem with sparse theoretical foundations [6]. Though components of a
theoretical framework have been suggested [7], extensive experimental investigations are needed
before a coherent theory can be advanced. Without theoretical models on which to base HCI design
principles, user effectiveness can only be at best moderately enhanced. In this instance, the old adage
that nothing is more practical than a good theory is appropriate. We must be careful not to view
technology enhancement as technology advancement. It is difficult to imagine significant HCI tech-
nology advancements until a sound theoretical foundation is established.

The third and final factor hindering HCI progress is that software engineering principles are
generally not given significant consideration in designing interfaces. Specifically, user specifications
using the information-hiding principle [8] in an abstract interface [9] need to be incorporated in the
design of human-computer interaction software.

Some of these concerns are currently being addressed with user interface management systems
(UIMS) [10]. The thrust of the UIMS approach is to make HCIs a separate and important software
design concern to which software engineering techniques are applied. However, cognitive models
that relate to human performance are rarely considered in this approach. The work needs to be
extended by incorporating cognitive models of users that are abstract specifications of user popula-
tions.

Manuscript approved June 10, 1988.
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The concept of an adaptive interface [11, 12] is an extension of UIMS. The idea of an adaptive
interface is straightforward; simply, it means that the interface should adapt to the user rather than the
user adapt to the system. In spite of this apparent and simple fact, the implicit problems in adaptive

interfaces are fundamentally difficult and complex [13]. One of the first issues that needs to be
addressed is the problem of user models [14, 15]. Recent studies have shown that user models that
underlie adaptive systems must be based on theories of cognition and must explain evolving changes
in user performance and capability [16, 17]. The purpose of the models is to determine users' levels
of expertise and experience by collecting input parameters such as command types, error rates, and
speed [18, 19].

Another critical aspect of an adaptive interface is the dialogue between the user and the system
[13]. The dialogue must be appropriate for the specific user [20, 21]. Also, it is suggested that the
application plays a major role in the success of adaptive interfaces [22]. It appears, however, that no
study has attempted to examine these interrelated issues in the context of a unified approach.

The structure and architecture of the interface [23] is equally important. An adaptive interface
must be an integral component of the overall system so that the adaptation can take place in the con-
text of the application. If this is to be accomplished, software engineering techniques (for example
Ref. 24) need to be explored for designing adaptive interfaces.

BACKGROUND

The functionality of the system is usually the main concern in system design. The user inter-
face, which is the component of the system that communicates with the user, is typically considered
the incidental part of the system and frequently is viewed as an afterthought. However, the impor-
tance of the interface is currently gaining more attention. This is evident in the new and extremely
effective interface designs that have surfaced. These include the use of different input/output devices
such as the mouse, the light pen, the touch screen as well as the innovative presentation methods such
as windows and icons.

These developments make computer systems easier to use, and a larger variety of users avail
themselves of them. The idea that the interface is an integral part of the system and not merely gate-
way to the system is now widely accepted. However, the computer is still not the completely suppor-
tive tool that it potentially could be. Individual users differ on various dimensions. On most systems,
the users must adjust their behavior and problem solving strategies to the system. That is, the system
is designed for the average user, but not for all users. Any person who interacts with the system
must adapt to the system. An ideal computer system should adapt to the current user by compensat-
ing for weaknesses, by providing help appropriate to the context, and by decreasing the mental and
physical workload of the particular user.

An interface that can be adapted to the user would be more complex than one that cannot. A
system can be made adaptive in two ways. The first way is to allow the user to make modifications if
the behavior of the system is unsatisfactory once it is in operation. Edmonds [11] discusses interfaces
that may be modified by several classes of people. A computer specialist, a trained user, or any user
may modify the interface. The amount of change that is allowed depends on the user who is making
the modifications and on the access privileges that are allowed to the internals of the interface.
Although this may produce a better interface, it leaves the burden of adapting to the user.

The second form of adaptation is dynamic adaptation by the system itself. In this report, an
interface that dynamically modifies itself is what is meant by the term adaptive interftice. An adap-
tive interface needs information that generally, is not required or available to a static interface.
Recently, research interest has increased in the area of system adaptation through machine learning.
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Any form of machine learning can be called adaptation since the machine assimilates new information
and responds more appropriately to new situations. However, machine learning does not always con-
stitute an adaptive interface. The adaptive interface changes with respect to the particular user and
current context while a machine that can learn may behave the same way with all users. Thus, an
adaptive system becomes an adaptive interface only when it learns with respect to the individual user
and not when it learns only with respect to the task domain. That is, an adaptive interface works dif-
ferently depending on the current context. This includes both the current task and the current user.

Negative Aspects of Adaptive Human-Computer Interfaces

The concept of an adaptive interface is often criticized. Greenberg and Witten suggest some
reasons why this may not be desirable [25]. First, the user may not be able to develop a coherent
model of the system if the system changes frequently. This may undermine the user's confidence and
performance with the system. If the user does not have a clear understanding of the system behavior,
the user's effectiveness can be seriously reduced.

Another problem that may arise with an adaptive system is the loss of control or the feeling of
loss of control that the user may experience. Wahlster and Kobsa note that users may attempt to dis-
guise their goals and preferences [21]. They suggest that the interface should allow the users to
inspect a comprehensible version of their models. Also, the system should allow the users the option
of turning off the modeling component of the interface. However, an adaptive interface is not
designed to take control from the user, but rather, it is intended to provide the maximum and most
appropriate assistance to a given user for the current task.

Another disadvantage of adaptive interfaces is an increase in implementation complexities and
costs. Although this may be a problem now, as development of adaptive interfaces continues, the
cost of implementation should decrease. Also, adaptive interfaces incur a higher computational over-
head. Any interface that has a complex modeling component must do more computation than a sys-
tem that does no modeling. This uses computational resources and consequently may increase the
system response time. But, the advances in hardware technology result in lower costs and faster sys-
tems.

Positive Aspects of Adaptive Human-Computer Interfaces

However, adaptive interfaces have several positive aspects. System automation is an area that
lends itself well to the need for an adaptive interface. A system that dynamically allocates tasks must
be able to adapt to individual users. Rouse suggests that tasks should be allocated to both the user
and the computer [26]. He further suggests that this allocation should depend on whether the user or
the system has the better resources for performing the given task. This depends on the specific situa-
tion, the individual user, and system capabilities. Consequently, it is imperative to have information
specific to the current human operator for an optimal allocation process. This is because the amount
and type of information people can process as well as the way in which they process it varies.

For example, when human operators are confronted with an overwhelming amount of informa-
tion in a decision-making task, each must decide what information to request and use. In such
environments, it has been discovered that human operators usually do not produce optimal behavior
compared to the Bayesian normative model of the task [27]. However, all operators do not differ in
the same way or direction from optimal behavior. Each individual operator exhibits consistent biases
in one direction or the other. For optimal overall system performance, the computer should be able
to compensate for the inherent biases of the operator.
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The computer must also adapt for other existing reasons. Many times users do not have the
necessary information or expertise to modify their behavior. Indeed, they may not know that modifi-
cations can or need to made. Because of the increase in the availability of computers, the number of
novices who use computer systems is increasing dramatically. Adaptation is particularly useful for
novices. Also, with an adaptive system the user's proficiency with a new system is increased and
frustration with an overly simple system is prevented [25].

The issue is whether the advantages of adaptive interfaces outweigh the costs of constructing and
executing them. However, the main criticism of adaptive interfaces, cited above, can be overcome
without eliminating the adaptive mechanisms. If they are carefully designed, the adaptive interface
makes the system more useful to a larger number of people. Novices and experts can use an adaptive
system with equal ease. They also enable particular users to use the system more efficiently by pro-
viding them with the proper kind and amount of assistance for their individual needs.

Knowledge Required by an Adaptive Interface

An adaptive interface needs to include a knowledge base that encompasses four domains. These
are [22,13]:

* knowledge of the user-that is, expertise with the system;

* knowledge of the interaction-that is, modalities of interaction and dialogue management;

* knowledge of the task/domain-that is, the ultimate purpose of the problem area and its goals;

* knowledge of the system-that is, the system's characteristics.

Each of these domains is discussed in detail throughout the remainder of this report.

KNOWLEDGE OF THE USER

An adaptive system must be able to characterize and distinguish between individuals. A user
model that combines information about the user's knowledge, capabilities, and preferences should be
constructed for each user. This model should reflect the content of the user's knowledge of the sys-
tem and the task domain as well as their individual cognitive strengths and limitations. Two impor-
tant issues arise in building the user model: determining what information should be incorporated into
the user model, and how this model should be configured.

Modeling the User

A user model is the description and knowledge of the user maintained by the system. In an
adaptive interface, the user model varies from user to user and needs to be modified by the system as
the individual user changes. The idea underlying an adaptive interface is that a specific user differs
from other users and each individual user may change during the interaction with the system. The
way in which users differ must be characterized, and accommodations to these differences must be
built into the system. This information can then be used to build and maintain the user model.

User models vary in several different ways. Potosnak suggests that factor analysis can deter-
mine those factors that differentiate users with respect to the type of preferred interfaces [28]. These
factors include computer experience, computer knowledge, and program specific knowledge. Thus,
knowledge of the user can indicate the appropriate mode of interaction. When this knowledge is
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incorporated into the model of a particular user, the system has a unique set of information to guide
the interaction between the user and the system. Thus the interface becomes adaptive.

Because most of the research on adaptive computer interfaces is reported in the computer sci-
ence literature, the work typically focuses on the software and implementation issues associated with
building them. Consequently, most of the literature on adaptive interfaces usually addresses only the
differences that arises from the experience levels of the users. That is, users are novices because of
the limited experience with the system, or computers. As users become more computer proficient,
they become experts. Similarly, users may be classified as task domain novices if they do not have a
rich base of knowledge of the domain or are classified as domain experts if they do.

Although these classifications are valid and important, they do not consider the inherent differ-
ences between people. Specifically, human cognitive or information processing skills and styles differ
dramatically. Even among experts, different styles of interaction may call for different responses
from the computer. This distinction may be more important for novices than for experts.

Clearly, cognitive psychology issues play a major role in modeling the user. If the system is to
adapt to an individual user, it must encompass information abut users' cognitive limitations or
strengths as well as users' perceptual strengths and weaknesses. In addition to these factors, users
may differ in their style of interaction and in their preferences. Also, they may have a wide range of
physical interaction preferences. This amount of information about the user should be modified as the
user changes.

Cognitive psychology has an important bearing on user models because there are individual
differences among users. For purposes of adaptive computer interfaces, the cognitive differences that
arise among individuals must be characterized in logical classes. If the dimensions of the difference
among individuals could be reliably identified, compensatory and accommodating modules could be
incorporated into the interface. Two important dimensions on which computer users may differ are
verbal and spatial abilities. Yallow conducted an investigation in which subjects with low and high
spatial ability received material in one of two formats (graphic/spatial or verbal) [29]. The results
suggest that immediate retention of material is better in a format in which the subject has high abili-
ties. This seems to suggest that an interface may best facilitate users by presenting information in a
form in which they have a stronger cognitive ability. Similarly, it may be better to present informa-
tion in the same format with which the user has been trained.

Carbonell, in his development of an adaptive natural language interface, distinguishes between
empirical and cognitive models that encompass information about the psychological structure of the
user [30]. Although many adaptive systems do not attempt to include an empirical model of the
user's knowledge, several do provide a cognitive model of the user. This is, some systems incor-
porate into the user model the knowledge the user possesses (the empirical model) as well as the
user's internal reasoning strategies (the cognitive model). Both can serve as a basis for decisions con-
cerning the user's goals or activities and direct how the system can assist. If a user's planning stra-
tegy is known, the adaptive interface can be more effective in assisting the user's problem solving
strategies.

Robertson [31] and VanDerVeer et al. [32] note several cognitive styles that have a possible
impact on human computer interaction. However, the various cognitive types that they delineate
involve high-level processing and have not been explored in regard to adaptive interface systems.

Robertson also suggests that there may be individual differences in the way users distribute and
allocate attentional resources. Differing attentional strategies must be more clearly defined so that the
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system can adapt. Also, the system must compensate for user deficiencies; this may be especially
important in systems that capitalize on windowing designs. Windows allow users to engage in multi-
ple tasks or processes. Differential attentional capabilities among users may require different win-
dowing strategies so that they can access all the necessary information.

Individuals also differ in their ability to direct their attention to various aspects of their task.
Only a portion of users develop what is termed cognitive tunnel vision and are unable to attack a
problem from a different angle. These users, however, must also be accommodated. For instance, a
user may type the same incorrect command repeatedly because of the inability to realize that this is an
inappropriate action. In the same situation, another user may have no problem shifting attention and
producing the appropriate input.

Users may also differ in their planning strategies when trying to complete complex tasks. Gol-
din and Hayes-Roth suggest that there are distinct differences in actions taken by good planners and
poor planners [33]. An adaptive system could accommodate and provide additional help to users who
produce actions indicating poor planning strategies. This may be accomplished by restructuring the
output that the user receives or by providing aids that help accomplish goals.

In addition to these higher cognitive functions, users may exhibit perceptual differences in their
interaction with a system. This is an area that has not been included in the consideration of adaptive
mechanisms in most systems.

One other issue that cannot be ignored is the user's mental model of the system. Any system,
whether adaptive or not, should present the user with a coherent conceptual model of that system.
Without this mental model the user may not be able to understand and integrate expectations of the
system's behavior with respect to the actual behavior of the system [34]. Also, if there are a number
of different mental models for a system, this must be taken into account in the design of the interface.

Constructing User Models

Several strategies are used to construct and modify user models. As noted earlier, the easiest
technique for building user models is to classify users as novices and update their status to experts as
they demonstrate more proficiency [11, 12, 14]. This is a simple task if there is a simple way of dif-
ferentiating a novice from an expert. Mason and Thomas use some simple rules for classifying users
into these categories [12]. They include the number of times the user has been on the system, the
number of times the user has requested help, and the type of commands the user has invoked. These
rules are assigned arbitrary weights. The user is upgraded to the next level when a predetermined
threshold value is crossed. At each level, the interface behaves differently based on the assumptions
of the user's system proficiency. This is, however, a very limited form of adaptation. It merely
assumes that there are several levels or user types instead of just one.

In any real complex domain, a user probably progresses from novice to expert in a continuous
fashion and not a stepwise manner. Accordingly, when the interface upgrades a user to a new level,
this unexpected change in the system's behavior can be very jarring to the user. Maskery notes that
error rates, performance times, and help requests increase dramatically as the system upgrades users
through expertise levels [18]. Many users do not expect the change and do not understand why it has
occurred. User maturity is slow and gradual. The progression from novice to expert cannot be
characterized by a stepwise function. Although this is better than no adaptation, it certainly does not
capture the differences that exist among all users. Any computer system should appear consistent and
coherent to the users so they can focus their efforts on the primary task and not on the interface. If
the system is not consistent, it should at least change in ways that the user can understand and
interpret.
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Another similar yet more differentiating technique of user modeling is to compare the user's
knowledge to a domain expert's knowledge. That is, the current user knows some subset of the
knowledge of the entire domain. This is most commonly found in tutoring systems where it is essen-
tial for the system to have a precise idea of the student's knowledge [35, 36]. It is assumed that the
user knows something if the information or concept is used correctly. Further, it is assumed that the
user knows additional concepts that must underly those that are used. If the concepts are used
incorrectly or inappropriately, they are not part of the user's correct knowledge set. The most diffi-
cult and problematic part of this type of user model is that concepts that are not mentioned by the
user may simply be unexpressed but not hecessarily unknown.

This type of modeling is more powerful than a simple classification as novice or expert because
it encompasses information about the knowledge set. Simple novice/expert classification models do
not change if the user does something incorrectly; the model changes only if the user performs certain
critical tasks correctly.

Examples of this type of user model are common in tutoring systems. Tutoring programs make
extensive use of errors that student users make. Norman [37] and Matz [36] discuss the types of
errors that are made by users attempting to satisfy plans and solve problems. Matz suggests that typi-
cal errors are not random and inconsistent but fall into three categories; the errors that are generated
by an incorrect choice of extrapolation from prior or other information, the errors resulting from an
incomplete but correct knowledge base, and the errors resulting from incorrect execution. This
includes inputting commands in the wrong order, misplacing commands, and typographical errors.
By classifying errors that are made by the user and the reasons for making them, underlying concep-
tual deficits can be uncovered and incorporated into a model for that user. This is exactly what the
human tutor does during interaction with the student.

The stereotype model is a completely different kind of user model. In this approach, the user is
characterized by a set of stereotypical traits. In GRUNDY, a program designed to recommend books,
Rich asks the user to input a few self-descriptive words [15]. On the basis of this input, a set of traits
is compiled that represents the user. This information is used to select books that should be appropri-
ate for that user. This model is adaptive because it modifies its model of the user if its book choices
are rejected.

Morik and Rollinger use a similar strategy in a system that is designed to recommend real estate
[38]. In their system, users provide information that is used to make appropriate apartment selections
with accompanying confidence ratings. Although this system performs well, its adaptive mechanism
is designed only for matching in this context.

A robust modeling strategy must take into account more than can be inferred from a few initial
user inputs. It must be able to change as the interaction continues and infer other information from
the user's behavior. Information that a person volunteers is sometimes distorted and inaccurate.
Also, a user may not be able to provide the pertinent information.

The stereotype model, however, has limitations. Indeed, the tasks chosen by Rich and by Morik
and Rollinger are used because they lend themselves to this style of adaptive user representation.
This user representation is useful when the system is doing matching but does not lend itself to other
types of tasks such as tutoring and searching tasks. Although it captures some aspects of the user, it
disregards others such as the user's proficiency with the system, or any knowledge the user has.
Some of the appeal of this type of model is its similarity to the way that humans seem to characterize
each other. Passini and Norman note that people assume a highly correlated default stereotype of oth-
ers with whom they have virtually no prior knowledge and very little interaction [39]. Although these
default sterotypes that people use may include a list of traits, they are much richer in information than
GRUNDY's stereotypes.
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Some systems integrate dialogue monitoring and stereotype generation. Finin and Drager have
incorporated the stereotype model into their General User Modeling System, which they refer to as
GUMS [16]. In addition to the initial inputs, their system uses other types of default logic in building
the model. First, the sterotypes are arranged in a hierarchical tree in which lower levels provide
more specific detail. In addition to the stereotypes, there are explicit default rules that cause facts
about the user to be either asserted or assumed. Finally, GUMS uses failure as negation. This means
that anything that is not able to be proven true is assumed false. This may work for a database that
contains complete knowledge; however, in a more ambiguous or open world, this type of reasoning
may not produce accurate information.

One final point needs to be made about constructing user models. Current user models do not
address other issues. They include user idiosyncrasies, workload differences, cognitive capabilities,
and individual preferences. Although some of these models encompass information relating to the
user's proficiency, knowledge, and personality traits, none have provisions for user idiosyncrasies and
preferences.

KNOWLEDGE OF THE INTERACTION

If an adaptive interface is to provide help that is appropriate to the context as well as to the par-
ticular user, it must be able to track the current human-computer dialogue. This requires some
knowledge of how interactions are structured and what information may be implicit in them. This is
most critical in natural language dialogues where the amount of implicit information can be very
large. However, command languages do not free the adaptive system from needing to understand the
current input as one piece of the interaction as a whole. Each action taken by the user must be inter-
preted in the context of the ongoing dialogue.

Natural Language Interfaces

Several adaptive interfaces have been implemented by using a natural language format [40, 19,
21, 41]. Natural language refers to the user's native language. Natural language interfaces are
inherently more adaptive in that they do not require learning any artificial command syntax for com-
municating with the system. In a sense, any system that does not use natural language requires the
user to adapt by learning artificialities of correct command formats or modes of interaction. Unfor-
tunately, no natural language system can handle the wide range of inputs that are possible in natural
language. This means that any natural language system still requires the user to adapt by restricting
the legal inputs that are allowed.

Natural language interfaces possess many problems and difficulties that do not exist in other
types of interfaces. Lehman and Carbonell cite the following criteria for natural language systems
that are usable and friendly to novices and experts alike [42]:

* syntactic coverage-that is, it should be able to parse dialogue syntactically;

* task-oriented semantic coverage-that is, the interface should encompass a rich semantic
knowledge of the domain to compensate for its restrictions on legal inputs;

* flexibility in the presence of extragrammaticality*-that is, the interface should be able to han-
dle problems such as misspellings, transposed words, and missing punctuation [43];

* semantic resilience-that is, knowledge of the domain should be used to resolve ambiguities;

*This is a term coined by Carbonell and Hayes.
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* user friendliness-that is, the interface should provide maximal assistance to the novice user
and be unobtrusive to the expert;

* transportability-that is, the semantic domain knowledge should be separate from the interface
itself so that the interface can be used in different domains.

These criteria are much easier to satisfy in a command language grammar because they are so
restrictive. However, natural language brings with it an unrestricted domain of possible inputs. This
is the biggest obstacle to implementing a natural language interface. If all possible inputs are not
known beforehand, how are novel inputs to be processed? Where is the line between ungrammatical
and nonsensical?

A natural-language interface must be more robust than a command-language interface. The
information that can be derived from natural-language inputs is much greater than information from
command languages. Linguists have long studied the nature of human dialogue and the implicit infor-
mation in it. Many natural-language statements imply other information that is specified. Wahlster
notes that assumptions about the user can be drawn from linguistic particles [21]. These information
derivations cannot be done in a system that does not use natural language. The aspect of natural
language that is most difficult to implement on a computer system is precisely that which allows it to
process this implicit information.

However, some conversational norms enable conversants to extract implicit information.
Reichman-Adar uses Gricean conversational principles* in an abstract computational natural language
interface [19]. This interface works on several levels. Individual dialogue is analyzed. Also, the
session as a whole is tracked and dialogue is interpreted in light of prior commands. Thus individual
natural-language commands make up a coherent discourse. This is probably true for other non-
natural-language interaction as well. However, natural-language discourses not only build upon previ-
ous input, they foster expectations concerning the next appropriate utterances. These expectations
may serve to resolve ambiguities. Also, violated expectations are a rich source of information that is
probably not available to static interfaces.

Most natural-language conversations center on the goals of the participants. These goals are not
always explicitly specified and must be inferred from the implicit information that is contained in the
conversation and situation. In a normal conversation between two humans, the hearer's task is to
derive an explanation for the speaker's utterance. This derived explanation is usually based upon
knowledge of the partner's beliefs and intentions. This information is used to produce an appropriate
response. Ideally, a computer should use the same technique when interacting with users.

Because command languages are artificial, they can be designed to restrict the amount of impli-
cit information that is carried in each user input. But this makes the system much less powerful. The
restrictions of the command language constrain legal inputs and prevent novel inputs. Natural
language interfaces, on the other hand, permit an infinite number of commands. This allows for dif-
ferent or novel approaches to the same problems or plans.

*Grician conversational principles are implicit maxims that constrain appropriate conversational moves. They include ideas such as: 1)
make your contribution to the conversation as informative as required but not more informative than required; 2) make your contribution
relevant; and 3) avoid obscurity, ambiguity, and excessive length. By assuming that dialogue participants adhere to these norms,
assumptions can be made about their unstated goals and plans.

9



NORCIO AND STANLEY

KNOWLEDGE OF THE TASK/DOMAIN

In most human-computer interaction, a user is trying to accomplish goals. These goals may be
on several levels from the most immediate goals to the overall task goal. If a system is to be maxi-
mally supportive, it must be able to assist the user in achieving these goals. In most cases, whether
the dialogue is conducted in an artificial language or a natural language, users do not explicitly state
their goals. The system must be able to infer this information from the interaction. Only in this way
will an adaptive system be able to provide the most appropriate assistance.

Task Modeling

Although many adaptive systems use a model of the user to gauge the amount and type of adap-
tation, several systems are not based upon user models. In this alternative approach, the adaptation is
based upon the system's performance on the task. Greenberg and Witten report on their study in
which an adaptive on-line telephone directory was developed [25]. Based on how frequently a tele-
phone number is retrieved by an individual user, the structure of the telephone number database is
reconfigured to make frequently recalled numbers easier to access. Thus, no information about the
user is internalized in the system. The adaptation is based solely on the past performance with the
task.

Croft, who used a document retrieval task as well, provides another example [22]. Each search
is rated for its effectiveness. An associative search network (ASN) is used to reinforce good
searches. Barto, Sutton, and Brouwer provide an excellent discussion of the mechanics of the ASN
145]. Again, the adaptation is based on system performance and not on any characteristics of the
user.

Goal Detection and Plan Inference

An adaptive interface must know what the user wants to accomplish. This entails detecting the
plans that the user holds for realizing the task goals. In human-computer interaction, there are two
possible conditions under which plan recognition occurs. Each requires a different plan of recognition
strategy. First, there is the case in which all possible plans of the user are known. This occurs when
the task domain is limited and only a certain number of alternatives are available to a user. Second,
there is the case in which all possible plans are not known. This is usually the case in any reasonably
complex system.

If all possible plans are known, the system simply searches through them and selects the one that
is the closest match to the actions that are performed by the user. If all possible plans are not speci-
fied, the system first can search through the plans for a close match. If it does not find a close
match, it can use several strategies. Most easily and most unsatisfactorily, it can do nothing and give
up. Otherwise, the system can ask the user about the plan and add the user's new plan to its internal
plan list. This may not be an optimal solution either, because the user may not be able to verbalize
the plan or may not be able to convey it to the system. Also, forcing the user to state a plan inter-
rupts current activities.

If the system does not interrogate the user, it must deduce the user's plan from the situation and
its current knowledge of the user. The goal of the system is to provide cooperative behavior for the
user. To provide the appropriate behavior, the system must deduce the user's plan and what action
the system must take for the plan to be satisfied. If the user is making a direct request for informa-
tion or action, the system response is very obvious. However, many user plans may not be directly
specified or implied. Therefore, the plan must be inferred from an indirect speech act [40].

10
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Indirect speech acts are very pervasive in human communication. A typical example is the
question "Do you know the time?" The appropriate response is not yes, although this is a question
requiring a yes/no answer. A person typically responds with the time because of the underlying
assumption that the person's plan or goal is to know the time. Allen and Perrault [40] as well as
Wilensky, Arens, and Chin [41] discuss indirect speech acts and plan recognition in the context of
natural language. This issue has an important bearing on natural language HCIs. The reason is that
when a command language is used, many forms of direct speech acts may not be legal inputs. The
assumptions made about the users goals drive the interpretation of the indirect speech act. It should
not be taken at face value and treated literally. In the case of the question posed above, the user
would not be helped by the answer, "Yes, I know the time. "

Wilensky et al. Unix Consultant (UC), which is a natural language help system for Unix,
attempts to recognize the users' goals from their inputs [41]. It tries to construct a plan that the user
may hold and that satisfies the goal. The UC system produces a response that helps the user solve
the goal. Although UC takes the immediate context into account, it does not have a model of the
current user. Therefore, it only provides an answer unique to the situation but not necessarily unique
or optimal for the particular user.

The context of the interaction encompasses not only the previous dialogue but also the environ-
ment in which the user is working. This creates some problems for users in computer systems that
use windows. Reichman-Adar has examined the parallel between context in verbal communication
and in human computer interaction in windowing systems [46]. This study suggests that users per-
ceive windows distinct from each other but consistent within each single window. Thus, the user
bases actions upon these unstated assumptions. The user's implicit perceptions of the system need to
be taken into account in the system design.

Reichman-Adar also suggests that the system should act as a smart assistant who may interrupt
the user but should not interrupt at the wrong time. Therefore, the system must keep track of what
the user is doing in order to interrupt at task boundaries or suitable interim points. This again raises
the point that the system must be able to detect the user's goals.

It is important to note that with respect to adaptive HCIs, it can safely be assumed that every
input made by the user is intended to convey some information to the system. Also, it is assumed
that the user does not chit chat with the system but tries to accomplish a goal in the shortest amount
of time. Any input can be viewed as either an attempt to gain information or an attempt to direct the
system to help the user attain other goals.

Help Systems

The purpose of any help system is to assist the user. Consequently, these computer interfaces
can be significantly enhanced by adapting to the individual user. Each particular user has different
problems based on goals, knowledge of the task domain, and familiarity with the interaction environ-
ment. Consequently, users differ in the type and amount of help that is needed.

One way to customize the help facility to an individual user is to embed examples specific to the
user in canned examples that are provided to all users [13]. Even this strategy requires system
knowledge of the domain, the user, and the current context.

Mason and Thomas provide a prototype of an adaptable on-line help manual for Unix [12].
Users requesting information from the manual are provided with different amounts of information.
This information contains more sophisticated and extensive material for users classified as more
expert or system proficient. However, their system does not take the context of the help request into
account.

1 1



NORCIO AND STANLEY

The system must know what the user is trying to accomplish in order to provide the appropriate
type of help. In the case of a user who is directly asking for help, the system must deduce what
information the user is seeking. This seems straightforward if the user asks a question that simply
needs a direct answer. However, when human experts provide advice they do not always respond
directly to the question that is asked. A study of user queries to an expert on electronic mail reports

that the human experts attempt to infer the advice-seekers plan and provides an answer that helps
them achieve that goal [20]. Thus, the answer provided by the expert is tailored to the user and the
situation. Typical help systems do not take the context of the query into account and therefore cannot
modify their answers to suit the particular user and the current situation.

Fischer, Lemke, and Schwab have developed two related knowledge-based help systems [47].
ACTIVIST and PASSIVIST, respectively, are active intervening and passive request-driven help sys-
tems designed to provide assistance on the Unix system. PASSIVIST takes natural language questions
or requests for help and interprets them in light of the current context of the user. That is, in light of
what the user is doing or attempting to do, the system tries to deduce what information the user is
seeking with the help request.

ACTIVIST is an active help system that monitors user behavior and intervenes when it detects
the user performing below an optimal level. This performance can be of two kinds. First, the user
invokes several commands to accomplish something that could be done with less commands. Second,
the user does not know the minimal amount of keystrokes for a command. For example, the user
types the full command name when only one function key is needed. Here again, the system must
infer what the user is trying to do and provide the appropriate information. On the other hand, a help
system that bombards the user with help messages ceases to be helpful and simply becomes annoying.
Also, the user may have some reason, unknown to the system, for using the longer commands. In
this case, help messages are definitely counterproductive and bothersome.

KNOWLEDGE OF THE SYSTEM

In addition to knowledge about the user, an adaptive system should have knowledge of itself.
To provide the user with the most support, the system must be aware of its own strengths and limita-

tions. Although input and output should be tailored to the current task and user's needs, the capabili-
ties of the system impose limitations on what type of restructuring can be done. The system must be
able to optimize the input and output within the boundaries of its inherent limits.

Input/Output Issues

The best computer support tool is one that is easy to use and powerful in capabilities. The ease
of use of any adaptive system is tied very closely to the input/output capabilities of the system. As
mentioned previously, natural language interfaces are inherently more adaptive than command
language interfaces because they do not require the user to adapt to the system's language.

Input and output modes that are chosen for a particular system should reflect the user's
limitations and capabilities as well as the particular task for which the system is designed. Card,
English, and Burr suggest that the mouse is the most efficient device (in comparison to a joystick,
step keys, and function keys) for selecting a field on the CRT screen [48]. Thus the mouse should be
the input device of choice for this task. However, for other tasks, another input device may be supe-
rior.

Similarly, the type of output should be dictated by the limits and capabilities of the user, the task
type, and the displayed information. The human operator has certain cognitive limits that must be
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addressed by the system output. Data should be displayed in a way that facilitates easy scanning, per-
ception, and interpretation [49]. This may be accomplished in any number of ways. The data itself
may be restructured. The internal structure of the data may be configured on the screen. Color or
highlighting can be used, or other more sophisticated pictorial graphics may be employed. The type
of output is highly dependent on the nature and purpose of the information.

Also, the information should be specifically tailored to the strengths and weaknesses of the par-
ticular user. That is, the current user may differ in the strategies or approaches depending on the
information. An ideal adaptive interface compensates for weaknesses of a user's information process-
ing strategies and exploits the user's strengths.

CONCLUSIONS

As computer systems become increasingly more complex, the need for an interface that can
adapt to the current user and context becomes crucial. Historically, it has been the user who has had
to adapt to the system. As system and task complexity increases, user performance is degraded if
users change their behavior to suit the system. This procedure should be done by the system so that
users can focus on their primary tasks. The interface should free the user from system specific details
and provide as much support as possible to help achieve goals.

Although several attempts have been made to construct and implement adaptive interfaces, most
have not addressed crucial design issues. The adaptive interface must encompass knowledge of the
interaction, system, task domain, and most importantly, the user. Only with these types of
knowledge will the interface be able to augment performance on an individual basis. Improved per-
formance has been exhibited in systems with these adaptive mechanisms, but the range of adaptive
behavior in them has been quite narrow. Typically, the interface includes only some of the necessary
knowledge. For example, natural-language interfaces such as Reichman-Adar's include knowledge of
interaction and dialogue but not information concerning the user or task domain. Alternately, adap-
tive help systems like Fisher, Lemke, and Schwab's include knowledge specific to the domain but do
not incorporate knowledge that is specific to the user. Those systems that do include user specific
information do not include the other critical types of information.

Overall, the most neglected component of computer systems has been the human user. To pro-
duce the most effective human-computer system, efforts must be made to delineate important informa-
tion concerning both the human and computer components. Although there has been considerable
advancement in understanding hardware aspects of systems, there has been considerably less advance-
ment in understanding the human aspects of systems. The user's cognitive strengths and limitations
must be incorporated into the sytem's knowledge base. This direction warrants increased research
efforts.
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