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THREE-DIMENSIONAL STRESSES IN A HALF SPACE
CAUSED BY PENNY-SHAPED INCLUSIONS

INTRODUCTION

Elastic fields caused by inclusions in infinite media have been extensivley investigated by several
authors [1-5] after Eshelby's work [6-8]. Other research efforts have addressed the half-space prob-
lem with an inclusion located near the free surface [9-12]. In these studies, the following methods
were used: Galerkin vector [9], Papkovich-Neuber displacement potential [10], image stress caused
by two cuboidal inclusions with uniform eigenstrains [11], and Green's function in the half space
[12]. Mura has recently reviewed these research efforts [13].

When the elastic moduli of an ellipsoidal subdomain of a material differs from those of the
remainder (matrix), the subdomain is called an ellipsoidal inhomogeneity. Cracks, voids, and precipi-
tates are examples of these inhomogeneities. A material containing inhomogeneities is assumed to be
free from any stress field unless an external stress field ai'j is applied. On the other hand, a material
containing inclusions is subjected to an internal stress caused by the eigenstrain eT even if it is free
from any external loads. The definition of eigenstrains has been given by Mura [13] and is the same
as the stress-free-transformation strain described by Eshelby [6].

The solutions for ellipsoidal inhomogeneities can be reduced to the penny-shaped or elliptical
crack case by setting the elastic constants X and g for the inhomogeneities equal to zero. The solution
of the three-dimensional problems for these cracks has received considerable attention [14-19]. The
stress field of a penny-shaped crack in the half space can be solved by obtaining the relevant system
of integral equations for the problem formulated by Erdogan and Gupta [20] for the stress analysis of
multilayered composites with a flaw.

In the present study, Eshelby's method for ellipsoidal inclusions [6-8] and Hankel's transforma-
tion method, used to obtain the elastic solutions of a circular dislocation loop in an unbounded media
[21] and in the half space [22], are used for the analysis of the elastic solution of axisymmetric inclu-
sions and axisymmetric-ellipsoidal inhomogeneities in the half space. The method provides a novel
way for obtaining the image stresses of an ellipsoidal inclusion in the half space. It is used to find a
more general solution of an ellipsoidal inclusion with anisotropic eigenstrain. Existing solutions are
shown to be special cases of the present result. This method can also be used to obtain the stress
field of a penny-shaped crack in the half space.

BASIC APPROACH

In this report, we consider an axisymmetric ellipsoidal inclusion 01 in a half space (Fig. 1). In
general, the inclusion 01 is given by

2 2 2
xl2 x22 x3 2

2 + 2 2 (1)
a 2 a 2 a 2a1 a2 a3
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a 2 /* _ 1 | Fig. I - Ellipsoidal inclusion with principal half axis
aI = a2, a3 in a half space

MATRIX I
I a3

Symmetry with respect to the x3-axis is then defined by a I = a2 , and the anisotropic eigenstrain
of the inclusion

eT = bij(e + b6i3) ij = 1, 2, 3,

where 6 is Kronecker delta. (Note that the usual summation convention does not apply to any of the
expressions in this report.) Equation (2) states that only normal eigenstrains appear, and
e T = e2 2 = e and e3T = e + b.

For the inclusion Ql defined by Eq. (1) with the uniform eigenstrain described by Eq. (2) with
a3 - 0, the stress field in the unbounded medium outside Ql is obtained by using Eshelby's method
[6-8]. The result is given by

lJj ub ) [x30,ij3 - (1 - 2v) (6i3 + 6 j3 - 1) Oij - 2 v6 ijO,33]

_O( + v)e 0S (3)
27r(l - is)

2

(2)
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where the numerical suffixes, i, j = 1, 2, 3, following a comma denote differentiation with respect

to the Cartesian coordinates x 1 , x2, X3, e.g. Oij = a
2 4daXaxj, and k is the Newtonian potential

function that is given by

4 = aira a3 I - ds, (4)

where [2 2 2
xl +x2 +
Lal2 + a 2 + s 

A = (aj2 + S)(a2 + s)112

and X0 is the largest root of U = 0 outside of Q1 and X0 = 0 inside of 1l. For inclusions with uni-

form dilatation eigenstrain only (b = 0), Eq. (3) is valid for any a3 value. The detailed expression

of k for both the oblate spheroid (a1 > a 3) and the prolate spheroid (a I < a 3) are given by Yu [23].

Equation (3) can be transformed into cylindrical coordinates (r, 0, z) as follows:

arr = A4r(1 - V) L7zz + ZOIZZZ + r - ir + Z Ca

+ 2(1 +)) 0 + fBUZZ) Y
2ir(1 - v) r +

/lb | - 1 -2v r -z _ u(1 + i)e fr

4ir(l -is) r r "r 27r( -iv) r

a~z = -4ir(l -V) W'Zz -Z ]- 1 ZZ (5)
47r(I -P) ~~2ir(1 -)

a' b7z0rz AL(1+ s)e

47r(1 - i) 2Z"7z' - 2ir(1 - i)

a7ro 6 Zo = 0-

Equations (5) are obtained with the aid of the following relationships:

v2 0 = 0,

X19,2 = X2 ¢, 1 ,

and

f'r = I (x1 f, + x20,2), (6)
r

3
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where the letter suffixes following a comma denote differentiation with respect to the cylindrical coor-
dinates r, 0, and z, e.g. O)rz = a2 k/daraz.

For a circular-edge dislocation loop with the z-axis as the axis of symmetry in an unbounded
medium (Fig. 2), the stress field is found by Kroupa [211 by using Hankel transformations. For
z > 0, Kroupa's solution can be rewritten as

'7rr = -2(1 ) a [(I '), + z (I 1 ),zzz + r (Io )r + r(IO-)"],

'7oo = -2(1/X I - 2l2(1 -is) a L2is(I 1,, r (Io', 

(7)Ozz -= _ ub ' a [(I l ), - z-(I - ),zz I,2 (1l-is) 0

7rZ = - ub' a [z(I- 1),r,,
2(a - i s)

'7rO = GrO= 0 ,

where

Im =,f0 n~m(rt/a) JI(t)e Z/dt ,

Im = -a (Im _1)9z 

= -ar -l(r-m+l In ,r (m = 0, 1, 2 ... ; n = -1, 0, 1, 2 ... ),

and Jm is the Bessel functin of the mth order, a is the radius of the circular dislocation loop, and b'
is the Burger's vector. Equation (7) is obtained by the method of Hankel transformation as used for
cylindrically symmetric problems of the theory of elasticity in Sneddon's book [24] and subjected to
the following boundary conditions:

u, (r, 0) = - b' for 0 c r < a,
2

= 0 for r > a, (8)

arz(r, 0) = 0 for 0 c r < oo .

For the penny-shaped inclusion without shear and dilatation eigenstrains (penny-shaped prismatic
inclusion), which is the axisymmetric inclusion when a3 approaches zero, the equivalent eigenstrains

4
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b '/2

b '/2

da
z

Fig. 2 - Circular edge dislocation loop in infinite solid

are eT = eT = 0, e T3 • 0. If we reduce Eq. (5) for a penny-shaped prismatic inclusion, that is,
a 3 - 0 and e = 0, it is interesting to note the similarity between Eqs. (5) and (7). By putting

H-= kI1 (a3 - 0), (9)

where k = 27rb 'a lb, and a, = a, the elastic solutions of both the penny-shaped prismatic inclusion
(Eq. 5) and the circular-edge dislocation loop (Eq. 7) are identical. This suggests that the method
used to investigate the elastic solution of a circular-edge dislocation loop in the half space [22] can be
applied to solve the elastic field caused by an axisymmetrical inclusion in the half space. This
approach is resonable since the solution of the axisymmetrical inclusion can be obtained by the
integration of the results of a penny-shaped prismatic inclusion and the fact that if the inclusion has
the same elastic moduli as the matrix, the stress field is the same as that of a small dislocation loop
when both the dislocation loop and the inclusion are infinitesimally small [8]. For example, a small
inclusion of volume V and an eigenstrain e Tf in the X3 direction has the same stress field as that of a
prismatic interstitial dislocation loop of area A and Burgers vector b I provided that Ve T = Ab 1.

Consider the half space X3 = z > 0 (Fig. 1), an axisymmetric inclusion with the center at the
point (0, 0, c) in such a way that its axis of symmetry (z -axis) is perpendicular to the plane of the
free surface z = 0. In order that the plane z = 0 be a free surface, no force must act on it, thus the
stress components at z = 0 must satisfy the boundary conditions

(arZ)Z=0 = 0, (10)

(0.)z=0 = 0,

and the equilibrium condition

3

E aiu; =0. (11)
j=1

5
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Similar to the work of Bastecka [22], the stress oij outside the axisymmetric ellipsoidal inclusion
centered at the point (0, 0, c) but in the half space z > 0 is

aij = a.. + ay* + aj ,13 1i J (12)

which will satisfy the required boundary conditions (Eq. 10) and the equilibrium condition (Eq. 11).
This converges to zero for xl and x2 approaching i Xo and X3 approaching 00. In Eq. (12), the term

a is the stress caused by the axisymmetric inclusion Q, (and outside of it) centered at the point
(0, 0, c); aly is the stress caused by the image inclusion Q2 centered at the point (0, 0, -c) (Fig. 3)wi
with eigenstrain

(e ijTJ)" = -(eijT)' = -bij (e + b bi 3) -

I

'N

(13)

(0,0,-C) I

I I
I I

Q2 /
I /

I /

xi

r

X2

x3, z

Fig. 3 - Semi-infinite solid containing an ellipsoidal inclusion Q!
and its image f2
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Equation 13 shows that oi. is an additional stress that satisfies the boundary condition

(a)Z=0 = -(atz + uzlzl)z=o = 0;

(0rZ)z=o = -(arZ + uZ)z =0

(14a)

(14b)

The solutions for the stresses ail and ail are obtained by translating the origin of coordinates in
Eq. (3) and Eq. (5) to points (0, 0, c), and (0, 0, -(c) respectively. The Newtonian potential func-
tion 4/ and 0/I for the solutions of ai and a'j respectively are given by

4/ = 'raIa 3 Xx - ds,

41, = 7ra 1a3 - ds, (15)

U 0X2 + X2U1 = I - ____2

L al2+ S

U 22+ 1

al + S

(x3 - c)2 1
+ 2

a3 + S

(X3 ± C)2 1+ 2 l,
a3 + s j

A = (a 2 + s) (a 2 + S)12 ,

and where

XI is the largest root of U1 = 0 for exterior points of Q1,

X, = 0 for interior points of Q1, and

X2 is the largest root of U2 = 0.

SOLUTION FOR oij

Substituting Eqs. (5) and (15) into Eq. (14) gives

(01DZ =0 = 0;

- 2r(1 - ) [CbeIrzz -I2(1 + is)ekZ/]

7

where

(16a)

(16b)
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where for z = 0, 0, 1 = tk i and k, ' = -O,H . Now, in the limit when a3 approaches zero, that
is, for the penny-shaped inclusion (al = a2 = a), we can substitute Eq. (9) into Eq. (16b) to obtain

= - /ic k ct/ladt(01Z)Z=O So2( _)3i t2Jj(pt)JIjt)e~c/d27r(I - is) a3

/L~l is - Sot1 (pt)J1(t)e tfdt , (I16c)
7r(1 -v) 2

where p = r la.

For the axisymmetric problem, by the appropriate expression of the elastic displacements as the
derivatives of certain function O(r,z) in cylindrical coordinates, the equilibrium and Beltrami equa-
tions are replaced by a single equation [24]

V4 '(r,z) = 0, (17)

whose general solution is carried out by the method of integral transformations. The function ' is
replaced by its Hankel transform of zeroth order,

G(L,z) = so rV4(r,z)JO(Pr) dr, (18)

and it can be shown that G(¢,z) is generally given by the expression

G(¢,z) = (A + Bz)e ¢z + (C + Dz)e z , (19)

where A, B, C and D are unknown functions of ¢, which are determined from the boundary condi-
tions. The stress components are expressed by means of the function G(¢,z).

In the present case, we consider the solution to converge to zero for z approaching co. Thus
we set C = D = 0. To determine A and B from the first boundary condition (Eq. 16a), we obtain
the following relationship

A- B (20)
A = - , (20),

where X = 2is/(1 - 2v) is Lame's constant. From the second boundary condition (Eq. 16b), as
modified in Eq. (16c), we have

(arz)z =0 =f (r)

00

- i PF(O)J1(Pr)dt, (21)

where

F(O) = -2(X + A) 2 B(>), (22)

8
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and

f (r) = - Abc k
27r(1 - i) a

3

I(l + i)e k (Pt)J(t) adt.
ir(1 - is) a2 50tj'OJ~tec

(23)

By letting t = a ¢, Eqs. (21) and (23) give

(24)F(O = --2(1 - ) fcbt + 2(1 + i)e]Ji(a~)ec 

By substituting Eqs. (24), (22), and (20) into Eq. (19), the function G( ,z) is found that can then be
substituted in the expressions for the stress auj [24, §51]. After substituting the relationship again,

OH = k(I- 1)H = k j t-lJO(pt)JI(t)e -(z+c)/adt,,L so~±zk~f~+ (-s , (25)

these stresses aor are as follows.

, _r gbcarr 2ir(l - i)

+ /L(1 + i)e
ir(l - i)

,= bc
27r(1 - i)

+ u(1 + i)e
7r(1 - i)

- [bc
ZZ 27r(l - v) I

I - 2 -bc
O1rz 27r(l - is)

20 2 H + z 0, n + 2(1 - ) O/) Hz + r trz O"z2¢ r rz + rz '

2 ± H +zO, + 2(1 - vs) O' I + zO 

E 2sPzzz

rzz + rzzz I

a = aor = 0.

9

2 (1 v) 1z- - z H
r r'~z

[2iskzz -2(1 - ) ci 1P Z II]
zzr r r r (26)

j(r1 + v)e [ nH
7r(l - is) I zII

_L(l + i)e r
7r(1 - v) L

rz + rzz I I

00
L t2Jj(pt)Jj(t)e -clladt

.zoH
= I
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When e = 0 and O11 = k (1 -l, Eq. (26) reduces to the same results obtained by Bastecka [22] for
a circular-edge dislocation loop in the half space. In Cartesian coordinates, Eq. (26) becomes

ai' = - 2(1 _ [(1 - 2i)(63i + 63j 1)k,O,!3 -,,1j,3

+ 2V6 34,33 - X309!S!33

+ (1 _)) [(1 2i)(63 i + 63j -I)OS! -

+ 2vis6 3f3 - X3 . (27)

It can be shown that ai'i satisfies the equation of equilibrium, that is,

3

S aijj = 0. (28)
j=1

Therefore, for points outside Q1, the stress field caused by the presence of a penny-shaped inclu-
sion in the half space can be obtained by Eqs. (3), (12), and (27). Thus,

= 4ir(1 - is) [(X3 -c)k(,6T3 - ij3) -(1 - 2is)(63i + 63] -1)( 0 - T + 2c ,

-2vbij - kJ, f + 2ck, J 3) + 2cx 30, , 3]

1,(1 +is)e H ,!

-27r(1 - is) '<t>,T + 0,!- - 2(1 - 2)(63 i + 63] - 1)0,I! - 4Pis6, 33

+ 2-X30,,jI3]- (29)

For points inside 01, the elastic stress atj is given by

at. = aij -at*

= (ail -a/o**) + aT, + o! (30)

where -a *Jis the uniform stress that exists in the inclusion caused by the uniform eigenstrain e1T

(Eq. 2). The stress (a ** - u**) is the uniform stress inside the inclusion (2 when the medium is
infinite. The solution is expressed explicitly by Mura ([13], Eq. 11.20). Equations (5), (12), and
(26) give the stress field in cylindrical coordinates.

10
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Seo and Mura's results [12] for the elastic field in a half space caused by an ellipsoidal inclusion
with uniform dilatational eigenstrain (obtained by using Mindlin's solution [25] for Green's function
in the half space) can be obtained as a special case by taking b = 0 (and a, = a 2) in Eqs. (29) and
(30). Mindlin and Cheng's results [9] for a sphere can also be obtained as a special case by taking
a1 = a2 = a3 and b = 0 in Eq. (29).

ELASTIC STRAIN ENERGY

The elastic strain energy can be expressed as

1 - 1

W = -2 __ ai e d-T d V,

2 12 , L31)
3

where S at is the dilation stress field in the inclus¢on. It is given by
i =1

3 2[ti = - 4+i )e [2--(1 + i)0,fl
4 ~~~(1 -is) [ r

2/t(1 + v)b F 1 1 ± 0,' -- + 2cO"3)l . (32)
(1 -i) 47r 33 33 33

when b = 0, the strain energy obtained is the same as that obtained by Seo and Mura [12].

THE ELLIPSOIDAL INHOMOGENEITY

When an inhomogeneity contains an eigenstrain, it is called an inhomogeneity inclusion.
Eshelby [6] first pointed out that the stress-field changes caused by an inhomogeneity when the
remotely applied stress is aj can be simulated by the eigenstress caused by an inclusion, if the eigen-
strain eT is properly chosen. This eigenstrain is sometimes referred to as the equivalent eigenstrain,
or the equivalent stress-free transformation strain. For a given uniformly applied stress aij and a uni-
form eigenstrain en, the normal components of the equivalent eigenstrains eT are given by [23]

33
(X - X*)ec + XeT + 2ite T + 2(,* - A) , Sijkl ek,3

ki =11

- X*eT* + (X - X*)ea + 21L*eP* + 2(Ju - u*)ea (33)

where ij = 11, 22, 33 and ki denotes summation over 11, 22, 33 only; e eTh and ea are the sum
of three normal components of strains eJT, ePT*, and eq respectively;

e= (Ijef, + I2e2j2 + I3 e3j3) + is eT. (34)4r~l -P) 33 1- V
11
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In this equation, it, X are the elastic constants of the matrix; A*, X* are the elastic constants of the
inhomogeneity; and I1' 12, 13, and Sijkl are constants whose values depend on the shape of the inclu-
sion as given by Eshelby [6-8]. Some detailed expressions for these constants for the inclusions of
special shapes are given by Mura [13]. Therefore, by solving the set of three simultaneous equations
in Eq. (33), the equivalent eigenstrains elTl, e22, and e3T3 are obtained once the uniform eigenstrain
epT and uniformly applied stress e' are given. If both ePT and e9 are axisymmetric for an axisym-
metrical inclusion, the resultant equivalent eigenstrain eiT is also axisymmetric and can be represented
in the form of Eq. (2). Then the results of Eqs. (3), (5), (12), (26), (27), (29), and (30) can be

applied accordingly to solve the stress field and strain energy of an axisymmetrical inhomogeneous
inclusion in the half space.

SURFACE DISTORTION AND DILATATION FIELD

The roughness of solid surfaces is a second-order effect, but it has profound practical conse-
quences in many fields of engineering and pure science. In many practical situations, the presence of
inclusions or inhomogeneities under an external load will change the surface profile. The displace-
ment of the free surface (z = 0) solved by the present method is:

Ur =b (,rzl)z=o (1 + i)e (, 11)o

(35)

b= 2 [(kz!)zo - c(,H)z=0] + e
Z 2 7r Olzo W 7 z =-

The presence of inclusions or inhomogeneities under an external load will also produce a dilata-
tional field. The dilatational field in the matrix obtained in the present study is:

AV _ (1 - 2 v)b [0, l -_ , g + 2cqz]

+ (1 - 2v)(1 + i)e 11 (36)
+ r(1 - is) I 36

The important relationships between the dilatation field and the equilibrium-concentration distribution
for dilute solutions in stressed solid are given by Li [26].

SUMMARY

The stress field in the half space (z 2 0) caused by a penny-shaped inclusion Q, centered at
(0, 0, c) with eigenstrain eJT = bij(e + bHO ) is found by the superposition of the following three
stress fields: (a) the stress field of the inclusion Q( centered at (0,0,c) with eigenstrain e.T in an infi-
nite medium; (b) the stress field of the image inclusion Q2 centered at (0, 0, -c) with eigenstrain
-eyT; and (c) the additional fictitious stress field that makes all stress fields satisfy the equilibrium and
boundary conditions.

The stress field of the penny-shaped prismatic inclusion in an infinite medium obtained by
Eshelby is compared with the stress field of a prismatic loop in an infinite medium as obtained by
Kroupa [21]. A relationship is found between the potential function k of the inclusion and the integral
function 1 1- which involves the product of the Bessel functions Jm for the solution of the prismatic
loop.

12



NRL REPORT 9134

The fictitious stress field is solved first for the two-dimensional problem by using the Hankel
transformation method and then it is transformed into the three-dimensional case by use of the rela-
tionship between s and I-l

The solution of the elastic field in the half space with ellipsodial inclusions with uniform dilata-
tional eigenstrains obtained by Seo and Mura (1979) has been rearranged into three terms correspond-
ing to the sress field of the inclusion Q1 in an infinite medium centered at (0,0,-c) with eigenstrain
bije, the stress field of the image inclusion Q2 centerd at (0,0,-c) with eigenstrain -bije, and the
additional fictitious stress field. It has also been shown that when a, = a2, Seo and Mura's results
are a special case of the present solution.
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