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RADAR TARGET DETECTION IN NON-GAUSSIAN,
CORRELATED CLUTTER

'ft

INTRODUCTION

The optimum filter for detecting _adar targets in Gaussian amplitude, uistributed, correlated noise,
referred to in the radar community as clutter, has been known for many years. This filter is the Wiener
or matched filter. This filter can be obtained by using the Neyman-Pearson procedure that maximizes
the probability of detection for a given probability of false alarm for a binary hypothesis. In applying
this procedure to non-Gaussian, correlated noise, three problems are encountered. First, we seldom
know or can easily measure the required multivariate probability density of the noise; second. often
there are unknown parameters that must be accounted for in some way; and third, the likelihood ratio
obtained in the test sometimes is difficult to simplify. All three of these problems are addressed in this V
study.

The most difficult problem encountered is obtaining the multivariate probability density of the
noise. A procedure for constructing an approximate representation of the multivariate probability den-
sity is described by Martinez, Swaszek, and Thomas [1]. The procedure constructs the desired mul-
tivariate density from one that can be analytically represented, such as a Gaussian one, by using a non-
linear transform to map the one into the other. The mapping is adjusted so that the marginal distribu-
tions and the first two moments of the constructed multivariate distributions are correct. Often these
are the only properties of the clutter that can be measured easily. Even though the filter derived fromI3 this approximated, multivariate probability density may not be optimum, it may yield a useful result.
To test this, the new filter and the Wiener filter can be operated on the same data to see which one
yields the best results. If the approximated, multivariate density matches the data better than a Gaus-
sian multivariate density, the lew filter should obtain the better performance. In this report, the
results of Ref. I are modified to include complex numbers to represent radar baseband signals and to
provide a suitable form of the nonlinear transformation.

After the multivariate density is found, a Neyman-Pearson test can be obtained. In this test, the
unknown parameters are the covariance matrix and the complex signal. The covariance matrix is usu-
ally estimated from reference cells and is not considered further. One way of eliminating the unknown
signal from the test, as well as simplifying the test, is to use locally optimum tests. Reference I
describes a test that maximizes the efficacy. Reference 2 describes a test that maximizes the rate of
change of the false dismissal probability with respect to signal strength at zero signal strength for ai

given probability of false alarm. Reference 3 describes a Taylor's series expansion of the likelihood

ratio. For additive signal and noise, all three yield the same result. This locally optimunm detector is
described n Appendix A for the case of complex numbers. I;owever, this tcst did not yield good per-

> t~~~~ormoance results. By observing this test, another test based on an approximation to the Nevnian-.
Pearson test was found. This new test, or filter, is independent of the signal amplitude and phase and r
is fairly easy to implement. Although this test is developed later in this report, the functional flo( of
*the tet, is shown in Fig. 1. In esse ce, a mapping is used to transform the random \ariable to a (jILtS-

sian distribution, and then a matched filter is applied to the sign;, after the nonlinear mapping and alter
the prewhitening process. This new test is evaluated and presented.

Naruscript approsed September 4, 1986.
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CORRELATED CORRELATED -

NON-GAUSSIAN GAUSSIAN
RANDOM VARIABLES RANDOM VARIABLES .

S I ~~~~~~~ ~ ~~MAPPING OPTIMAL.Ut;
FUNCTION DETECTOR

y X FOR CORREL. DETECTION
9 g l(lt10 _ GAUSSIAN REPORTS

,->

r-ig. I -Generi signal processor for corre:..ted V-
non-Gaussian inputs !

TRANSFORMATION FORMX
A zero mean multivariate Gaussian process is defined by the probability density

(27T)t IRI | I 2 1 1

where Rt is the mxm covariance matrix, x is the random vector of complex numbers of dimension rn Ft
m is the number of samples, the bar is the conjugate, and t is the transpose. The multivariate proba-
bility density as approximated is defined as fN(y) where y is an rn-dimensional random vector. The
form of fN(y) will be found later.

The transformations between the random processes x and y are defined by

Yk Uk (X) = - V k X (2)

Xk = VA (y) = Y./kj. (3)

ft wlhere *xA and .IA tire compllotnfents (Il' x and y respective ly, g ( ) is a non li near ulunctiotn, and g ( ) is its

inverse. The functions Ilk(X) and VA (y) arc components of the random vector U(x) and V(y) of'
dimension mn, respectively. Choosing the transformation in this form preserves the phase of' the 'noise 1
and modifies the amplitude. Verifying that the mapping is one to one is done by placing Eq. (3) into F
Eq. (2). E

NONLINEAR SPECIFICATION

Following the pruccdure in Ref. 1. the nonlinear functions g and gt' can be lound by mnatching 
the total probability befor. and after the transformation. Since only g and g-' are detined on the mag-
nitudes of each complex signal individually, the marginal densities of :he amplitudes ot the signals are
used. The nonlinear functions are found from

f~o f AI)( -AI=JO . (1 A I)/ .AI
and

ft) ,/' (;-,A I) 1VLI= /JN (tIYA I) (IIjvA I 

where

I I .YA | = a W lX1Y-4 

2
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MI
and

IYk I -. ykIZH

The inar 6inal amplitude distribution of the Gaussian process is Rayleigh and is given by

fN (IxkI) = 2- exp |-xkII/ 2 oj2(

where oa2is a variance of the underlying Gauss:an process. Examples of marginal amplitude distribu-
tions for radar clutter are the Weibull and lognormal distributions 14]. The Weibull distribulion is
given by

fN(IYkf) = a In 2 |-|Y exp 12 In |MIYkJ|

where MV is the median value and ca is the Weibull parameter that ranges from -. 5 to 2 for radar
clutter. For a = 2, the Weibull reduces to the Rayleigh distribution. The lognormal is given by

( I I ) 2 - I e X1 2r2 In I My 11 I)'fN (1yki1) = vr ly I 72M

where M, is the median value and a-, is the standard deviation of (nlyk 1)2. Performing the integrals
over the defined marginal densities, the nonlinear functions are found to be

g (,;7, |2-n2 My 
and

9- GJX~A = my I f2.IXn 2

for the Weibull distribution and

g(V/i7j) = -In| (1/2) erfc V 2 In MY J1

g- l (v, )= fv, exp { 7T erfct {2 exp - 2,CA 11

for the lognormnal. The f'unction erfc is the complimentary ciror function, erf'& is its inmersc and In is
the naturdl iogarithm. Without any loss in generality, Tr, is set to I in all cases.

MULTIVARIATE PROBABILITY DENSITY

The new approxi-nta mn-ukiivartate, probahility density can he w ritten in terms the null i\.II
Gaussian !nrid the one-to-one niaippi nt preVIolIsly defined by lUsing traditional chanee-ut-\;aria hlech
11m4LteS in probahility theory. The nuw density is

A *
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where |JV is the Jacobian that is the determinant of' a matrix if' partial d erivativeS. Sprecial problletm
arises in comp'uting the Jacohian for complex numbers, because the V(y) is not anatytic with respect to(
the variables yk. since both YA and VA appear in the function. Two approaches to circumnvent this prob-
lem yield the same re ult. The first is to write YA in terms o! real and imnaginary colniponenis an(l deter-
mine the Jacobian for 2in real functions and variables. An alternate procedure is to treat jA and 19rA Is

indeper.dcei random variables and x = V(y) and i= V(y) as independent functions. Now the -2mR
functions are analytic with respect to the 2m variables. The latter procedure yields the simplest CalCuLa-
tion and is outlined as follows. The Jacobian matrix is written as

JN(I) ° O _

O JN (2 ) 0

IJNI= 0 0 JN (3)

o JN ( tt)

where JN(k) is a 2 x 2 matrix given by

a Vk (Y) a Vk (Y)

a
0Yk ayA.

JN (k)= a Vk (y) a Vk (Y)

.ak OYk

and 0 is a 2 x 2 matrix of zero entries. The Jacobian can be written more simply by
m

IJvI = f JN(k)I
k-I

because of the other zero submatrices. After taking the derivates and
minants, the Jacobian becrmes

evaluating the 2 x 2 deter-

where g'( ) is the first derivative of g with resped to |YA I - N/yT7. For Weibull clutter, the Jacobian
is

i -l a I n 2 ( t i
AI tIYA YA

and for lognormal

i\I I [If / X Ie .p(-a) |
A -1 I grer ' (,1' lk r erC' ((I)

where

a = In ||

COVARIANCE MATRIX CALCULATION

A rnultiv:riate, probability dt'rxSitr I'Lnction for the n[1n -(i;aassiiAll ciL ter has been hee n1 te

an(l all tUlCtiorls and parameiters have been Specil'iedl e\cep); the eO\:'litiice ntlr.x< 1/, t hIcc'
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2 ~~~~covariance matrix of the non-Gaussian process is known or measured andl the one-to-one mapping ,
16 ~~~defined, the covariance matrix R., can be computed from Ry, by use Of the mapping. In thiS report, th= t
8;d ~~~random process y is assumed to be stationary, and its spectrum is assumed to be an even function. For i
g * ~~~this case, the covariance matrix R., is real, and any row can be obtained from the first row. This case is
l~~~i ~valid for all clutter spectrums that have an even symmetry about a mean doppler after this mean 
a ~~~~doppter shift is removed. The covariance matrices are written in the form of 

g I p ~~~~~~~~~~~~~~~~~~~~~~~(I) px(2) (i p m- 1) s

py~ I) * I |

and

I PX(l) px,(2) ., p~(mn- 1

Px(l) I P.,(1) ,
RX -a2 P() PX(I) I .

!s~~~~~~~~~~~~~~~Nt REOR .0t

N~~~~~~~~ ~ ~ ~ ~ ~~~~~ Px (m-2)* 

dwhere d,2 and a 2 are the variances and py cop and Pf r are the correlation coefficients of the random t1'
ranomproesysssuedprocesses y and x, respectively. b

h caThe variance of y can be found in terms of the variance of x, previously set to one, by computing
dothe expected ialues: rnm

! ay2 = 2 E t~~~~~~~~1 y(I)l = (2 E[() .k (xrl . 1).

2 Em-l) I !

t ~~~~The integral equation is '

+ Pg ( ')I')I + x+
il ay 2 0 Jo ~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~27r aY exp- 2 1 r2 Jdv'dk 

where the complex variable y.A is written in terms of its real VI' and imaginary xA parts, respeetively.
Using the change of variable f

the~~~~~~~~~ exece (" alues:k

2 1 k~~~~~k UK(X). j I

r=tan-.K,.6 XA&

and integraling over q sthe variance O ; is

Ir)2 ='~--~- 2 0J~0 2 1ayt exp- 2 |e-/fr'2d *

iwor Weibcll clutter and (rl = 1i

,= t I J (In x/)-x21 

where 1'( ) is the gamnd function. I'nr logn(rmal C luner 1,1d er= 1.

i

.6
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1= (/2)exp (&i//X)2)

Several steps in computing these variances are shown in Appendix B. Short
given in Tables I and 2 foi Weibe'l and lognormal clutter, respectively.

Table I - Values
of ay'/MY2 Given
Values of a for
Weibull Clutter

a _a 02/ My2|

0.50 51.985162
0.75 5.331132
1.00 2.081369
1.25 1.284905
1.50 0.970471
1.75 0.812625
2.00 07'21348

tables of' values for r.y

Table 2 - Values
of or2/AMy2 Given
Values of' o1 for
Lognormal Clutter

O*l | r/M 2

0.8 0.6886
0.9 0.,497

.O 0.8244

1.1 0.9156
1.3 1.1640
1.5 1.5401
1.7 J 2.1209

The correlation coefficient py(k) can be found in terms of the correlation coefficient p (k) by

I E [YIY1+1k I E Iu,(x) U±k (x) I

py~k)= 2 a2 2 Oy

for k = 1, ... (m - 1). Since the complex portion of py(k) is zero under our assumption of an el
spetrum and

El y!.v+I E I.v1%, k I - Ltu, (x) u', A(x) I - ELu/ (x) , i (x)l, I

then

Py (k) g =(xfl
2 + (x/)2) XJc+k gt -('(X+ )2 + ( 2I+A)2

a2 ,,-O fr-2 + (4l)T2 V (.VI,)2 + ( xI+.)

x f (-x, *r/, X[±Ai , ArA '+k) djr d'vd d4±&+ dAk .&
where

fV (x!r, xl%, Xr+ , I Yl+ A ) =

: .

.. I

ct, ;-fl

1~~~~~~~~~~~~~~1

i-fIJ

are

E

r

'

ft

L

ien

-x

47r2 2 2 (I - p2(k))

X exp -

X exp -

(x( )2 + (x') 2 - 2p.() .Vi X[+ A 1
2at2 (I - p2(k

I (xl,)2 + (x,'k)2 - 2 1) ( k ) .,' x'+ A|

Using the change of variab!e,

(j = /(x[)I + (i,)2

tan n, = X'/XI'

t =/ k = J j .- t ' ', ) 
tan {}/ , A G- ;,'', k /x,' A,

.*I .

V
L

U

ftr

P,p

i,

I..'-r

!.11

Iw

l 2 (Y2V (I - p$(k)) J'
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yields the new integral

py (k) = fo fo

Changing variables aga

and integrating over 0,

py (k)

where II(-) is the mod

For Weibull cluti

where F(, ,, ) is th

F(v, A, Y., PI

where the region of cc
C. For a = 2, which

p, (k) to p, (k for loj
lation. Numrnrica! val

and lognormal clutter,

I..~~~~~~~cl

ft ~ ~ s -' -, 

Xt
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f %I+k g7(fj)g8(-+I+k) ex - 1+ f1+k 1 2rr 2,r cs os1'
47r~a4 (I -_p2(k)) 2oex1-pIp _ I _C O(k))JO l s+k

2p,(k) 41 f/1k cos (01 - 01+k
: exp I (ax - p2(k)) dOdO,+k d

in by

Od = 0, -;+k

0s = 01 + 0 1+k

and O, we obtain

= 1f s : - 6 +k gt (- ) g ((I+k) px(k) el I+k=- o* 0 -k.,r
0 2 JoJr2 (Ip~) Ip2(1)) a 2 {

x exP-I a 2(- 2(k)) !P' 

X exp- _ i~~ I2 o- (1Ip() dC, df,+k,

lified Bessel function of the first kind and.first order.

ter, the required integration can be carried out in closed form, and the result is

,V~~~~sA ) - 2|, s I -1' (A'4 |' + 2I 2 1|||I@
121 '. ' Lt~~~~~a 2Jtaj

X F I! + j, |I + 2 . p 2, k)J . I

,e hypergeometry function that can be written in the infinite series

k)) = I + 2L p'2(k) + 'G( + 1) (p + I) ,

'YI -y(-y+ 1) * I 2

+ v (v 4- I) (v + 2) tL(tL + I) (8u3 2 tp 2(k))' + -
-y (y+ 1)(y +2 -I -2 -3 

onvergence is p,2(A) < I. The details of the integration are outlined in Appendix
is the case of' Rayleigh clutter,

F(2, 2, 2. p2(k)) (i + 1) [p,2(k)1' = ( -

k) = p,(k), and the tr:inslormnztion is y = x. No closed-formn expression relil ng
gnormal clutter is t'o0ndL. The relationship is found hy USillng a nir,1e ( .irlo Sill'u W f

uces for p, (kY As ai fULnCtio(I ol v, (k) alre givein in 'Iahles 3 .ind i l'r \\-tltlor
respectively.

ft-'

Ip "I W,
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Table 3 - Values 01',,.(k )Given Values for i and p,)' k) 'or Weibull Clutter

_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ff I - 1 ft

, (k) .5 .75 1.0 1.25 1.5 1.75 2.)

0.00 0 0 0 0 0 0

0.10 C.c 6537 .074382 .088467 .09S258 .0984027 .099688 .1
0.20 .096188 .150308 .177t00 .190774 .196888 .199391 .2
0.30 .152089 .229326 .268065 .286810 .295540 .299126 .3
0.40 .217433 .312983 .360546 .383639 .3944480 .398908 .4
0.50 .295490 .402833 .4557413 .481547 .493707 .498758 .5
0.60 .389634 .500437 .554385 .580844 .593423 .598694 .6
0.70 .503378 .607365 .657243 .681875 .693722 .698744 .7
0.80 .640398 .725197 .765146 785040 .794756 .798939 .8 -
0.90 .804568 .855534 .879026 .890840 .896731 .899327 .9
0.91 .822635 .°169317 .890783 .901589 .906991 .909380 .91
0.92 .841018 .883244 .902612 .912172 .917265 .919435 .92
0.93 .859721 .897315 .914514 .923190 .927552 .929493 .93
0.94 .878751 .911532 .926490 .934044 .937853 .939554 .94
0.95 .898109 .925898 .938543 .944935 .948168 .949618 .95
0.96 .917802 .940412 .950673 .955865 .958500 .959686 .96
0.97 .937833 .955078 .962882 .966834 .968847 .969758 .97
0.98 .958206' .969897 .975171 .977845 .979212 .979833 .98 _
0.99 .978913 .984869 .987543 [.988899 .989595 .989914 .99

Table 4 - Values Of p, (k) Civen Values o0' ar, and it, (A ) fir
Lognormal Clutter. (Not completly accurate in third signilicant
place.)

0.3 0.9 1.0 I1 *1.3 1.5 .7j

.0 .0 .0 .0 .0 .0 .0 .0 _

*i .099 .099 .099 .098 .095 .091 084
.2 .199 .199 .198 .1 9 .19( .181 .168

.3 .297 .298 .297 .29 1 .28 .279 .256 

.4 .395 .397 .397 .395 .38. .370 .349)
.5 .494 .496 .495 .493 I .481 .43 .438
.6 .593 .595 .594 5I .591 .79 .558 .531 . -

.7 .693 .695 69h 693 .682 I 664 h4(j

.X .794 .7')h 'I') 794 | o.h 1 , .754

.9 .894 .896 1 89 1 . I ) j I .S ! SS I

.91 .904 .906 .907 OitI .)1l I .894 I .
z2 1 '.914 .91( .t)17 ' 1') I I 91.: ' 89 1'

,?3 |,92 I .9_7 97 9 227 .'27 717

.94 .936 .9j3 937 9 , 3 934 9 )j 9>o I

.95 .946 1 .947 948 07 I 9 i 4 I ,

,')7 96' )",? I ! I (.9 77 f.I.9X*7w ! jo8) %t), !6 .,t %4- 9t I1',E 
98( - 97'-) ! 919 t rt X ' ).i QS' tv s !Si .l

:4I

0Q
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ter . NEYMAN-PEARSON TEST

- it D , The classic solution for optimally detecting a signal in noise is the
2.0 i., ; Specifically, the problem is formulated as a binary hypothesis test

2.0
Ho y= n

0 

.2

.3 The hypothesis of the measurement y containing only noise n is I/( and t

.A is that the measurement y contains noise plus signal s. The optimal procec
.5 ability of detection given a fixed false alarm rate is the likelihoou ratio fu:-,
.7 IS ..................... i ............ ,,+- \- (y)

9 .7................ X nP / N Y .8 (,)

.9
.91 where j`S+,, (y) is the probability density of y given signal plus noise,
.92 defined probability density of y given noise only. Since fJS,, (y) can be c
.93 y = n + s, the likelihood function becomes
.94t I~V+S II
.95 ( R ' exp - V'(y - s) Rl V (Y -
.97 ~

.97 _RJ ±2Ivt (y) R VM

.99 ( R2
whcrc

I~~~~~~~~~~~I - SIS
and s, are components of the signal s. The signal s is written as9' -.. . ... ft

- ............ ......where S is the signal magnitude. 6, is its phase, and ltt is its steering
represents the pulse-to-pulse phase rotation uLI to doppl.r Shitt of* the t
unknown, a bank of' Filters is usually construL ted Th0e eOnl imle is or t-
vectors whose complex values are elements ()I, inl mI-point di\,crete lo-riC
clutter ratio per pulse is def'inedl to he

Bec.:Lise the anlpitude alld phtase ii linkiloI.n 0hi. * kcilhod! lIalt
ft . ..................currentr form. Sekeral procedures .re CiP-ALbe (The l IIto .!, t

and uverace the likelihood rAtIO ii lol tiiln V K I .II\t in
Another Possihi: alpproielh is C INe C'c.Il\ .

ilded nor p ert rmth 1'or the e\.Inhi'ie-. : '
-. UNOLi s I 1 .Ipprl it 't r\iml.It l, Tlhc cs1, ie IQ":

- de~~~erihed ~nest .nld IIs,,r Prmanee I-' V.-:

.- 1K. I 1 % ' I :F'\1 N - P I A - . '



I (.-\N I R'I Ih l( - S)- (y) - ( k (-
or Z,'I

g: '\/;; ) g ' V7-i
vA (y - S) = )A - C - _SA__ _ 

- .; i~ 
5A A - SAC -ss

is suggested where c is a1 proportionality constant. The reason why this approximation may be good fol-
lows. From pulse to pulse (k to k + 1), the measurements YA and jVA + I are nearly equaLl for strongly'
correlated noise. If the measurement .vA is fixed t'or all k and the signal phase varies from zero to 2Tr,
the resultant signal looks much like a target making one revolution in doppler space t'or a high prf'
waveform when strong clutter is present. The real and imaginary parts vk (y - s) are given in Figs. 2
and 4 and Figs. 3 and 5 for two examples, respectively. Both the true and approximate values of'
vk (y - s) are given. The first example shown in Figs. 2 and 3 is a case when the clutter level is 30 dB
above the signal and the initial and fixed phase of the clutter is 0°. The second example shown in Figs.
4 and 5 is the same as that shown in Figs. 2 and 3 except the clutter phase is 45°. In Figs. 2 and 3 the
phase matches exactly while the magnitude differs slightly. In Figs. -4 and 5, the phase and amplitude
of the true and approximate solution is nLarly the same. ,

Assuming the approximation for V(y - s) is valid, the Neyman-Pearson test using this approxi-
mation becomes m

In A,, = V(S) RJ-' V(y)) + I c (V' (s) Rj-' V(y)|J

+ (c* V'(S) RJ-' V(s) 2 + In (IJs+,- I) - In (IJVI) .
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The signal energy and c can be absorbed in the thresh6#I. The Jacobians under the assumption are
almost equal and consequently are assurmed to cancel. The phase ¢p is still unknown. However, if the
magni'tude of the resultant is computed instead of the reid nart, only a little loss is incurred. The samne
technique is used to obtain the matched fiter results. Cotilvienuncrtly, tlhe N;.ymi'n-1kar-n ;ccS i

approximated by

X = | R(s) R:' k'y) |

Since the signal pnase can be easily removed from this expression, the approximate test is

A ! V ( ̂ , R. v(y)

leaving the test in terms of the steering vector s, the dai; y, the covariance R, and the mapping f'unc-
tion V(&). The matched filter given by

XmJ I S I Y

is of similar form. Comparing XAa and X ,,, the data v#Stor y is mapped into V(y), the signal steering
vector s is mapped into V(s), and the covariance RY is Matpped into R,. All the mappings are def'ined
by the requirements on the marginal density functions.

SIMULATION PERFORMANCE OF AN EXAMPLE

The performance of ihe detector is evaluLted by using data samnplcs obtained i'rom the conIduIt-Ued

multivariate density of the clutter. The performanc e curves are defined as probability-oletectir
signal-to-noise ratio given a fixed probability of f'alse aiarm for various problem conditions. The perT (l-
mance of the approximate Nevnian-Pearson test is compared to that ol' thle natehed f'ilter indl opu.re-
law integrator del'ined by
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for the same data obtained from the constructed density.

The clutter samples are constructed as follows. A zero mean independent Gaussitmn process with
m samples is defined by the vector z. A linear transformation L is defined on z to obtain x by

x= Lz.

The transformation L is defined to be a lower triangular matrix such that it is a factor of RA defined by

R,= LL'.

In the example to be solved subsequently,

o-x 0

fcr .'n = 2. Consequentlv,

RY= E[3xil = LE[Fz'] L'= L L'.

The data samples are then computed by

y= Uv(Lz)
under Ho and

v = U(Lz + Se j )

under HI, where U( ) was previously defined as the transformation between y and x.

The example uses m = 2 samples. The clutter is Weibull distributed with a = 1, 1.5, and 2, or
lognormal with o-a = 0.8, 1, and 1.e. In this example, M, = 1, o-, = i, p,(l) = 0.98, 0, is arbitrary,
and the steering vector is

s' [(/vv+ jO) (O + j !/2)1

which represent- a 90° phase rotation of the signal between two pulses. The values of o'3 2nd ), (I ) are
found in Tables I through 4. The three detectors treing comnared are the approxinlate Nernian-
Pearson test

Aa = fV(s) pv-u V(y')

the matcheru filter

Xrit =S|ti Ro-1 Yl1

and the square-law detector

The thresholds (ol the detectors are deu-Ied bV A *,,,IX and X A, [Figiure . and 7 a. 'hh kh ui.timl

for the data generation and( three processors to he cormpare(l for the two samplle e \anipe,
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Fig. 6 - Block diagram of data generation used to determine performance
characteristics hy simulation for two-putse example

Fig. 7 - Block diagram of three processors to he -)mpared for two-pulse example

The probability of false alarm pf} vs threshold is computed using Monte Carlo simulation tech-
niques. Random samples of y :nder II0 are generated. A normalized histogramu ol the number of' samn-
ples having values in a small interval for each detector are found. After ma1u1v ,ri als, a curve of the
probability density of the output of each detector vs A0, A X'J and AX, for each ulI' HIL lu ree dttectors is
obtained. The probability of false alarm is define,' as the sum of all vallues of' tilm klc i6v trom X ',
A*mr, and *,/ tbo- each filter to infinity. For small values of the probability of' 1a.ke a;Imuu, an nipor-
tance sampling technique is used. This procedure distorts the generation ol' random samples so that
more false alarms occur than should and then compensates for this in the weiglhtings used ill the gen-
eration of the histogram. This technique is outlined in Appendix D.

Using the Monte Carlo simulation, the probability of' false alarms vs thresholds are shown in
Table S for Weibull clutter of parameters ay = 1, 1.5, 2.5' and the three detectors. Several poitts
should be noted. First, the threshold values for a given probability of' f alse alarm for all three vall.ues of
a for the approximate detector are the samle, becaluse the dlata entering the procesior is rcally x, MliiCh

is independent of a. H-lowever, even tho.ugh the thresholds are th' same, the probahility of deltetioull
will be different in all three cases because 01 the waxv the signal andl noise interact. I or o --- 2. the
matched filter and the approximat' filter are 0he samne detector exsept tor thi e constami nitmllliturl 0l
I/Yln 2. i/ similar table for lognormal Clutter is shownll i Table 6.
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Table S-. Probability of' False Alarm vs Thresholo; for We fbull Ciluter-

Table 6 - Probability of False Alarm vs Thresholds for Lognormal Clutter

al \ ~~10-1 10-2 10-3 10-4 lo-, 10- l-7

Approxmate ilter.8 18.0 25.6 31.2 36.1 40.3 44.2 47.5
Approximate filter 1.0 18.0 25.6 31.2 36.1 40.3 44.2 47.S

A; 1.5 18.0 25.6 31.2 36.1 40.3 44.2 47.5

Matched filter.8 19.5 33.0 42.7 52.9 57.3 62.1 76.6Matched filter 1.0 16.6 26.6 35.8 49.8 69.7 90.7 114.5

Xmf 1.5 10.8 23.4 43.0 73.2 120.0 178.0 247.0

Sqiuare-law tW 5.8 13,2 23.8 39.6 59.2 88.8 129.4
.quare-aw I1.0 7.8 20.6 44.4 80.8 139.0 232.0 343.0
X5, 1.5 14.4 66.0 210.0 515.0 1160.0 2520.0 4500.0
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The performance of the detectors are compared by observing the probabikbty of' detection vs
signal-to-noise ratio for a fixed probability of false alarm. The probability of detection is computed
using a Monte Carlo simulation. The fraction of time the detector output exceedS the threshold Ior a
set of randomly generated samples is computcd. This nurnbzr s the probability of tection..

Performance rzsults are shown in Figs. 8, 9, and 10 for Weibull parameters of' ( = 1.0, I.S. and
2.0 respectively. In all cases, the probability of false alarm is I0-7. Figure 8 shows that the ;-iproxi-
mate detector performs better than the matched filter, which performs better than tlhe square-law detec-
tor. The subclutter visibility is defined as the difference between the square-law detector and either the
matched filter or the approximate detector in signal-to-clutter ratio (in dl3) lIor a given probahulit\ of'
detection. For example, for a probability of detection of 0.5, the subclutter visibiliv i''or the mlatched

filter detector is -18 dl., atnd i'or the approximate detector it is -30 dl3. ligeure ') shuO\vs th.u HI he 'pe-
formance of' the mnatched filter and sqLuare-klaw ueletec%*rs improves over those showti in lig. 8, M ilhe thL

approximate detector performance degrades a little. `'lhe reasoru for this is that the eltut IC lr Iv le-s eik
in Fig. 9 and the thresholds can be lowered signif'icanily f'or the mautchcd Ifilter uat(d sqLkuicur-LImI kfe dc1c II 

Figure 10 shows that the approximate an(l the mntckh.d filter detector vielId the 1 .ume 'I euIII I: IT! I &'11

because the detectors are iderutical for GauCtssimuti noise. The sqtujue-l.us delecll perII'r0I?3uiee i ,Oih'!t

the same as the squiare-law detector [or a single p0L1 e when (;iuuS.iuui1 nouie i' pu eeeut ht-eI:' (I 11he

heavy correlation hbetseen the tv(u poUkes l'igurei- 1 I 12; nid 13 .,ho\v siuilur ue'lut I
clutter.

r lo- lo- iG--- lo- lo-,4I - jo-7

Approximate filter 1.0 18.0 25.6 31.2 36.1 40.3 44.2 1 47.5
A a 1.5 18.0 1 25.6 31.2 36.1 40.3 44.2 - 47.5

2.0 18.0 25.6 31.2 36.1 40.3 44.2 47.5

Matched filter1.0 10.2 19.2 27.9 37.2 46.2 55.2 63.9Matched filter 1.5 13.0 19.8 25.6 30.6 35.6 40.0 44.2

Am1,,, 2.0 14.5 20.7 25.2 29.2 32.6 35.7 38.3

Square-law 1.0 24.0 90.0 195.0 357.0 543.0 786.0 1080.0
Square-law 1.5 10.0 25.0 43.0 64.0 84.0 108.0 133.0

2.0 6.6 13.5 19.8 26.7 33.0 39.9 46.5
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Fig. 8 - Detector operating characteristics for Weibult clutter
where (v = 1.0 and pj, - 10-7
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11. CAN l'RI LI.
M

U The approximate detec[or performed tLItCh bctter than the imatched filter detector whcn.tile t 
clutter was spiky; performance becarme nearly the SalmC a[S the clutter apprOachle~d a GIaLV;sian distriuhi-

tion. However, the usefulness of' tIle approximate detector must wiait until it is Cvaluated On SCIS O0

real data where the true multivariate distributiotis are unknown and are approxlmi-tedt LlSilg the
techniques described.

SUMMARY

A procedure to detect a target in non-Gaussian correlated clutter is obtained. Since the mu.tivari-
ate probability density is unknown, an approximate one is constructed. The constructted density
matches the true density in the marginals and first two moments. The mapping required and the rela-
tionships between the variances are found for both the Weibull and the lognormal clutter distributions.
The relationship between the correlation coefficients for Weibull cluttcr is found, and a similar one for
the lognormal distribution is determined by simulation.

An approximate solution is obtained for the Neyman-Pe; rson test by using the constructed mul-
tivariate distributions. Its form is similar to that of a matched filter. In the new coordinates, al'ter a
nonlinear operation, the matched filter and the new detector are iden;.al in form. For the examples
shown, the new approximate detector performs better than the matchcJ filtet when the clutter is spiky
and correlated. As the clutter becomes more Gaussian, the two detectors' performance approach one
another. Although the true performance of this technique cannot really be assessed until it is applied to
real data, it should perform better than the matched filter because the densities used in obtaining it
should much more closely describe the data than the Gaussian one does.
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Appendix A"' 'C 

LOCALLY OPTIMUM TEST

The locally optimum test deftned by Capon [AllI is

i~~~~~~~~~~~~~~~~~~ lo - IS - 0

a t~~~~~~~~~~~r~a

I3 Appe~dx 

This is also the first term in a Taylors series taken about zero signal strength. For real variables, the
test defined by Martinez [A21 is equivalent to these other tests for additive signal and noise and is of
the form

A,, = signal vector transpose ' gradient of~f~v(y) .

Either form can be used as long as all terms and expressions involving complex nuroers are converted
to real and imaginary parts in the secohd procedure. Alternately, using Capon's fo m, basic definitions
of total derivatives, and by treating y, and y, as independent analytic variables, the locally optimum

U'.. detector can be Most easily computed by

;A,0 = e i' st Vy (fv(y)) + e JS s' Vj- (fv(y))

wher'c V, and Vj are thc gradients dcl'ined by

a ~~~~aj

av,

V7, | and V

For the Neyman-Pearson test, the locally optimum detector is

* A,1, = | (s') [AOy) R-t V(y) + B'() R- I V(y) - D(y)

+ | ,,,, | (s, |N's) R~R V(I') + B (N) RI-' T(y) - D(J.

This test still has the unknown phlase lb,. Ilowever, it !s I II'! shinm1hr tI ile mnlut!he1 I1.I he!P.t 
hlaiS an unknown'phane.. In that case 'Cs \~ell 'Cs thc case he1re. \V.' C;'n Cl0mpauuI[C Ml..11.-

iX,, V = It;}j-! )} ! '1( 1;, i( )!}
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with little loss in detection perfortnance. The matrixes arc given by

A(y) = V, (.'/'(y))

B (y ) = 17V -,; V' (y) )

and the vector is

4VV |,IJ(Y) iJ
D(y)= n

rl I Jk (Y) I
k-1

For the constructed multivariate case

akk (Y) = 2 1g (-JVk) + g ) 

bkk (Y) = 2k v'',& -(, YT I

I~~~~~~ ~~ g'( g"(dk (y)= = I Iflk 9 Vk 9 IY-Y 
Yk . g (V ~ 3; g, (FT, )

aind till other va.lues ul(J' t (y) and b1/ (y) are neror f o ,.

For the few examples studied, good performance results were not obtained with this test. Ilow-
ever, it was by observing the form of this test and what role each term pliyed that the approximate
solution used in the text was arrived at. This is why this test is outlined in this Appendix.
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Appendix B
VARINCE CALCULATIONS

After substituting the expression for g- (6) for Weibull clutter into the integi'al for the variance,
it becomes 

a23 \lr, 7 -r=_j 4 exp- (S2/2o-2) d2

Using the change of variable

2

and setting ar = I,

a2= 2' In 2)~/ J c(t-7 (4-1 

The integral is tile gamnia t'mctmiol. {2 I- In eII,.! ',) (2110 Iu(2/10I, ;III(I Il("diw, 1 i

obtaine i'n'-d.

.Ai'te. substituting the expression for g`(1 l'or lognormal ciutt!r in;u the in:egral for tilte ari-
ance, it becomes

a,~= 2 ) exp / er t (I - 2 exp - ('- I 2a) exp - (,'-/ 2(r ) d'

Using the change of variable

and cr' = I,

a- = ,' 1J exp lk/'~ 'a' erf~'C(l - 7f'j C.!>55~

Changing vari~able again with

, = 2A,'7 fl erf' 'Co -- I 1

.,C -- - cr1' IT 'Cr 1 ), . St-

annd noting the dif't'erentiai rela'Cio'Cnhipt 'CM'

J L:I-1 2, r J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.1f

~I .1' - r 'C- C 'Cc1, - | 'I-' 'C ' i ,, 

fi';~~~~~~~~~~~~~~~~~~~~~~~~~~ ;l

I

I 4 -t )1 I 
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j~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~[ n AN1'RLLL

y~~~~~~ After completing the square,

71 ~ 1 _

2 a2, ~~~~~~= -2-exp (a7/2) [(l/(JVar)f exp- 2~ |~Jd 1- / 

1fThe remaining integral defned in the bracket is one leaving the result in the text.
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Appendix C
CORRELATION COEFFICIENT CALCULATION

Substituting for g-t(.) in the integral,

p ~(k) = MV2 j -f 0- (2 In 2 i ,
2) 2/i [ 1 1 | I

0 V T. 0I - P,(k))1+

Ip (k) eI el+k x - 2 + S 2, A

t u2(T -p2(k)) exp2- 2(r2 (I -I (k)) " s

Using the change of variables

and their inverses

jA2 = fC 12+ fC 12 A

n2 = 2sc 'l+j

I = V 2+ ' + I
f.. 2 1;;~ +11 1 + 2 i

I - IL 4- tP l II

the integral e'U be written as

*If,'(2 In 2 (r) 2 -'2! r _ ',

________________ ( 'C /2) __l)
1si (I) I- f C (5 212

ir 2 (rv (JI'C r1 (I -,1(k)) V' - t

X 1 ) M n -I cxp - _ _ 1 1 --- I 1/g ein .
2(r2 ( - p2(k)) - | l (I -j?)(k_) IIC 2 t % ( ) ( I I r (I -p I k ( J C

Changing variables again.

AC = - I 
2(r; 'I - p;(kt))

r ' ( i - - ) )

the in tcuial can hb written as

. ( 2 In1 2) -' (I -- p'(A )I) ' ' I ,
1. C 

f, I \ J'I _.~ 4 -''--"------- , jI\ -
:.:~ ~~~~~ Il " ls -,- w t 4 2A ) 

I,! I" F .: !

i'lie uuII'C'C'er~i i hIue' hra'Cckt: ') the II IlC I( i ; l) d '-.. i WIIu: - ,' : . . ¾. '. [5\
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This integral is equal to

22 p , I" F | 1+ 1 2, J,2(k-,

as shown on page 693 in Ref. [51. Substituting for (r, , the relationship between p), (k ) and p, (k is

-oW L~"JAC p,(A) (I -""2(k ))(21f * 1 r" 2 1 + 3 I2
X Ij 7' +3 1 + 3 2 '(AJ

2 2~~~~~~~~-
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Appendix D
IMPORTANCE SAMPLING

The importance-sampling procedure 1DI,)D21 is a Monte Carlo technique that distorts the genera-
tion of the random number so that the events ol' interest occur more frequently than, but in the same
manner as, the events occur in nature. The probability of the event occurring is tGen compensat>d
with a weighting factor so that the true probability of the event is obtained.

To compute the probability density of the detector, the l'ilter values are (,uantitcd by

X = mAX where m = 0 .. A - I.

The probability density is computed by

p(X is betweem (n - 1) AX and mAX) =k N 8
A-~l

where N is the number of Monte Carlo samples and 8A. = I if no importance sampling is used. The
equation is simply counting the percentage of time the samples fall in the mfth interval. For importance
sampling,

A = IRXdI ep 2|xRt Ix- Rvt Xi

where R,d and RC, are the covariance matrixes under distortion and no-distortion and x,, and X, are the
values of' the random samples genertated under distortion and no-distortion. Let (rT' an(l (.- be the v'ari-
ances under distortion and no-distortion Under these conditions,

R,, = (r.2 1 p ),(I)

R5 l [ C PF(l)

RJ=rIl p)(l) I

and

(TI ~~0
L,, = 1 C ( I T r,/ - p ( I)

where the L,, miatrix is used instead ouf /. in generating the rand'oC'm samples.
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