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RADAR TARGET DETECTION IN NON-GAUSSIAN,
CORRELATED CLUTTER

INTRODUCTION

The optimum filter for detecting 1.dar targets in Gaussian amplitude, uistributed, correlated noise,
referred to in the radar community as clutter, has been known for many years. This filter is the Wiener
or matched filter. This filter can be obtained by using the Neyman-Pearson procedure that maximizes
the probability of detection for a given probability of false alarm for a binary hypothesis. In applying
this procedure to non-Gaussian, corrclated noise, three problems are encountered. First, we seldom
know or can easily measure the required multivariate probability density of the noise; second. often
there are unknown parameters that must be accounted for in some way; and third, the likelihood ratio

obtained in the test sometimes is difficult to simplify. All three of these problems are addressed in this
study.

The most difficult problem encountered is obtaining the multivariate probability density of the
noise. A procedure for ronstructing an approximate representation of the multivariate probability den-
sity is described by Martinez, Swaszek, and Thomas [1]. The procedure constructs the desired mul-
tivariate density from one that can be analytically represented, such as a Gaussian one, by using a non-
linear transform to map the one into the other. The mapping is adjusted so that the marginal distribu-
tions and the first two moments of the constructed multivariate distributions are correct. Often these
are the only properties of the clutter that can be measured easily. Even though the filter derived from
this appreximated, multivariate probability density may not be optimum, it may yield a useful result.
To test this, the new filter and the Wiener filter can be operated on the same data to see which one
yields the best results. If the approximated, multivariate density matches the data better than a Gaus-
sian multivariate density, the zew filter should obtain the better performance. In this report, the
results of Ref. 1 are modified w0 include complex numbers to represent radar baseband signals and to
provide a suitable form of the nonlinear transformation.

After the multivariate density is found, a Neyman-Pearson test can be obtained. In this test, the
unknown parameters are the covariance matrix and the complex signal. The covariance matrix is usu-
ally estimated from reference cells and is not considered further. One way of eliminating the unknown
signa! from the test, as well as simplifying the test, is to use locally optimum tests. Reference I
describes a test that maximizes the efficacy. Reference 2 describes a test that maximizes the rate of
cnange of the false dismissal probability with respect to signal strength at zero signal strength for a
given probability of false alarm. Reference 3 describes a Taylor's series expansion of the likelihood
ratio. For additive signal and noise, all three yield the same result. This locally optimum detector is
described ‘n Appendix A for the case of complex numbers. fiowever, this test did not yield good per-
formance results. By observing this test, another test based on an approximation to the Neyman-
Pearson test was found. This new test, or filter, is independent of the signal amplitude and phase and
is fairly easy to implement. Although this test is developed later i this report, the tunctional tlow of
the tesi is shown in Fig. 1. In esse-ce, a mapping is used to transiorm the random variable to a Gaus-
sian distribution, and then a matched filter is applied to the signa’ after the nonlinear mapping and atter
the prewhitening process. This new test is eviluated and presented.

Maruscript approved September 4, 1986,
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b TRANSFORMATION FORM
A zero mean multivariate Gaussian process is defined by the probability density
Sv(x) = S — exp Ly R7'x¢, (1
Q)™ R, | 2
: where R, is the mxm covariance matrix, x is the random vector of complex numbers of dimension »r,
d m is the number of samples, the bar is the conjugate. and ¢ is the transpuse. The multivariate proba-
o bility density as approximated is defined as fy(y) where y is an m-dimensional random vector. The
form uf fy(y) will be found later.
R The transformations between the random processes x and y are defined by hel
: N
! () = £ /0% (2) ot
Ve = X)) = ———=—=—x, .
i Xg Xp ?C,
Y X, =V (y)_ g(Vykj;k) v (3) i
s k TOVk - = Yk s J e
X V Vi Vi i:':\
; o
H ! . , | . . o [
. where v, and gy, are components of x and y respectively, ¢C ) is a nonlinear function, and ¢ '€ ) iy ity o
inverse. The functions 1, (x) and v, (y) arc components ol the random vector Ul(x) and V(y) of Y
dimension m, respectively. Choosing the transformation in this form preserves the phase of the noise ]
( and modifies the amplitude. Verifying that the mapping is one 10 one is done by placing Eq. (3) into R:
Eq. (2). &
'2\{
a NONLINEAR SPECIFICATION };Q'
4 }:\
Following the pruccdure in Ref. 1. the nonlinear functions g and g¢~! can be found by matching ﬁ
?} the total probability before and after the transformation. Since only ¢ and ¢~ ! are defined on the mag- t-‘,
3 nitudes of each complex signal individually, the marginal densities of the amplitudes of the signals are t
13 . . -
! used. The nonlinear functions are found from -
) gy A o
| L5 p U dixd = L7 £y vl e
0 0
e
and ~
Ix, | M, | o
o , 'S (.\'A ) i ) ‘.}
-[() /\' (’-\'A- l) dl-\‘/‘ l = J‘(\ /\ ([)A l) d I_Vk I . DA
. "’
where ' N
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and

,)’k l =~ VVk .

The maryinal amplitude distribution of the Gaussian process is Rayleigh and is given by

lxkl

Iv UxD = — exp{—lxk|2/2a§],

X

where o ? is a variance of the underlying Gauss‘an process. Examples of marginal amplitude distribu-
tions for radar clutter are the Weibull and lognormal distributions [4). The Weibull distribution is

given by
lykl " exp |2 In |yk! )
My p M,, y

where M, is the median value and « is the Weibull parameter that ranges from ~.5 to 2 for radar
clutter. For o = 2, the Weibull reduces to the Rayleigh distribution. The lognormal is given by

i

where M, is the median value and o, is the standard deviation of (Inly, )2 Performing the integrals
over the defined marginal densities, the nonlinear functions are found to be

— \a/2
s - vriws ||
y

fN(lykl) =« ln2[

2 1 [y
( }) = ————————eXp~{—= {2 In
fN lyk (—‘2" o kal p {20_12 l My

and
2/(!

vV Xy :‘-‘I(

e W xx) =M, NATH

for the Weibull distribution and

e ) = -\/—2 In l(l/2) erfc {—\/—5 ln{k‘—ll”
a, M,

gV x X)) = M, exp [il— erfc™! [2 exp — ~;—Ix,‘. P“

V2

for the lognormal. The function erlc is the complimentary ceror function, erfc™ ! is its inverse and In is
the nztural fogarithm. Without any loss in gencrality, o, is set to 1 in alf cases.

MULTIVARIATE PROBABILITY DENSITY

The new approximate Duitivariate, probability density can be written in terms o the mulinariate
Gaussian and ihe one-to-one mapping previously defined by using traditional change-of-variable tech-
niques in probability theory. The new density is

,-ll\ I

Soy) = filx= Vi) s e o igp l

— VIR, '\'(_n]
Qay™ IR
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where [Jy| is the Jacobian that is the determinant of a matrix of partial derivatives. /1 special problem
arises in computing the Jacobian for complex numbers, because the V{y) is not anelytic with respect to
the variables y, since both y, and y, appear in the function. Two approaches to circumvent this prob-
lem yield the same result. The first is to write y; in terms of real and imaginary components and deter-
mine the Jacobian for 2m real functions and variables. An alternate procedure is to treat y, and ¥y as
indeperdcni random variables and x = V(y) and x = V(y) as independent functions. Now the 2m
functions are analytic with respect to the 2m variables. The latter procedure yields the simplest calcula-
tion and is outlined as follows. The Jacobian matrix is writlen as

IJN{ = 0 0 In(3) ,
0 Jy(m)

where Jy (k) is a 2 x 2 matrix given by

AV ly) Ve (y)
OV Ay
A T AC Y AR
¥k AV

and 0 is a 2 x 2 matrix of zero entries. The Jacobian can be written more simply by

. Uyl = TT Wy 01

k=1

because of the other z¢ro submatrices. After taking the derivates and evaluating the 2 x 2 deter-

minants, the Jacobian bechmes
”j FASVARTS) g ( t“' )

gl [ R
A-l - .",A.VA

where g’( ) is the first decivative of g with respect to [y, | = /y 5. For Weibull clutter, the Jacobian

is
’" aln2 [V\L‘A]

- R4 \k

vl =

and for lognormal

Iy | = F_ 2exp(=a?)
v l\ o wn) erfe (a)

Vel

where

a

COVARIANCE MATRIX CALCULATION

A muluvariate, probability demsity function Tor the non-Gaussian clutter has been constructed,

and all functions and parameters have been specified exeept the covartaice matnix R0 Since the
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covariance matrix of the non-Gaussian process is known or measured and the one-to-one mapping [F by
defined, the covariance matrix R, can be computed from R, by use of the mapping. In this report, thes \:
random process y is assumed to be stationary, and its spectrum is assumed to be an even function. For ‘“
® this case, the covariance matrix R, is real, and any row can be obtained from the first row. This case is o
valid for all clutter spectrums that have an cven symmetry about a mean duppler after this mean E
doppler shift is removed. The covariance matrices are written in the form of t
W\
1 p 1) py(2) - opym =1 b
R,=a} p,(2) p, (1) 1 L
. &
py(m=—1) ' ' I _%“
and E
N
1 p(1) D . p(m=1) o
px(D) 1 px(D) 5
R, = sz px(2) px(l) 1 : ’ F:
;::
Lp,((m -1 : 1 g}

where o and o 2 are the variances and p, (k) and p, (k) are the correlation coefficients of the random

7 . ij‘:_\
: processes y and x, respectively. ‘i{
b 1
; The variance of y can be found in terms of the variance of x, previously set to one, by computing &{—
S.-' the expected values: -
! ol= —;—E byl = -%-E (g (x) w (x)]. [~
Y : l_:
! . . I-
:’; The integral equation is =
» - (YRS 5 Y %
. a1 e g D+ (x)D)? 1| D+ (x)? 4 :
Ty= exp — —{———5—— dx{dx{,
y 2 j:) J.o 27 o2 p 2 o? kETk i

,l.!‘\ l'x?l{ [

where the complex variable x; is written in terms of its real

Using the change of variable
=~ (x4 (x))?

¢ = tan"! x{/x?

x¢ and imaginary x{ parts, respectively.

Air

ety 2

«
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e
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and integrating over ¢, the variance of v, is

R

e

sl= 7' fnh le= ) € exp — % {él/(rf} dé.
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where I'(*) is the gamma function. For lognormal clutter and o, =1,
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2

/%:7 = {1/2exp {(o /).

Several steps in computing these variances are shown in Appendix B. Short tables of values for /r;’ are
given in Tables | and 2 foi Weibe!l and lognormal c'utter, respectively.

Table 2 — Values
Table 1 — Values of «¢}M} Given
of oj/M] Given Values of o, for

Values of o for Lognormal Clutter
Weibull Clutter

a al/M} o1 | oM
0.50 | 51.985162 0.8 | 0.6886
0.75 | 5.331132 0.9 | 0./497
1.00 | 2.081369 1.0 | 0.8244
1.25 | 1.284905 1.1 | 09156
1.50 | 0.970471 1.3 | 1.1640
1.75 | 0.812625 1.5 | 1.5401
2.00 [ 0.721348 1.7 | 2.1209

The correlation coefficient p, (k) can be found in terms of the rorrelation coefficient p (k) by

(k) = 1 Ebyad 1 Ely&) u, ()]
p}’ 2 (72 = 2 0.3

v

for Kk = 1, ... (m — 1). Since the complex portion of p, (k) is zero under our assumption of an even
spectrum and

Ely ot = Elfil ) = Elef 0ufy 01 = Eluf (0wl (01,

then
py k) = sz‘” 1y xl’g“(\/m) x;tk TN (AN EE L
oy VTR TR Yme e \/(:’,’)2 + DIV LD+ (y)?
X S xfy Xy xlegs Xex) df dx] dxfy dfi,
where

1
4xt -2 (1 - p2k))

Sn O X X ) =

L:
"

z)

.

(X,’)z + (Xll+k)2 - 2[)". (k) .\'I’ '\-I’+k ]

L

e X exp —

0 202 (1 = p2(k)) |
!‘ (.Y[‘):. + (x,'“)z - 2[)l (k) _\'I' -“[l+k
‘3:. X exp — ; -

. 20 (1 = pitk))

“

o

ity . .

i Using the change of variable,

he:) —

2 £ =~/ x4+ (x)? Epon = \/‘-\'/’w): + )y )

o

;{:l tan #, = x}/ x/ wn b, = N/ N
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yields the new integral -
. < -1 -1 2 ) L
o pe £y 8 (68 (E i + Efiy Im o 2w feAnT
(k) = exp — . oS 6, cos B, o
Py J;’ "; dnlod (1 — pl(k)) 2021 — pl(k)) J:’ j;’ ! ’ o
| 2
v
2p, (k) £, &1 cos (8, = 6,44) e
X ex do,de At dE . - e
p { U} (- p}(k)) 14944 194813k T}";"'
%
) luf
Changing variables again by a
04 =0, — 0,44 "
o
0; =0, + 81k }j‘
and integrating over 8, and @, we obtain ‘ &‘:
.
- - t "
p, (k) = L fmfw & Eivn 8 (E) 87 €0 / px (k) & &1 ;g‘
=51 do Jo o2 (1= p2(k) A= 020 o e
1Ak
&+ £l ] E;E
XCXP“[ dé¢, dpe, N
202 (1 — p2(k)) | £
-
where I,(-) is the modified Bessel function of the first kind and first order. H _&:Q
NG
For Weibull clutter, the required integration can be carried out in closed form, and the result is %"S
2 e
(13 2 ;|— ! ql[ l 3 4 2
Py k) = 1= p (k) (= pitk)) 1'Y-- 4+ /1= -
) 2 ' {« 2 a il
Py
1 3] (1, 3] N I
x Fl{=+ 3|, |=+=.2, pXK)|, ek
‘[QTZ]’ «a 2] pxik) \-:.:-}
AN
where F(-, -, -, -) is the hypergeometry function that can be written in the infinite series g
2 v viv+ D) plp+1) ) RN
Flo, m, y, pi(k)) =1+ pik) + (pi(k))* g
v -1 yly +1)-1-2 N
(v+1) o+ 2) uly +1) (u+2) ooy
viv d JoAY2 ‘K P 3 '
2(k)) + - e |
Yo *D 2 1-2.3  PxD -,
s
where the region of convergence is p2(k) < 1. The details of the integration are outlined in Appendix :.j.\
C. Fora = 2, which is the case of Rayleigh clutter, Q"_‘;’E
o0 1 w* y
F2,2,2 pXk)) = G+ 2K = ——r | m
P :-26 b (1= plk))? e
}.‘,\)f
. ‘\‘1\::
') =071 =1, 4, (k) = p k), and the transformation is ¥ = x. No closed-form axpression relating Q:{:{
p k) o p, (ks for lognormal clutter is found. The relationship is found by using a Monte Carlo sinvu- fu;"\w;
lation. Numerical values for p, (A}, As u function of p (k) are given in Tables 3 and < for Werbull s e

13
i A,

t

and lognormal clutter, respectively.
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Table 3 — Values of p, (k) Given Values for « and p, (k) for Weibull Clutter

o
py (k) 5 75 1.0 1.25 1.5 175 | 2.0
0.00 0 0 0 0 0 0 0 Sy
0.10 .£16537 | .074382 | .088467 | .095258 | .0984027 | .099688 | .1 A
0.20 .096188 | .15G3G8 | .177600 | .190774 | .196888 199391 | .2 el
0.30 .152089 | .229326 | .268065 { .286810 | .295540 296126 | .3 PR H
0.40 217433 1 .312983 | 360546 | .383639 | .3944480 | .398908 | .4 A
0.50 .295490 | 402833 | 455743 | 481547 | 493707 498758 | .5 T
0.60 389634 | .500437 | .554385 | .580844 | .593423 598694 | .6 ; )
0.70 .503378 | 607365 | .657243 | 681875 | .693722 698744 | 7 T
0.80 640398 | .725197 | .765146 185040 | .794756 798939 | .8 v
0.90 804568 | .855534 } .879026 | .890840 | .896731 .899327 | 9 HeX
0.91 822635 | .869317 | .890783 | .901589 | .906991 909380 | .91 A
0.92 .841018 | .883244 | 902612 | 912272 | 917265 919435 | .92 -
0.93 .859721 | 897315 | 914514 | 923190 | .927552 929493 | .93 ﬁ"‘\’:‘
0.94 878751 | 911532 | 926490 | .934044 | 937853 | .939554 | .94 R
0.95 .898109 | .925898 | .938543 | .944935 | 948168 949618 | .95 'L‘_‘:‘q{;_
0.96 917802 | .940412 | 950673 | .955865 | .958500 959686 | .96 i"*}j
0.97 937823 | 955078 | 962882 | .966834 | .968847 969758 | .97 b}&
0.98 958206 | .969897 | .975171 !} 977845 | .979212 979833 | .98 !
0.99 978913 | .984869 | .987543 | .988899 | .989595 986914 | .99 Rt
Nt el
Hy
R
Table 4 — Values of p, (k) Given Values of o, and p, (&) Tor o

Lognormal Clutter. (Not completly

accurate in third signilicant

o

place.) ~
o [‘ i B ‘
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4 395 1397 | 397 | 395 | 386 1 370 | 349
5 494 1 496 | 495 | 493 1 481 | 463 | 438
6 593 595 | 594 1 591 | 579 ¢ 558 | 531
7 693 1695 | 695 | 693 | 682 | 664 | 640
8 T94 ] 796 1 196 0 799 1 786 1 773 Y 75
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NEYMAN-PEARSON TEST

The classic solution for optimally detecting a signal in noise is the
Specifically, the problem is formulated as a binary hypothesis test
Hy y=n
Hy y=n+s.

The hypothesis of the measurement y centaining only noise n is M, and t
is that the measurement y contains noise plus signal s. The optimal proces
ability of detection given a fixed false alarm rate is the likelihoou ratio furnc

Ssexty)
w Saly) '
where Jyn(y) is the probability density of y given signal plus noise. :

defined probability density of y given noise only. Since [,y (¥) can be ¢
y = n + s, the likelihocd function becomes

yss] | | o——
——I — exp —{V'(y—s) R7' V(y —
Q=)™ IR, | 3 ! : y

v Iyl

exp 1 Vity) R7T(y)

@mm IR T 2

where
moe (v — s D ey, — s

U.\'+Sl = H

1]

b - s

and s, are components of the signal s. The signal s is written as
IA .
s=5S¢ &
where § is the signal magnitude, ¢, is its phase, and 3 is its steering o
represents the pulse-to-pulse phase rotation due to doppler shift of the t
unknown, a bani of filters is usually constructed. One example is for
vectors whose complex values are elements of un or-point discrete Fourie
clutter ratio per pulse is defined to be

Becuuse the ampiitude and phase s unknown. the bkehhood rato
current form. Several procedures are possible. One procedife s o dssun
and averuge the likelihood ratio tunction over them Howeves m thes o
Another posstble approach is te use tocally opiemad dotociias s discussod

viclded poor performance for the examplos consadorod Ty gie Dol
ustng an appronimation. The resuling tost v ooy o o e
described nextand s porformance for sevennd cnen s e oL e

APPRONIMVIATE SEYMAN-PEARSON TS

Moty e prohioms s

[SUEHE NI NS I



B CANIR" 1Y

Vily = 8) = vily) - ov (8)

or

cew L" v’_VA_FA) ' g( ;I\TL) . e b

vily — ) =

is suggested where ¢ is a proportionality constant. The reason why this approximation may be good fol-
lows. From pulse to pulse (K to &+ 1), the measurements y, and y,,, are nearly cqual for strongly
correlated noise. If the measurement y, is fixed for all & and the signal phase varies from zero to 27,

the resultant signa! looks much like a target making one revolution in doppler space for a high prt

waveform when strong clutter is present. The real and imaginary parts v, (y — s) arc given in Figs. 2

and 4 and Figs. 3 and 5 for two examples, respectively. Both the true and approximate values of

v (y — ) are given. The first example shown in Figs. 2 and 3 is a case when the clutter evel is 30 dB
above the signal and the initial and fixed phase of the clutter is 0°. The second example shown in Figs.
4 and 5 is the same as that shown in Figs. 2 and 3 except the clutter phase is 45°. 'n Figs. 2 and 3 the
phase matches exactly while the magnitude differs slightly. In Figs. 4 and 5, the phase and amplitude
of the true and approximate solution is ncarly the same. ‘

Assuming the approximation for V{y — s) is valid, the Neyman-Pearson test using this approxi-
mation becomes

———— [ !
In A, = % ¢ [V’(s) R! V(_v)] + % ¢ 1V’(s) R7' Viy)

+ cl[v_'(?) R Vi(s)

:+ In (|JS+N|) - In (l-lvl)
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The signal energy and ¢ can be absorbed in the thresholl. The Jacobians under the assumption are
almost equal and consequently are assurned to cancel. The phase ¢, is still unknown. However, if the
magnitude of the resultant is computed instead of the real part, only a little loss is incurred. The same
technique is uscd 1o obtain the matched fiter results. Conseyuently, the Tveyman-Tearson 108t s
approximated by

e el
€

-:\‘x‘l‘_ Ay
R

-

E‘:
e

(2

-
T&j
—E- l‘
P

>

A, = ’ Pis)y RV Ky |

!"_Pf - .
il N it e

Since the signal pnase can be easilv removed from this expression, the approximate test is

Ay = ’ Vis) RO HLy) )

leaving the test in terms of the stegring vector §, the daja y, the covariance R, und the mapping func-
tion V(). The matched filter given by

Ay = 15 RSy

is of similar form. Comparing A, and \,,,, the data vegtor y is mapped into V(y), the signal steering
vector § is mapped into V(8), and the covariance R, is mapped into R,. All the mappings are defined
by the requirements on the marginal density functions.

SIMULATION PERFORMANCE OF AN EXAMPLE

The performance of the detector is evaluated by using data samples obtained ifrom the constructed
multivariate density of the clutter. The performance curves are defined as probability-of-detection v
signel-to-noise ratio given a fixed probability of false aiarm for various problem conditions. The pertor-
mance of the approximate Nevman-Pearson test is compared to that of the matched filter and square:
law integrator defined by
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for the same data obtained from the constructed density.

The clutter samples are constructed as follows. A zero mean independent Gaussian process with
m samples i3 defined by the vector z. A linear transformation L is defined on z to obtain x by

x= Lz.

The transformation L is defined to be a lower triangular matrix such that it is a factor of R, defined by
R, =LL".

;]
|
B A A

2 O

Ve v
g
el

(3

In the example to be selved subsequently,

A :

o 0

L=1ecp. o, 1= pi(l)

fer m = 2. Consequently,
R, =EIXx'l=LE[FZ'|L'=L L'.

The data samples are then computed by

i

y= J(L2)
under H, and RS
v= U(Lz + Se % §)

\“.;J“ ._“
“h".'\:j‘.':
under H,, where U (+) was previously defined as the transformation between y and x. ' ;’{:\
" ~_1'4_‘\t'
The example uses m = 2 samples. The clutter is Weibull distributed with « = 1, 1.5, and 2, or :"3‘.‘“_1
lognormal with o0, = 0.8, 1, and 1.Z. In this example, M, = 1, 0, = 1,p,(1) = 0.98, ¢, is arbitrary, —
and the steering vector is ——yer
-~ N . . ‘v:‘. 'A~\
§'=[(1/v2+,j0) 0O+, 1/JD] S
hAAVA
N .\
which represent< 2 90° phase rotation of the signal between two pulses. The values of o2 and p, (1) are .’[q.“r.“\;
found in Tables 1 through 4. The three detectors teing compared are the approximate Nevman- “"’Q .
Pearson test b X
Ay = !v'(g) R! V(y){,
LR
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the matchea filter

[
f

>
3
|
s
)
A
>
'I" 'I .l
Hié ;
P i .
Padls
EANE RN 5. i 4

and the square-law detector
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The thresholds of the detectors are deroted by A", A%, and A%, Figures Cand 7 a0 block duaians
for the data generation and three precessors to be compared for the two sample exampies
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Fig. 6 — Block diagram of data generation used to determine performance
characteristics by simulation for two-pulse example
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Fig. 7 — Block digram of three processors to be campared for two-pulse example

The probability of false alarm p;, vs threshold is computed using Monte Carle simulation tech-
niques. Random samples of y nder H, are gencrated. A normalized histogram of the fumber of sam-
ples having values in a small interval for cach detector are found. After many rials, a curve of the
probability density of the output of each detector vs A, A,r, and Ay for cach of the three dutectors is
obtained. The probability of fals¢ alarm is define! as the sum of all values of the density trom A%,
A%, and A%, to: each filtet to infinity. For small values of the probability of Lilse alarm, an impor-
tance sampling technique is used. This procedure distorts the generation of randont saumples so that
more false alarms occur than skould and then compensates for this in the weightings used in the gen-
eration of the histogram. This technique is outlined in Appendix D.

Using the Monte Carlo simulation, the probability of false alarms vs thresholds are shown in
Table 5 for Weibull clutter of parameters a« = I, 1.5, 2.5 and the three detectors. Several points
should be noted. First, the threshold values for a given probability of false alarm for all three values of
« for the approximate detector are the same, because the data entering the processor is really x, which
is independent of «. However, even though the thresholds are th2 same, the probability of detection
will be different in all three cases because of the way the signal and noise interact. or « = 2. the
matched filter and the approximate filter are the same detector except for the constant multiphier o
V2 In 2. A similar table for lognormal clutter is shown in Table 6.

14
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Table 5 —. Probability of False Alar"nﬂ vs Thresholas for Weibull Clutter

\\_\ pjb
N (VB (0 T (VA N [V (Y B (VR B (O
. ; 1.0 180 | 25.6 | 312 | 361 | 403 | 442 | 475
Ap"“”“f’.‘“e filter 1.5 180 | 256 | 312 361 | 403 | 442 475
a 2.0 18.0 | 256 | 312 361 | 403 | 442 | 475
. 1.0 102 | 192 ] 279 | 372 | 462 | 552 | 639
Matched filter s 130 | 198 | 256 | 306 | 356 | 400 | 442
ms 2.0 145 | 207 | 2521 2021 3261 357 | 383
- 1.0 24.0 | 90.0 | 1950 | 357.0 | 543.0 | 786.0 | 1080.0
Square ';\".V 1.5 100 | 250 | 430 | 640 | 84.0 | 1080 | 133.0
o 2.0 66 | 135 | 198 | 267 ] 330! 399 | 465

Table 6 — Probability of False Atarm vs Thresholds for Lognormal Clutter

pfu

o ) 100 1072 | 107% | 107 1073 106°¢ | 1077
. 8 18.0 | 256 | 312 | 3611 403 | 442 475
fitt .
App"”“;“f"e Hter 1.0 180 | 25.6 | 312 361 | 403 | 442 475
a 1.5 180 | 256 | 312 361 | 403 | 442 | 475
- 3 195 | 33.0 | 427 ] 529 | 5731 6211 766
M‘"“hei filter 1.0 166 | 266 | 358 | 498 | 697 | 907 | 1145
mf 1.5 108 | 234 | 430 | 732 1200 1780 | 2470
. 8 S 02 238 190 392 8881 1294

Square-law
quare ';- 1.0 78 | 206 | 444 | 80.8 | 139.0 | 232.0 | 343.0
s 1.5 | 14.4 | 660 | 210.0 | S15.0 | 1160.0 | 25200 | 4500.0

The performance of the detectors are compared by observing the probability of detection vs
signal-to-noise ratio for a fixed probability of false alarm. The probability of detection is computed
using a Monte Carlo simulation. The fraction of time the detector output exceeds the threshold for a
set of randomly generated samplc> 1s computed. This number is the probability of &etection.

Performance rasults are shown in Figs. 8, 9, and 10 for Weibull parameters of « = 1.0, 1.5, and
2.0 respectively. In all cases, the probability of false alarm is 1077, Figurc 8 shows that the anproxi-
mate detector performs better than the matched filter, which performs better than the square-law detec-
tor. The subclutter visibility is defined as the difference between the square-law detector and either the
matched filter or the approximate detector in signal-to-clutter ratio (in dB) for a given probability of
detection. For example, for a probability of detectibn of 0.5, the subclutter visibility for the matched
filter detector is ~ 18 dB, and for the approximate de(ulnr it is ~ 30 dB. Figure 9 shows that the per-
formance of the matched filter and square-law nluu@rs tmproves over those shown in Fig, 8 while the
approximate detector performance degrades a little. ¥ he reason for this is that the clutter is less spiky
in Fig. 9 and the thresholds can be lowered signi!"iumiﬂ_x for the matched filter und square-faw detectors
Figure 10 shows that the approximate and the maiched filter detector vield the same perfoimance
because the detectors are identical for Gaussian noise. The square-law detector performance is abhoud
the same as the square-law detector for a single pul ¢ when Gaussian noise is present becatise of the
heavy correlation between the two pulses. Figures T 120 and 13 show similar resolts Tor foomon ]
clutter.
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Fig. 8 — Detector operating characteristics for Weibull clutier

where a = 1.0 and py, = 107’
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B. CANTRELL

The approximate detector performed much better than the matched filter detector when the
clutter was spiky; performance became nearly ihe same as the clutter approached a Gaussian distribu-
tion. However, the usefulness ol the approximate detector must wait until it is evaluated on sets of
real data where the true multivariate distributions are unknown and are approximeted using the
techniques described.

SUMMARY

A procedure to detect a target in non-Gaussian correlated clutter is obtained. Since the multivari-
ate probability density is unknown, an approximate onc is constructed. The constructed density
matches the true density in the marginals and first two moments. The mapping required and the rela-
tionships between the variances are found for both the Weibull and the lognormal clutter distributions.
The relationship between the correlation coefficients for Weibull clutter is found, and a similar onc for
the lognormal distribution is determined by simulation.

An approximate solution is obtained for the Neyman-Peaerson test by using the constructed mul-
tivariate distributions. Its form is similar to that of a matched filter. In the new coordinates, afler a
nonlinear operation, the matched filter and the new detector are identical in form. For the examples
shown, the new approximate detector performs better than the matched filter when the clutter is spiky
and correlated. As the clutter becomes more Gaussian, the two detectors’ perfermance approach one
another. Although the true performance of this technique cannot really be assessed until it is applied to
real data, it should perform better than the matched filter because the densities used in obtaining it
should much more closely describe the data than the Gauvssian one does.
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Appendix A
LOCALLY OPTIMUM TEST

The locally optimum test defined by Capon [A1] is

3\,
= aS S§=0-

This is also the first term in a Taylors series taken about zero signal strength. For real variables, the
test defined by Martinez [A2] is equivalent to these other tests for additive signal and noise and is of

the form

A, = signal vector transpose - gradient of fy(y).

Either form can be used as long as all terms and expressions involving complex nur,oers are converted
to real and imaginary parts in the secornd procedure. Alternately, using Capon’s fo:m, basic definitions
of total derivatives, and by treating y, and y, as independent analytic variables, the locally optimum

detector can be most easily computed by

Ao =78V (fy) + ey v

wherz V, and V’ ure the gradients delined by

3”59: 3"1@:

2

d
d Vv

and Vy =

~e]

‘2’[ !Q,

Q>
Rl
ra

9
ayy

For the Neyman-Pearson test, the locally optimum detector is

e"}&')s

/\10 =

~jd,

+

(f,v (y)),

(5") [Km R7'V(y) + Bly) R7! V(y) — 1’)(y>]

]. ) [A(y) RV + By R7VV(G) — D(_v)l.

This test still has the unknown phase é,. However, it is 1 form simitar 1o the metched fuier that abo
has an unknown phase. In that case as well as the case heres we can compute and use

o
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B. CANTRELL

with little loss in detection performance. The matrixes are given by
Aly) =V, (7 (y)

Bly) = V;, Wiy))
and the vector is
H‘Jk (|
D(y) = - ki
| IEAC2)
k=1

For the constructed multivariate case

g/ Yk}k)
VI Ye

bkk(y) =T lg (\U//. ) — £ ykyk)

ay (y) = ‘;‘ g Iy +

V Vi Vx

dt = L |y, | ) & )
k - = k7k e
Vi 1 & W) g' SVAS7Y

and ull other values of g, (y) und b, (y) are zero for i 3 4,
For the few examples studied, good performance results were not obtained with this test. How-
ever, it was by observing the form of this test and what role each term played that the approximate

solution used in the text was arrived at. This is why this test is outlined in this Appendix.
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Appendix B
VARIANCE CALCULATIONS

After substituting the expression for g~ (¢) for Weibull clutter into the integral for the variance,
it becomes

bl 1"{;:2 rw E 4"“ ( 2/2 2) d
S — —e exp — o .
Tr= g7 o |Tamz| P & 2o dl
Using the change of variable
1 .,
n= - §°
2 E
and setting o, = 1,
,
M x
ol=—==C(In 2)'2/"f n¥e o= gy
: 2 0
. . , . . 42 . ) . o .
The integral is the gamma function L=+ 1] equet o () TO/a), and the desined esnlt iy
y

obtained.
Afte: substituting the expression for g7 '(£) for lognormal ciutter izio the integral for the vari-

ance, it becomes

N I»IL.:I o

5 A

T 201 90

Using the change of variable

exp [\f? ap el T = 2exp — (877 20 D exp = (67 20 )) de

n =207
and o, = 1,
L, MM - ) ,
;= —I‘-—f“ exp V2o, erf TN = ) dn

Changing variaple again with
=2, et TN = )

and

i
;

n o= ert (7.2,

and noting the differentiar relationship
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B. CANTRELL

After completing the square,

M, 3 )
o)?—l_z_—exp (/D) | (1/( "'")f eVp—-‘;' =

a0y

The remaining integral defined in the bracket is one leaving the result in the text.

dr
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Appendix C
CORRELATION COEFFICIENT CALCULATION

g

Substituting for g7'(-) in the integral,

2 2
M} pewpe (2 In 207 Y [: +1 [»’»;- N 1'
p_v(,\')= 0-3 J;) J; 0-: (l—ps(/\)) EI f/”\
‘(k) 2+ 2
P, §1 E1vx _ i+ &l dE, ders

x I
: 202 (1 = pllk))

al(l = plk)

Using the change of variables
H-Z = flz + §IZ+L

nt=2¢, £,

and their inverses

§V.=—;-V;;2+n: + %\//_LJ._—II?
Ve

™
4
| —
[ —

the integral con be written as

L
AMZQ2 D7 e e Y2
oy = L ( ln) 2 :7\) ( : (n°/2) np
ool 0 o ol - p.:(k)) vt — }L:
y (k) n? ?
x [ ,’ : ———| ¢xp - ; £ - dy dn .
200 (1 = pith)) 21r\‘(l—p\‘(/\)),
Chanuing variables again,
- ,“1

W=

20301~ pltk))

n
20 0= pltkn

z

It

the integral can be written as
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The mterral o the bracke! s the zeroth order Beed tunetany o0 1o oo oo
an be found on page 316 o Rel [3]0 The comanie oo o s
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3]

as shown on page 693 in Ref. [5]. Substituting for «,, the relationship between p (k) and p, (k) is

This integral is equal to

1 3
— + —
o 2

1,3

2 p (k) T
o « 2

2, p‘z(/\')l
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p, (k) = ﬁ) p k) (1 — p2(k))Ye+ ! [1*2 1,3 /r[l ] ,
2 o 2 «a .
Al o) (3 : |
xFlL=+F| |-+ 5] 2pi0)].
[ «@ 2 « 2 pilk
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Appendix D
IMPORTANCE SAMPLING

The importance-sampling procedure [D1,D21 is a Monte Carlo technique that distorts the genera-
tion of the random number so that the events of interest occur more frequently than, but in the same
manner as, the events occur in nature. The probability of the event occurring is tien compensat2d
with a weighting facior so that the true probability of the event is obtained.

To compute the probability density of the detector, the filter values are (uantized by

A= mAX where m =0, .. M — 1.

The probability density is computed by

N
p(X is betweem (m — 1) AX and mA\) = -l}g PN
k=1
where N is the number of Monte Carlo samples and 8, = 1 if no importance sampling is used. The

equation is simply counting the percentage of time the samples fall in the mth interval. For importance
sampling,
IRX‘II -t 1 <t 1
5, = R &P~ 7% R x, —Xg R, x4
.\'I
where R,\.l and R_\,‘ are the covariance matrixes under distortion and no-distortion and x,, and x, are the

values of the random samples generated under distortion and no-distortion. Let o7 and ] be the vari-
ances under distortion and no-distortion Under these conditions,

10 e

Ry=allp.an 1 |
, ] p, (1)

R, =wi p. (1) ] :

and

L2

0
NN R ST

L, =

where the L, matrix is used instead of’ L in generating the random samples.
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