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AN INCOMPLETE LIPSCHITZ-HANKEL INTEGRAL OF Ko

PART I

INTRODUCTION

An incomplete Lipschitz-Hankel integral of cylindrical functions of order zero, C0 , may be
defined by

CeI(a, z) =fZ ea'Co(t)dt

Of interest in applications are the functions Jeo(a, z), Ieo(a, z), and NO(a, z) where J denotes the

Bessel function of the first kind, I denotes the modified Bessel function, and N denotes the Bessel
function of the second kind or Neumann function. Je0 (a, z) and Ne0 (a, z) occur in problems in the

theory of diffraction in optical apparatus [1, p. 227]. The function IeO(a, z) plays an important role in

the study of oscillating wings in supersonic flow and arises in the study of resonant absorption in media
with finite dimensions [1, p. 195].

In this report we are interested in

Keo(a, z) f-r eatKo(t)dt (1)

where K denotes the MacDonald function or Bessel function of imaginary argument. We shall show
that K ,(a, z) can be written in closed form in terms of elementary functions, K 0, K1 , and Kamp6 de

FHriet double hypergeometric functions. As an application it shall be shown that KO(a, z) occurs

when the statistical distribution of the maxima of a random function is applied to the amplitude of a
sine wave in order to calculate the distribution of its ordinate. This latter distribution is of interest in
the study of the scattered coherent reflected field from the sea surface [2].

Moreover we derive formulas for several integrals that are not readily available, and we exhibit
some of the properties of the Kampe de Feriet functions associated with Ke0(a, z).

PRELIMINARY DEFINITIONS

The Pochhammer symbol (a),, is defined for nonnegative integers n as a ratio of gamma func-
tions:

(a), _ r(a + 011' (a) = a (a + I) ... (a + n-1)

(a)W 1 (2)

Manuscript approved January 8, 1986.
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ALLEN R. MILLER

Following Srivastava and Panda [3, p. 631 we define the Kampe de Feriet double hypergeometric func-
tions:

(bq ) ; (Ck);

(|3m);' (}n);

p q k[1 (aj)r+s II (bj)r [| (cj) r

X, y :-- I F I m n rl s!
rs=O r7 (aj)r+s rI (13j)r II (yj),

j=1 j=I j=1

where the Pochhamner symbols (a)n are defined by Eq. (2). For convergence

p + q < I + m + 1, p + k < 1 + n + 1, IxI < oo, |y| < oo, or

p + q = I + m + 1, p + k = 1 + n + 1, and

I xI '1/(P-' + Iy I l/(P-l) < 1
I max tIxi, IYI} < 1

As special cases we define

L [a, (3; y, 5; x, y]

M[a, 1B; y, 8; x, y]

m n=0 (y)m+n(8)mr+n m! n!

= ( (a)m+n (/3)n Xm y_

m n=0 (y)m+n(S)m m! n!

IXI < 00, IyI < °°

lXI < °°, lIl < 1

We may then write

L [a, ,1; y, 5; x, y]

M[a, 13; y, 8; x, y]

= 0 xy ]

= F,, 1°O ly: xly|

SOME ELEMENTARY PROPERTIES OF M[a, ,B; y, 8; x, y]

Substituting [4, p. 266]

(_ - r(a) r(y- a) fr 0p~-(1 - t)y-a-dt

2

p> I
PA I,

(3)

(4)
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where Re y > Re a > 0, and p = m + n into Eq. (4), we deduce an integral representation for M:

Ma, 13; y, 8; x, y I = f OF,[-; 8; xtlta 1(1 - t)-a-(1 - yt)-Ydt

-8-1 * 8+1
- F (y)r(8) x_ 22 _ ( t

r(a)f'(y - a) 0
4 i(xtt 21-

Here we have used the equation

I (z) = (z2+)v OF' [-; v + 1; z2/4]

We obtain directly from Eq. (4) the generating relation

(1 - yt)-0 dt

(5)

00, (a) n xn F
(6)

We now prove the following

THEOREM: Suppose-I < Re(y - a -13) < 0, I arg y I < ir, I arg(1 -y) I < 7r. Then for y - 1,

M[a, ,B; y, s; x, yl =r(Y) -F(y 1-a 3) IF2[a; y -1, 5; x]

+ F(y) F(a +13- Y)
F (a) F (1)

(1 - y)Y--oFi[-; 8; x] + O(1 -y)

M[a, 13; y, 8; x, yl =
r(y)r(y - a -,1)
r(y - a)(y - 13)IF2[a; y - 1, 5; xI + 0(1 - y)

, F(Y)F(B) 8-1
+ r(a +, 3- ) r(Y)r() x 2 (1 - y)Y-a- I81(2Vx) (8)

Proof: The following result is found in [4, Eq. (9.5.7), p. 2491: for a + ,l3-y • 0, +1, +2, ...
I arg z I < 7T, I arg (I1-Z)|I < 7r

2F[a, 3; y; z= r(y) F(y - a -1) 2F,[a,; +a+ -y; l-z]
+ -a) r(y -13) 2 1a, 3 +a+1 -y; 1 -

r (a) r (13)

3

lrrrI,:

or

(7)
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Hence

2 F1[n+ac,3;n+y;Y]= r(n y)r(y- a-,) 2F1[n+ a,13;I+ c+13-y; y]r (y -a)F(n + y -1)

+( -F)7-a-: (n ±y)F(a + -Y) 2F [-y-an+y-,6;1- a-1+y;I-y]
F (n +a) F (13) 2

Now suppose that -I < Re(y - a - 13) < 0. Then for y - I we have

2 F1[n+a,3;n+y;y]-= F(n+y)F (y-a- ) + F(n+ y)Fr(a +3- Y) O (- yY-1- + O y)
r (y -Or(n + y -1) F (n +a) r(/3)

(Y)n F(y)F(y-a- 3) + (Y) r(y)r(a+ --y) (1- y)-a-0+ -y)
(y - /3)n , (y - 9) r ( - a) (e) n r (a) F(f{3)YY

Substituting this result into Eq. (6) gives

Mla, 13; y, 5; X, A =F(y)F(y - a -1) (a)n ,n
F (y - a) (y -1) n(-13)n(5)) n!

+ r(y) F (a +13 - Y) O - 00 + 0( -y)
F (a) F(13) (1=- (8), n! -

from which we obtain Eq. (7). Then using Eq. (5) we obtain Eq. (8).

Employing series rearrangement we deduce

Mk[x, 13; y, 8; x, tx] = ( -() P xP tPIF2[-p;5 , I-13-p; I/t] (9)

Using a general result of Srivastava [3, Eq. (30), p. 1451 we find Eq. (9) in a different form, viz,

M[a, 13; y, 5; tx, t] = p! F2 [-p; 5, 1-13-p; x]

From Eq. (9) it follows that

M[a, 13; y, 8; x, tx] = _(a) _ _ ! 3Fo[13, -p, I -s - p;-; t] (10)

Equation (10) may be obtained directly from [3, Eq. (60.ii), p: 194].

'4



NRL REPORT 8967

We remark that it may be shown that M[a, 1; y, 8; x, y] converges on the unit circle IYi = I if
and only if 2F, [a, 1; y; y] converges on lyI = 1.

SOME ELEMENTARY PROPERTIES OF L [a, 13; y, 8; x, yI

Using series rearrangement we find

L[a, 13; y, 5; x, txl = ) (a) ! 2F[/B.-p; 1-a-p; d
p=O (Y)0 (8)0 P! 2 1 1,-; ;t

This can also be obtained from [3, Eq. (30), p. 145] in a different form. Using Vandermonde's

theorem [5, Eq. (1.7.7), p. 281

2FI[a, -p; c; 1] = (c -a)P(c)p

we find

2F1[0, -p; I- a- = (1- a-1a-p)- p (a + P)p( -a-p)p (a)p

so that we have a reduction formula for L, viz,

L[a, ; y, 5; x, x] = , ) (a+) - - I F2[a + 13; y, 8; xI (11)

This result can be obtained also by using the following general result of Srivastava [3, Eq. (20), p. 551

applied to Eq. (3):

oo Cm~n(P~m(0 nx+n o Xn

C. + (p) (a-) Xm = Cn(p + 0r)nX

m~~~n=O ~~~~n=o n

provided each series is absolutely convergent.

We obtain directly from Eq. (3) the generating relation

L~a,13;y5;x~yI= (a)mn x-
L [a ]; y, 8;t xyI F2 [,B; + YM+ 8; ] (12)

m=O (Y)m (6) m M! F1 mym±;I(2

Finally, using [3, Eq. (43), p. 1501 we obtain

L [a, 13; 'y, 5; -x, x tan2O] = (COS 3 jg (6), (sin2o)"
n=O n

5
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A CLOSED FORM FOR Ke0 (a, z)

From Eq. (1) we write

Ke, (a/1,6 13) = 13 eatKo(,8t)dt

Using [6, p. 891 we find the following formulas:

fJo sn Ko(zs) ds
Ko(z) m +1I m +3 z 1

nm + I 2 2 ' 4

+ z KjW I F) 1 [ mr+ 3 III+3 z 
+ ( + 1)2 2 2 2 4

2"'t r m2 | n2 |

m = 0,2,4, ...

z"1+

(m - I)KO(z) 1 -r 3-r III
2 3 F 11 2' Iz 2 2 z2

-K I I(z) I- m I-m
_ F 2 ' 2 ; -'-2 | In = 1,3,5,...

Integrating term by term we find

exp (at) K(Q3 t) dt = JI , a K((13t) dt
f(,f) 1~0 II = i r! Jf1 t"Ko(13t)dt

,' II t

" )f t" K( it)dt + I ' rO K(Q3t)dt
// =0, 2,4,.. 11 n 1,31 > ... 1

= (. 2 n I *U (Y-2 -+ I I I ( ) (
- (2 )1f f" 'K )1Q30dt + -(2 + I) Pt o13,l

6

(13)

fO st Ko(zs) ds

(14)

(15)

=
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so that using Eqs. (14) and (15)

r'exp (a~t) K0 (13t)dt = z 12) n F2f1; 2 n1 2n 2 

(a (2n I3KI(13) IF2 1; 2n + 3 2n + 3. 3 |
n=O81)d (2n)! (2n + I) 2 2 ' 2 '4 

00 2n+

+ , 0 n~a 22n r(n + 1)F(n + 1)
n,= (2n + 1)! 132n+2

a02n+l K0 (13)
- ~ (2n+1)! (2n) 32 3F0[1, -n, I-n;-; 4/132]

-00 a2n+1 K(3) I (16)
a 3F0[I, ~-n, -n;,-; 4/,81 (1]

n (2n +1)! 13

We shall consider each of the above five sums in the order in which they appear. We find

00 2n

a 1 F2[1; n + 1/2, n + 3/2; 132/4]
n-0 (2n + 1)! 2

= _ ((3/2), (2/! )-IF 2[1; n + 1/2, n + 3/2; 132/4] = L [1/2, 1; 1/2, 3/2; a2/4, 132/4];

00 2n

n-O (2n + 1)(2n ± 1)! IF2 [1; n + 3/2, n + 3/2; )32/4]

n= 2 )(12), (a2 4Y

(3/2),(3/2), n! 2 F2[1; n + 3/2, n + 3/2; 1:32/4] = L [1/2, 1; 3/2, 3/2; (X2/4, 132/4

where in the latter two cases we have used Eq. (12);

a 2,,+ I 22 F(n + 1)Il(n + I)
,,=0 (2n + I)! 1 e

sin (a/13)
2 2.13g _-- "

i(x/131 I . (X +13

7

C:-

r-
1I,
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where we have used [9, Eq. (9.121-14), p. 1041] the result 2 F1[I, 1; 3/2; sin2 z] = z/sin z cos z;

00 2n+1 2n+3
n a (2n) 3FO[,2-n, I-+n;1-;41] =) a (2n +3)!

= 03 1 (a(2/4) ! 3FO[,-2-n,-n;; 4/,(21 = ,3 M 2 1;
3 O4 (5/2),, n! 3 0

and finally

n=0 (2n + 1)! 3 -n, -n;-; 4/132]

= (3/2)n n! 3 Fo[l, -n, -n;-; 4/132] = a M |l

where in the latter two cases we have used Eq. (10).

Defining

3 11 a2 2

' 2' ' 4' 2

Lo(x, y)- I
ni,n=0

(1/2) (1) n x" Y"
(3/2),,+, (312),,,+n m ! n !

(1/2)n, (l), _n _
(112),+n (312) n,+n m ! n !

= L[1/2, 1; 3/2, 3/2; x, y]

= L [1/2, 1; 1/2, 3/2; x,

(1)n xm' y _

(1)n, m! n!
M [1, 1; 3/2, 1; x, y]

0100Ml (x, y) _ F.
ni, n=O

(2) n+n

(5/2) 0+0
(1)n

(2) ,

xm n
Y = M[2, 1; 5/2, 2; x, y]

m! n!

we have from Eq. (16) and the above results

fo exp (at)Ko(,at)dt = KI(a3)1Lo(0 a2/4, 132/4)- _ Mo(a2/4 a 2/12)I

+ Ko(13) [LI (a2/4, 132/4) - 32 Ml (a2/4 a a2/132)I+ sin-'(a/13)
12 a2

8

5 2 21(tl2 a 2 1
2' 2; 4'132J

L1(x, y) _

MO(X, y)-

I
m,n=O

i
m,n=0

(1) n+n
(3/2) 0?+0

Y]

(17)
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which we may write using Eq. (13)

K, (a, z) = z KI(z) [z Lo | a '24 | -a MO 1 4z, a2J1

+ K(zL r[ a a2z2 z2j _ a lMI I a2Z2 a211 + sn (18)

We have then given K,0 (a, z) in terms of elementary, MacDonald, and Kamp6 de FHriet functions.

We remark that in view of Eq. (6) and the definitions of MO and Ml

M 0 (x, y) = 0 - 2F1 [I, n + 1; n + 3/2; yI
n=O (3/2), n!

M (x y) = 2F1 [1, n + 2; n+ 5/2; y]
n=_ (5/2), n!

Since each of the Gauss hypergeometric functions above is conditionally convergent on the unit circle
YI = I except at y = I we see that MO(x, y) and Ml (x, y) are conditionally convergent on lyI = I

except at y = 1.* Hence Eq. (17) is valid for la/,81 < 1, a X ±+1 and Eq. (18) is valid for
Ial < 1, a X ±1. We shall show shortly that Eq. (17) is valid in the limit even when a = ± 13. See
Ref. 1 for other representations of KO(a, z).

In a future report (Part 11) it shall be shown that Eq. (18) is easily extended to the entire complex
a-plane in terms of elementary, MacDonald and Kamp6 de F6riet functions.

KING'S INTEGRAL

Using properties of L and M we have derived earlier we shall derive (a formula for) King's
integral [6, Eq. (12), p. 123]:

Jo exp t KO(Odt=ao expa[Ko(a) + KI()] -1 (19)

that is we shall show Eq. (17) is valid in the limit for a = 13. Using Eq. (8) we find for a 13

MO(a 2/4, a2/132) = 7r Io(a -cosh a + 0(1 - a 2/)2V 1_a2/132

Ml (a 2/4, a2/132) =- 2 1(a) -sinh a + 0(1 - a 2/3p2)

*Also see remark on top of p. 5.

.9
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Substituting these equations into Eq. (17) gives

I sin 1 (a/13) - 2 [[aK,(,3) IO(a) + (ca2/1,) KO(13) II(a)]

fo exp (at)KO(13t)dt = 2 13 2 a2 +a KI(,8) cosh a

02+ C 2 K0(13) sinha + K0(1(3)L1(aY2/4,132/4) + 13K1(13) L0 (av2 /4, 12/4) 0(1-Ca 2 /132 ) (20)

Using the reduction formula Eq. (11) for L we deduce

Lo(x2/4, x2 /4) = sinh x
x

LI(x 2/4, x2/4) = cosh x

Now holding 1 fixed and letting a - 1 we obtain after simplification

f exp (,1t)KO(,1t)dt = [Ko(13) + Kl(,B)]exp 1 + lim J(a, 13)

where J(a, 1) is the first term on the right-hand side of Eq. (20). We find however that

lim [numerator J(a, 13)] = 2 [I - 3K,(13) IO(1) - f3KO(13) I1(13)] = 0
air ~~~~~~~~2

lim [denominator J(a, 3)] = 0
,-13

so that on applying L'hospital's rule we have

lim J(a,,1) 0-1/1

Hence

f exp (3t,)KO(f3t)di = [K,,(13) + Kl([3)]exp [3 - 1/13

and a simple transformation now gives Eq. (19). We may perform a similar analysis for (Y -U3 to

obtain

f exp (-30)K(j30)dt = [k,,(13) - K1 (f3)Icxp(-/3) + 1/13

10
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A DISTRIBUTION FOR THE ELEVATION OF A SINE WAVE., I

Consider the random variable y = H sin 0, where H is a random variable with density K(H, E),
IHI < 00, and 0 is a random variable, independent of H, with density

U(O) = IT

= 0

lol < IT/2

IoI > 7r/2

Let D (y, E) be the density function for y. It is shown in Ref. 2 that

1 ilyI K(H, E)dH 1 -f K(H, E) dHD(y, e) =- , +-J2 , 2 y2
7r too A/H2 _ y2~~~~~~~~- 7T Y /2_y

(21)

Rice [7] and Cartwright and Longuet-Higgins [8] have derived an expression for the statistical distribu-
tion of the maxima of a random function that may be expressed in the form

K(H, E) = e 2 2 | 2 H exp 2 [1 + erf |H 1EI (22)
C 2H ex 2E crH 2o-H 2o-H 2 0rH e

Here 0cH is the standard deviation of H, and 0 < e < 1 is known as the spectral width parameter. It is
shown in Ref. 2 that the standard deviation or of y is given by

cr = 0rH/(X/,71)

where q is defined by

Ii + Er -e2)I

Substituting Eq. (22) into Eq. (21) and using the latter result gives

E f ....,2 r ,2 *1 'I-..,1 ~ _'D (y, E) = exp | 2Y K01 1 + exp | Y2 | j |2 (23)
2whe3r2e 8t2h2e 8E2fu 2On2o -is defneb

where the function 4P(k, u) is defined by

P(k, u) f_ o exp(-s2 ) erf(k u2 + s2)ds (24)

For real u and k it is shown in Ref. 2 that

00l/2 J~o exp (-s2)I (+2( 1+ k 2)
7r~

1 f0 exp (..S. ) erf (kV u2 + s2)ds = tan'1k -i 1 2 f exp I 2 s I Ko(s)ds

11
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Using Eqs. (1) and (24) this may be written

*(k, u) = tan +'(k) IV1/2 + / k Ke| I -k 1 u2(1 + k2 )j

We may then write Eq. (23)

D(y, e) = 2E1 exp 8E2 Y2 1 Kof 8E2 I

+ 2>3/2 ex p 41422 ,, [cos 1 E + E-E 2 K (2e 2 - 1, y2 /8E2 ,q2ff 2)]
IT o-

where KeO(a, z) is given by Eq. (18).

SOME INTEGRALS RELATED TO KeO(a, z)

The following integrals can easily be obtained from Eq. (17):

sin (at)Ko(,Bt)dt = s, in'(a/) - a K,() Mo(-a2/4, -a2/)fo si a) 0 23~t= a -+ 2 1

+ a3 Ko(B) Ml(_a2l4 -a21a2) la/13 I 1, a ' ±ip

fo cos (at) Ko(,1t)dt = 6K1(13) Lo(-a 2/4, 132/4) + Ko(6)L,(-a 2/4, 132/4)

Further, using the result [21 for 0 < laI < 1, 0 < x

ra' +2cos (axt)dt
Ke,0(a, X) = sgn a {exp (x) ° (1 + t2 )t 2

sin (axdt |
J° (1±t~) + a2 2

we find for 0 < a < ,B

;- ( 2O 22 = cosh a | /2 2 KI (13) AMo(a2/4, a 2/132)- -3 Ko(,B) Ml (a /4,a 2/p32)
°- (I +iX2) nh 2 23

- sinh a |,1K, (,8) LO (a2/4, ,62/4) + Ko (,) L I (aX2/4,9,2/4)

12

coS-'(I aI)}
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x sin (ax) dx -cosh a 1 13KI(1)Lo(a2/4, 32/4) + Ko (3) LI( WM2 l,2/4)l

(l~~~~~x~~~) 132+a ~~ ~ ~ /0) x2 X1

-sinh a | ' ,2 a J K(I3)AMO(a 2/4,a 2/12 ) a a3 Ko(13) MI(a2 /4,a 2/1 2H

In addition [9, Eq. (3.367), p. 316] we have

0 em' sin Odt __= exp 12p cos 2 [0 - sin 0 K, 0(-cos 0, p) Rep > 0
(I + t + cos O)At + 2t p

CONCLUSIONS

The Kamp6 de Feriet functions have been used to put in closed form the incomplete Lipschitz-
Hankel integral K,0(a, z) and several related integrals that are not readily available and are of interest

in mathematical physics and applications. Some of the properties of the Kamp6 de FHriet functions
associated with K.0(a, z) are derived. These properties are useful in deriving additional results quickly.

As an example we have given an elementary derivation of a closed form for King's integral based on
generating function techniques.

In addition, the utility of a closed form for K 1,.(a, z) is indicated by deriving a certain density

function that is associated with the scattered coherent return from the sea surface.
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