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PASSIVE LINE-OF-SIGHT STABILIZATION
FOR AN INFRARED SENSOR

INTRODUCTION

A need exists for background data taken under realistic conditions to support the development of
infrared (IR) surveillance systems for military applications. We propose to address this problem by
mounting an existing IR scanner in the cabin of a Naval Research Laboratory (NRL) P-3 patrol plane.
It is positioned to view the outside world through one of the P-3's forward observation windows (the
plastic window material will be replaced by a pane of zinc selenide). This location permits the camera
to be manually operated, which eliminates the need for a complicated and expensive remote control
system.

As with any camera mounted on a moving platform, the instrument must be stabilized against the
P-3's vibration environment. The sensor's 31.8 kg (70 lb) weight and 330 microradian (Arad) pixel
size require the stabilization system to hold a heavy package on a fixed line of sight to an accuracy of
100 grad so that no significant resolution degradation occurs. Problems of this kind are usually handled
with an active stabilization system: gyroscopes attached to the instrument sense changes in direction
and activate feedback loops, and torque motors keep the pointing direction constant. Such a system has
the advantage of being fully automatic, with no operator required. However, it is very expensive, espe-
cially for three-axis stabilization to an accuracy of 100 gArad. The main reason for this is that errors
introduced by the feedback loop and torque motors (especially the latter) require tighter tolerances for
the mechanical system (particularly bearings) which can be met only by expensive, high-precision
machining.

An alternate approach is to use passive stabilization, based on the principle that a gyroscope will
resist rotation about an axis by precessing about a perpendicular axis. This principle is familiar from toy
gyroscopes which, when supported at only one end, resist the force of gravity trying to rotate them
around a horizontal axis by precessing around the vertical axis. This principle is applied to the sensor
stabilization problem by attaching a gyroscope, gimbaled about one axis, to the sensor, so that it is
forced to move with the sensor in one direction, but is free to precess about its gimbal in a perpendicu-
lar direction (see Fig. 1). To quantify this principle, we first develop the equations of motion of a
freely spinning rotor, then couple the rotor to a sensor package.. The theory of gyroscopes has been
exhaustively studied for hundreds of years, so no new physics need be developed; the discussion given
here is tailored to our particular problem. The small angle approximation will be, made in the equations
of motion where appropriate: 0.1 mrad pointing stability will be lost long before the small angle approx-
imation is violated. This permits a simple derivation of the root-mean-square response angle of the IR
camera to a given sinusoidal input disturbance. This response can then be evaluated for the transla-
tional and rotational vibration environment of a P-3. We find that, for reasonable values of system
mass and gyroscope rotor angular mormentum, the stabilization system can easily counter the direct
effects of vibrations. This leaves only mounting system flexure and bearing imprecision as the dom-
inant disturbers of steady pointing.

Manuscript approved March 16, 1984.
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z

/GIMBALED GYRO

Fig. I - Schematic representation of gimbaled
gyroscope attached to sensor. A disturbing force
D in the Y-Z plane results in precession P in the
X- Y plane.

EQUATIONS OF MOTION FOR A SPINNING ROTOR

The orientation of the angular momentum vector of the rotor is specified by the polar angles 0
and 0; 1i is the rotor's rotation angle: 1 = angular speed (see Fig. 2). The Lagrangian (which is just
the kinetic energy in this case) for a spinning rotor1 is

L I' 2 + s sini+ (a + cos 0)2
2 2 

where 13 is the moment of interia about spin axis and I, ( = I2) is the moment of interia about the two
perpendicular axes. This leads to the equation of motion for 0

d IILI _ Ia = IWi + (13- _I) 2 sin 0 cos 0 +1I1/ k sinG = N8 = external torque.

Similarly, for 4 and tA:

d-[II sin 20 + I( + + cos 0) cos 0] = No

+ k cos 0)] = N,

z

s \ > L Fig. 2 - The direction of the rotor's an-
gular momentum, L, is specified by the

Y polar angles 0, 0. + is the rotor's angu-

lar speed.

X Gb

IH. Goldstein, Classical Mechanics, Addison Wesley Publishing Co., Inc., Reading, Massachusetts, 1965.
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The rotor spins on nearly frictionless bearings, so N,=1 0, and is gimbaled so it can turn freely
about the vertical axis, so Np=O. Since we are interested in the stability of the gyroscope, we need to
solve the equations of motion only for small angular displacements around an initial position. We
therefore choose an initial position of 0 = 7r/2; this means sin 0 = 1, cos 0 = 0, and 0, Xk 1 are now
independent angles, as a brief inspection of the Lagrangian shows. We therefore introduce the small-
angle variable q

7= 0- 7-r, sin = 1 + 0(7)2), cos 0 -7q + - (rl3).

The equations of motion are

J1i + (3 -11)+lf2(-) + I3+4 = No

and

d-1,10 + 13(1 + +(-71))(-11)] =

or, to first order in q, for the k equation we have, without loss of generality

Ilk + I31(71) = 0.

Note that I31 = Lis the angular momentum of spinning rotor, so

L -

which, when substituted into the q equation gives, to 1st order in q:

Il7 + L -L = No

or

.. L2 N.,
'TI + '12 =I

As we expected from the small angle approximation, q undergoes simple harmonic motion with
natural frequency wo = LII1 , which is just the familiar nutation frequency found in gyroscope theory.
Once 7) is found by solving this equation, X, and therefore also 'k, can be found immediately.

EQUATIONS OF MOTION FOR A GIMBALED ROTOR

We must now put the rotor in bearings in a housing and mount the housing (gimbaled on one
axis) on the package to be stabilized (this is shown schematically in Fig. 1). In the 0(= q + 7r/2) direc-
tion, the gyro and the package must move together, so the small-angle equation of motion is

'T71 + LO = Nexternal, (1)
as before, with I, replaced by the moment of inertia of the whole system computed about the stabiliza-
tion axis. If the system is forced to move in the TI direction, the gyro will, while it is resisting this
motion, precess in the k direction. Due to the gimbal bearings, this precession motion is not coupled
to the package (as the 0 motion was), so the k equation of motion is the same as before:

IGc + L (-71) = 0 = -L (2)
IG

once again, where IG is the moment of inertia of the whole gyro (rotor and housing) computed about
the gimbal axis.
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For the case of a constant driving torque (DC input), we have, from Eq. (1), since j 0,

N
L

Stabilization will remain good as long as + < 1 radian (larger 4 means that the gyroscope has precessed
until it is nearly parallel to the stabilization axis and can no longer stabilize). Now

N 

so, if L = 40 kg m2 /s (which we expect), a DC torque of 1 N m can be tolerated for about 40 s. In
general, we can say that any constant torque, applied for a time T such that Nr < 40, will not exceed
the capabilities of the stabilization system. This is important because the electrical cables and gas line
(for the cryostat) attached to the sensor exert an approximately constant torque. This "attaching
torque" can be minimized with good design, but should still be expected to precess the gyro through a
large angle over time, a condition that will require operation intervention.

Combining Eqs. (1) and (2), the final equation of motion is now

_+ N No (3)
TIG IT

APPLICATION OF EQUATIONS OF MOTION TO A REAL SYSTEM

General Form of Driving Term and Resonance

The driving term on the right-hand side of Eq. (3) represents input to the stabilization system
from translational and rotational vibrations of the aircraft. Coupling of rotational vibrations through the
bearings on which the system gimbals are supported is negligible, as will be shown later. Coupling of
rotational vibrations through viscous dampers mounted on the gimbal shafts is given by

I NJ = #)o (I
Ida m ping

where the angle /3 describes the angular motion of the airplane, so /3 and 13 are the vibrational angular
velocity and acceleration, respectively. The damping depends only on the difference between /3 and 7;
if these two angular velocities are the same, the viscous dampers have no effect. Since the airplane's
vibrations will be given as a Fourier spectrum /3 = Poel'~t, we can write i3 = (1/tco)/3. With this part of
the driving term separated out, the equation of motion becomes

ITI 7 N ei~ + 'y ehot. (4)

N/I now represents that part of the driving term which couples translational aircraft vibrations into rota-
tional moments of the package-this will be calculated shortly. Writing the natural frequency of the
system as coo = (L2 /ITIG)"12 , we now have the generic equation for a damped harmonic oscillator driven
by a sinusoidal input:

77 + y 7 + wO7o = Dei t".

The solution to this equation is

2 D
7} 2 2 + i(t xt

Wo -a +CO coy
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Ordinarily, we are interested in the magnitude of vq (not its phase) for a given drive term D. Hence we
write

221 -~~~= R .
D 10 | 1|0) ||+ | ) | | y | @0)ct l [.w -.J + (J2(J2

Quantity R, the response normalized to unity at w = 0, is plotted in Fig. 3 for the case
o= 2.r 10 Hz = 63 rad/s, y - 1 s-l (critical damping is yc = 2 wo = 126 s-1, so the damping
assumed here is quite small: y < 0.01 y,).

0
a:
0

N
M

a:
0

a:

1.0 10.
Frequency (Hz)

100

Fig. 3 - Normalized response of passive gyroscopic stabilizer with resonant
frequency F, = 10 Hz. For total response multiply by (27rF,)- 2 .

As we shall see, the driving term D will be obtained from the vibration spectrum of a P-3 and will
be given on a per square root of bandwidth basis, so the root mean square driving acceleration over a

bandwidth Af is (D2AJ)1/2, and the total over all frequencies is fo D2df ) Therefore, the total
rms response of the system is given by qrrms = [71nIl 2, where

71~=f0 h71I~ f= f m0 df.2q 1z 2d (( 2 2) 2 + 22d

We anticipate a sharp resonance, y << 0), so virtually the entire contribution to the integral comes
from within a few v of 0w, where the integrand is well approximated by

D2 D21
2 _ ,,2)2 + w)27y2 4wZ -_ ))2 +

5
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and D () D D( 0) is a constant over the narrow bandwidth of resonance. Therefore, using

d0o = 27rdf,

2 D2 feo=
T~ 8Tro402 Jo

D 2
0 _

dA

(0) - 0),)2 + 2

Hence

D(r- o)
X1 m =w1 (5

This analysis assumes D( )) is reasonably constant over a, and may not be valid for cases where
D(Z) » D(0o) for some 0. This occurs in the P-3 for propeller harmonics at 17, 34, 68, and 136
Hz, which superimpose a discrete line spectrum on the vibrational continuum. The contribution from
these discrete lines will be calculated separately later, and found to be negligible. P-3 vibration data for
the forward observer's station are shown in Table 1 (see also Fig. 4).

Table 1 - Typical P-3 Vibrations for the Forward Observer's
Station (from Lockheed). Note that 1 g = 10 m/s2 .

Low-Frequency 17 Hz 34 Hz | 68 HzContinuum ______

Vertical 0.003 g/AHiz 0.01 g 0.03 g 0.06 g
Longitudinal 0.001 0.002 0.002 0.01
Lateral 0.002 0.002 0.006 0.1
Roll <0. 1 rad/s 2AM <0. 1 rad/s2 1 rad/s 2 10 rad/s 2

Pitch < 0.05 0.05 0.05 0.6
Yaw 0.013 0.02 0.02 0.35

0 I 100 200 300 400

0.06

E

0

.0

0.0
500

Frequency (Hz)

Fig. 4 - Typical vibration spectrum for P-3, forward observer's station
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Effect of Static and Dynamic Imbalance

The dominant driving terms are due to imprecise static and dynamic balance of the package,
resulting in aircraft linear accelerations coupling into rotational motions of the package. For static
imbalance (referring to Fig. Sa): given a package with mass M and radius of gyration r (so I = Mr2),
out of balance by distance b, the torque resulting from a translational vibration of the support bearings
given by aei@' (a is the acceleration per AM) is

D = NI = a _ba

Mr 2 r2

So, from Eq. (5),

ba 1

/rms r2 2wo/Iry-

Using

b = 0.001 m,

r = 0.3 m,

a = 0.1 m/ (s2 irH),

oo= 27r * 10 Hz = 63rad/s, and

,,= (1 s)- 1

gives

7Arms = 10 grad

which is well within the 100 Arad pointing stability required. Note that a = 0.1 is a generous estimate;
it is a factor of 2 or more higher than actual P-3 vibration data.

A similar situation exists for dynamic inbalance (referring to Fig. 5b). For a differential linear
acceleration between the support bearings of ael", the torque on the package is

N = [cma * 1 - cma +Jeiet

12 -11 t.

= cma L ew t cma e't

so the driving term is

D N/I cma ca m
Mr r2 M

Using

m = 0.02,M
c = 0.5 m, and

a = 0.1 m/ (s2V-H-Z7

gives

q= 80 gtrad

7
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which is as much as can be tolerated. This shows that achieving c (mM) < 0.01 m is desirable for
dynamic balance, but we should again note that the value of 0.1 for a is too high, especially for the
differential acceleration of the bearings.

M MASS OF ENTIRE PACKAGE
(SENSOR AND GYRO)

I -

D'ORT CENTER OF
RING GRAVITY

OTATION AXIS
ISSES C.G.BY
ISTANCE b

(a) static imbalance

M

(b) dynamic imbalance

Fig. 5 - Geometry of (a) static and (b) dynamic imbalance. In (a), rota-
tional motion of the package is induced by a translational acceleration of
the support bearings perpendicular to the page, while in (b) a difference in
the acceleration of the two bearings is required.

Effect of Rotational Vibrations

Rotational vibrations of the airplane are coupled to the package through the bearings on which it
is mounted. According to bearing manufacturers (e.g. Fafnir Corporation), the torque transmitted
through a bearing is nearly independent of load and angular velocity (unless they are very high), and
can be expressed by

N = NO Sgn (I]-
where NO (- a few hundredths of a nt - m) is a property of the bearing, and Sgn, the sign function, is
+ 1 depending on the sign of its argument. If good stabilization is assumed, i.e., j << /3, then 1 can
be neglected and all we need to know about the above expression is how long the torque will have the
same sign. An order of magnitude estimate of this time is

O3rms/O3rms,

8
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i.e., the rms value of / divided by the rms value of its rate of change. Since

and, from , = r [ f
10)

iprms = 1f 12df 1

we can find T, once the angular vibration spectrum of the aircraft is known.

For a P-3, the continuum spectrum of /8 is reasonably constant over the frequency range of
interest, so it factors out of the integrals; T can be easily estimated to be < 0.1 s, using the low-
frequency cutoff f, = 0.1 Hz discussed below. Combining this with the low transmitted torque of the
bearing, No0 0.01 nt m, shows that, since Not 10-2 << 40, this torque, caused by rotational
vibration of the airplane, represents a completely negligible disturbance to the stabilization system.

For a given component of the P-3's discrete vibration spectrum, /3 = /3 t e'@ and an adequate
approximation to the driving torque can be obtained by noting that Sgn (/3) - Re (eia, so that the
driving term becomes

D ei(t= No eiot
I 

The response to this drive is therefore
D No/I

71wg._.2 + ion 0)o2 _ )2

unless X =) wo. The first discrete frequency in a P-3 is X = 2ir - 17 Hz = 107 rad/s. As long as wo is
kept somewhat smaller than this, say wo = 2ir - 10 Hz= 63 rad/s. Then, using No < 0.01 nt * m,
I - 10 kgm2 , we find

q < 1 grad.

The other and more important coupling of aircraft rotational vibrations to the package is through
the rotational dampers used to limit the system response to resonance. Equation (5) suggests that v
should be large (heavy damping) to hold down the amplitude of the resonant peak, but Eq. (4) shows
that a large y increases the rotational vibration driving term, which is especially to be feared at low fre-
quencies. A balance must be found. Setting D (Wo) = y/3/a 0, we find from Eq. (5) that the resonant
response to continuum angular vibrations is,

2w 2/j 2w 2

Using /3 < 0.1 rad/s2 from P-3 vibration data and wo0 - 60 rad/s, y==1 s- gives

n 15 trad.

The low-frequency response is

0| t . 2 1 /2

71= If 2 (vii/ 2 )2 ~2 2 df/

where fc is a low-frequency cutoff below which the continuum vibration spectrum does not extend. A
conservative choice is fc = 0.1 Hz. This choice is motivated by the fact that a sinusoidal angular
acceleration of /3 = 0.1 rad/s2 would require an angular motion of /3 = ,/3W? - 0.3 rad - 15°, which
does not happen on a P-3. Thus

7 if fO/2I do| - eYn 15 jurad,
W 0 c 21rw c/

9
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which shows that y 1 s1 is a reasonable compromise. (Actually, y will probably be a few times
bigger than the 1% of critical assumed here, but f, will be larger than 0.1 Hz in compensation.)

The vibration environment in the P-3 is composed of a continuum part, which is fairly constant
over the range from 0 to 500 Hz, plus a discrete spectrum of propeller harmonics, of which the dom-
inant components are at 17, 34, 68, and 136 Hz. At the forward observer's station (depending on how
the propellers are synchronized) vibrations at these frequencies may exceed the continuum by a factor
of 10 at 17 and 34 Hz, and as much as 100 at 68 and 136 Hz. A typical example of this vibration spec-
trum is shown in Fig. 4.

The stabilization system will be shock mounted in the P-3. Therefore, the vibration spectrum
input to the stabilization system will be the P-3 vibration spectrum multiplied by the transmissibility of
the shock mounts, which also (obviously) function as vibration isolators. The transmissibility of the
shock mount system is given in Fig. 6, which shows that the discrete frequencies are suppressed by fac-
tors comparable to their enhancement above the continuum and hence are unimportant. This is done
at the price of multiplying a section of the low-frequency continuum by the resonance peak of the
mounting system-about a factor of 5. This presents a problem only if it coincides with the resonant
frequency of the stabilization system. It also shows that the resonant frequency of the shock, mounting
system (about 5 Hz) must be kept reasonably separate from the resonant frequency of the stabilization
system (about 10 Hz).

C-
W

z
I-

10.
Frequency (Hz)

100

Fig. 6 - Transmissibility of typical shock mounting system, F, = 5 Hz

CONCLUSIONS

The foregoing analysis shows that with proper balance of the package and care taken in preparing
the shock isolation system, the passive approach to stabilization can easily handle the vibrational
environment of a P-3. The stabilization system itself does not introduce unacceptable errors. This
leaves only the mechanical tolerances of the mounting system: if a shaft is mounted on two ball bear-
ings 50.8 cm (20 in.) apart and each ball beating has 25.4 ,um (0.001 in.) of imprecision (this is typical

10
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for standard bearings, higher precision bearings are available only on special order), the shaft could be
expected to have an extreme wobble of ±50 Arad. Combined with a small amount of flexure in the
shaft itself, this shows that the main constraints on pointing stability are mechanical in nature and can
be solved by standard design techniques.
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