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OPTIMUM DEPTH OF PROPAGATION IN SHALLOW WATER

INTRODUCTION

In practical underwater acoustic propagation measurements, the acoustic signal is always
detected against a noise background, usually dominated by the ocean ambient noise. Thus a
quantity of interest in propagation problems is the ratio of the signal level to the noise level, S/N.
In shallow water, the signal level and the noise level are strongly influenced by environmental condi-
tions, particularly the sound-speed profile in the water column, the sea state, the wind speed, and
the structure and acoustic properties of the bottom. In addition, the signal level depends on the
distance between the source and receiver and on their respective depths, while the ambient noise
level depends on the strength and distribution of the noise sources and on the depth of the receiver.
Of the many quantities influencing the S/N, often only the receiver depth can be controlled. The
problem then is to determine the receiver depth which maximizes the S/N for a specific source
depth.

The solution to this problem depends on the amount of information available about the
environmental properties and the depth of the source. Assuming that the prediction models used
correctly account for the features of the propagation and noise problems, a complete set of
environmental data (as required by the models) and knowledge of the depth and range of the source
would allow an accurate prediction of the optimum receiver depth. With incomplete data, or no
data at all, it is still possible to make useful predictions of the probable optimum depth.

In this report numerical models are used to generate transmission-loss and wind-noise levels for
a variety of typical sound-speed profiles and bottom types. These results are combined to give the
relative S/N as a function of depth for a number of sets of environmental conditions often found in
shallow water. From these, the optimum receiver depth is obtained as a function of source depth.
The results are analyzed to determine the factors controlling the optimum depth. Finally conclu-
sions are drawn as to the dependence of the optimum receiver depth on the environment.

THEORY

The transmission-loss model used in this study is based on a normal-mode representation of the
acoustic field [1] .The wind-noise model, which is based on the same normal-mode model, is a com-
puter implementation of the theory described in Ref. 2. Both models include the following features
of the shallow water environment: depth-dependent sound speed in the water column and sedimen-
tary layer, absorption in the water column and bottom, and attenuation due to roughness at the
surface and at the bottom interface.

The transmission loss (TL) is defined by the equation

S = SO -TL, (1)

Manuscript approved May 10, 1983.
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GERSHFELD AND INGENITO

where S is the received signal level and SO is the source level; both quantities are expressed in dB
referenced to 1 Pa. Similarly it will be convenient to define the quantity W by the equation

N = No + W, (2)

where N is the received wind-noise level and No is a source level for wind-generated noise. The S/N
is

S-N = So -No-(TL + W), (3)

from Eqs. (1) and (2). Since we are interested in the depth dependence of the S/N, we define the
relative signal-to-noise level by the equation

R = -(TL + W). (4)

The quantities TL and W are outputs of the transmission loss and wind-noise models. Both TL and
W contain the environmental dependence of the received signal and noise levels plus their depen-
dence on receiver depth. In addition TL depends on source depth.

CALCULATION PARAMETERS

Figure 1 shows the three generic water sound-speed profiles used in the calculations: negative
gradient, isovelocity, and positive gradient located within the 100-m water column. For each
profile, calculations were made for four bottom types: fine sand, sandy silt, sand-silt-clay, and silty
clay. The sediments selected span nearly the full range of sediment types found in shallow water
[3] . Table 1 lists the accoustical properties of these sediments. Reference 3 presents the sound-speed
profiles used in the sediment (Fig. la). In addition, a surface wave height of 0.3 m rms, correspond-
ing to sea state 3, was assumed. For each water sound-speed profile and bottom-type combination,
calculations were made at five frequencies: 50, 100, 200, 400, and 800 Hz, with source depths at
25 and 50 m. The transmission loss and noise results were combined to get relative S/Ns at 25 km,
and from these the optimum depths were determined.

Table 1. Properties of Sediment Types Modeled

Sediment Type Density(gim/cim3) Porosity(%) I Velocity Ratioa

Fine Sand 1.941 45.6 1.145

Sandy Silt 1.771 54.1 1.080

Salt-Silt-Clay 1.596 66.3 1.033
Silty Clay 1.421 75.9 0.994

aVelocity Ratio = velocity in the sediment/velocity in seawater (measured at the
water-sediment interface)
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Fig.1 (a) - The three generic sound-speed profiles used in the calcula-
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Fig. 1(b) - The four sound-speed profiles in the
sediments used in the calculations: fine sand,
sandy silt, sand-silt-clay, and silty clay
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GERSHFELD AND INGENITO

TRANSMISSION LOSS RESULTS

In most cases, our calculations show that the minimum incoherent transmission loss is located
with the receiver at the same depth as the source. (The incoherent loss is obtained by adding the
energy contributions of the individual modes as opposed to the coherent loss where the phased
pressures are added). This result agrees with the results which Weston [4] and Buckingham [5]
obtained on theoretical grounds. The degree of the localization of the low-loss region within the
water column is dependent upon the number of modes that made up the modal acoustic field. For
the cases modeled, typically eight to ten modes are present in the modal acoustic field when a well-
defined region of minimum transmission loss occurs. An example of this effect is shown in Fig. 2.
Incoherent loss is plotted as a function of receiver depth at three different ranges (10, 25, and
50 km). The source is at middepth (50 m) and emitting at 800 Hz. The sound-speed profile has a
negative gradient, and the sediment is fine sand. It is readily apparent that the depth at which loss is
a minimum at the three different ranges is at the sourced depth, and the relative level of transmis-
sion loss as a function of depth in the water column is nearly independent of the ranges modeled
(10 to 50 km). (The range independence of the relative level of transmission loss as a function of
depth at a particular frequency in the water column was found in all of the cases modeled). Also
note that the loss is considerably higher in the upper portion of the water column than in the lower
half. This is an important point that will be addressed later.
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Fig. 2 - Incoherent transmission loss as a
function of depth for ranges of 10, 25,
and 60 km. The source is at 50 m and
emitting at 800 Hz. The sound-speed
profile is a negative gradient and the sedi-
ment type is fine sand.
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Similar plots of transmission loss vs depth were made for all combinations of source depths,
frequencies, sediment types, and sound-speed profiles. In all of the cases, the location and relative
strengths of peaks were very similar for the three sandy sediments modeled (fine sand, sandy silt,
sand-silt-clay). Thus for the purposes of this study, the propagation environments can be reduced to
sandy type bottoms and silty clay-type bottoms, each with isovelocity, negative gradient and posi-
tive gradient sound-speed profiles in the water column.

From the large collection of cases modeled, only two yielded broad regions of locally low loss
that remained in the same portion of the water column independent of source depth. The two cases
were for the silty clay sediment with a negative gradient profile with source depths at 25 and 50 m
as shown in Fig. 3. In both of these cases the first mode greatly dominated the acoustic field.
Because there is essentially only one mode, the depth associated with minimum loss is independent of
source depth. The minimum loss is located approximately where the mode itself is a maximum (see
Fig. 4).

SILTY CLAY
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SOURCE DEPTH = 25 mCI II
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300
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RANGE =25 km
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(a) Fine-sand sediment (b) Silty-clay sediment

Fig. 3 - Incoherent transmission loss as a function of depth
at 25-km range. The sound-speed is a negative gradient, the
source is 400 Hz, and the sediment type is silty-clay.
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Fig. 4 -Mode amplitude as a function of
depth of the single contributing mode to
the signal field for the case shown in Fig.3

WIND-GENERATED NOISE RESULTS

For a given sound-speed profile, the calculated relative noise intensity distribution (NL in
Eq. 4) as a function of depth is insensitive to the different bottom types modeled. However the
absolute intensities were higher for the less attenuating sands (by 3 to 4 dB) (Fig. 5a) than for
silty clay bottoms (Fig. 5b).

The positive gradient has a significant effect on the distribution of wind-generated noise in the
water column. The calculated noise level was as much as 5 to 10 dB greater above the gradient than
below the gradient. The depth dependence of noise level is especially evident at 100 and 200 Hz
(Fig. 6). This level difference is due to the lower order modes being trapped above the sound-speed
gradient. The effect of the positive gradient is to allow only negligible interaction of these low-order
modes with the bottom; hence, there is relatively little bottom attenuation of these modes. The
result is that the lower order modes dominate the acoustic noise field in the upper portion of the
water column. In fact at 100 Hz it is only the first mode that contributes significantly to the noise
field. Below the gradient the contribution of the low-order modes is negligible.

In downward refracting gradients, the noise intensity distribution exhibits a small maximum
near the surface and a small minimum near the bottom. This level difference is greatest between
50 and 200 Hz and is typically 2 to 4 dB.

For isovelocity water, the noise level is nearly constant throughout the entire water column for
each frequency.
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OPTIMUM DEPTH ANALYSIS

To understand the various environmental effects on propagation in shallow water from a
numerical simulation study, one must assimilate a rather large amount of data. It is necessary to
retain enough of the data to arrive at meaningful conclusions, while not retaining so much as to be
inundated with extraneous information. This dilemma is highlighted by the following two examples.

First, we return to the transmission loss curves shown in Fig. 2. The source is at middepth and
emitting at 800 Hz. The water sound-speed profile is that of a negative gradient above a fine sand
sediment. Obviously the minimum transmission loss occurs at middepth and, as mentioned previ-
ously, there is significantly less loss below than above the middepth point. In fact the minimum loss
at 50 m is less than 2 dB below the broad region of loss located below middepth. Thus, the received
signal level is relatively insensitive to displacements in receiver depth below middepth. This is the
type of information that should be retained when synthesizing the general conclusions about trans-
mission loss applicable for cases that are similar, but not quite the same as those modeled.

The second example (Fig. 7) is that of a S/N plotted as a function of depth at five different
frequencies. This example highlights the problem of locating the generally best or optimum depth
as a function of frequency while still retaining information about the sensitivity of the field to
displacements in the vicinity of the optimum depth. This example is typical of cases where a
velocity gradient exists in the water column in the sense that superficially the curves bear little
resemblance to each other at the different frequencies. One is tempted to look only at the depths of
optimum signal to noise for each frequency to draw general conclusions as to the frequency depen-
dence of the signal-to-noise field for this particular environment. If we retain only the point in
depth with highest S/N, this would greatly simplify the problem, although in the process one would
lose information about the signal-to-noise fields' sensitivity to local displacements in depth about
these maxima.

As shown earlier, the relative signal-to-noise level is defined by the equation

R = - (TL + W).

The results in this report have been referenced to an arbitrary level as follows

S-N = 100-(TL + W). (5)

The task is to now find the location of the optimum S/N as a function of frequency for a particular
environment. In this context, environment refers to the set of fixed conditions needed to calculate
the S/N (source depth, sound-speed profile, and sediment type). To differentiate between broad and
narrow maxima and to remove locally minor perturbations within the S/N interference field,
contours of signal to noise 2 dB below the maximum for a particular environment in a frequency-
receiver depth plane have been constructed. The interpretation of the contours of S/N 2 dB below
the maximum is: for the particular environment in question, any coordinate (frequency, receiver
depth) between the contours is within 2 dB of the maximum S/N for that particular environment.
Figures 8 to 11 show the resultant contours of S/N 2 dB below the maximum. The information
contained in Figs. 8 to 11 is also listed in Table 2.
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Fig. 7 - SIN as a function of depth at
frequencies. The sediment is fine sand,
sound-speed profile is positive gradient,
source depth is at 50 in, and the range is
25 km.

The simplest method of determining the effect of noise on S/N is to construct contours of
transmission loss 2 dB above the minimum (Figs. 12 to 15) in the same manner that the contours of
S/N 2 dB below the maximum were constructed. The differences between the two should highlight
any influence that the wind-generated noise has on choosing an optimum depth.

By comparing the appropriate contours of S/N 2 dB below the maximum with the contours of
TL 2 dB above the minimum (Figs. 11 and 15), looking at the positive gradient, the noise tends to
lower the region within the contours of S/N 2 dB below the maximum. This is particularly true in
the region of 50 to 200 Hz.
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GERSHFELD AND INGENITO

Table 2. Approximate Optimal Depth Ranges (m) as Found from the
Contours of S/N 2 dB Below the Maximum at 25 km

SD = 25 m, 200 to 800 Hz

Sediment I Positive Gradient I Isovelocity Negative Gradient

Fine Sand 10-35 10-90 10-30

Silty Clay 10-35 35-90 65-95

SD = 50 m, 200 to 800 Hz

Sediment Positive Gradient Isovelocity J Negative Gradient

Fine Sand 40-60,85-90 40-60 50-95

Silty Clay 45-60 40-85 65-95

DISCUSSION AND CONCLUSIONS

The results embodied in the contours of S/N 2 dB below the maximum provide a high density
of information which would be less evident if presented in a less compact form. The environmental
effects inferred from the contours are equally valid at receiver ranges other than 25 km due to the
range independence of the realtive levels of transmission loss as a function of depth in the water
column. Limited sensitivity studies in which the depth and thickness of the channel and the water
depth were varied indicate that the results are fairly insensitive to water depth and to small changes
in sound-speed profile. Examination of Figs. 8 to 15 leads to the following conclusions:

* The depth of the maximum S/N is nearly the same as the depth of minimum transmission
loss. The wind-generated noise has a significant effect only when the source is below a positive
gradient. The effect is to deepen the region of maximum S/N by approximately 10% of the water
depth above 200 Hz. and to deepend the maximum region to well below mid-depth in the
frequency range of 50 to 200 Hz.

* For 200 Hz and above (the region where wind-generated noise often dominates the ocean
ambient noise), the optimum depth is nearly independent of frequency.

The following conclusions are valid for frequencies of 200 Hz and above:

* The optimum depth is nearly independent of sediment type. The exception is silty-clay,
with a negative sound-speed gradient.

* The optimum depth is equal to the source depth with the following exceptions:

a. for a negative gradient profile over a silty-clay sediment the optimum depth is well
below middepth,

12
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b. for an isovelocity profile over a silty-clay sediment with a source at 25 m, the optimum
S/N is found at approximately middepth.

(An explanation for the preceding exceptions (the dominance of the first mode of propagation) is
given in the discussion of the transmission loss results.)

* In the majority of cases (75%), the optimum depth is middepth or below.
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