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PARAMETRIC STUDY OF A NONSUPPRESSING CFAR DETECTOR

INTRODUCTION

Historically, men were used to extract the presence and location of targets by observing radar
displays. After the development of integrated circuits, the construction of devices to automatically
detect and measure target locations became feasible, and automatic detectors were built to achieve fast
reaction and massive data handling capability. A brief discussion of automatic processing is given in the
"Radar Handbook" edited by Skolnik [1]. One of the practical detectors used in many applications is
commonly termed a constant false alarm rate (CFAR) detector [2].

The CFAR detector basically operates as follows. For each transmitted pulse, the returned signal
is sampled at the range resolution of the radar and each sample is compared to a threshold. This thres-
hold is derived from the signal sampled over range intervals surrounding the test cell. These samples
are called reference cells. Signals above the threshold are declared detections. Basically, the CFAR
detector looks for a large amplitude signal existing over a short time interval relative to a surrounding
background of much lower amplitude.

The performance of CFAR detectors has been evaluated both analytically and experimentally.
Finn and Johnson [3] studied the performance of a simple CFAR detector for a single target in additive
noise against a noise background as a function of the number of reference cells used. When the noise
is identically Rayleigh-distributed across the reference cells and independent from reference cell to
reference cell, the loss compared to optimum performance is on the order of less than 1 dB for the
number of reference cells normally used. Experimentally many types of CFAR detectors have operated
satisfactorily in a variety of environments using modest changes in thresholds according to the environ-
ment [4]. For example, detections are usually not made by the CFAR detector in radar signals contain-
ing heavy clutter because the statistic derived from the reference cells becomes large, which in turn
creates a large threshold. However, the threshold must be increased slightly in these environments to
maintain desired false-alarm rates. One reason why no single threshold yields a truly constant false-
alarm rate is because the reference cells are often nonhomogeneous. Furthermore, the probability dis-
tributions may differ from the distribution used to set the thresholds. However, as previously noted,
adjusting the threshold according to the environment usually will result in adequate performance.

An important case in which the performance of conventional CFAR detectors degrades is when
either a target or interference spike is present in a reference cell and all other reference cells contain
identically distributed independent noise. In this case the threshold derived from the reference cells is
much too high; consequently, targets which would normally be detected are suppressed. To keep this
from occurring, others [5,6] considered techniques of eliminating the reference cells containing the
contaminating signal (target or interference spike) from the calculation of the threshold. Trunk, Can-
trell, and Queen [5] considered removing all signals above a fixed threshold from being used in the
threshold calculation. The detector used a ranking procedure so that the fixed threshold could be set
and used. However, in many applications it is undesirable to lose the amplitude information through
ranking and, consequently, this procedure cannot be used. Rickard and Dillard [6] describe a procedure
for removing the largest signals in the reference cells from the calculation of the threshold. Good
results were obtained. Unfortunately, the ranking circuits for locating the reference cells containing the
largest amplitudes are cumbersome and somewhat complex making the implementation unattractive.

Manuscript approved November 26, 1982.
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Another means of circumventing the losses which occur in CFAR detectors when another target
appears in the reference cells is to use a log CFAR detector. The log CFAR detector takes the log of
the time ordered amplitude cells X (i) before the signal is passed through a conventional CFAR proces-
sor. Trunk [7] shows the detector works fairly well when several targets contaminate the reference
cells. The log CFAR detector computes the threshold from the geometric mean rather than the arith-
metic mean used in the conventional linear CFAR detector. Because the geometric mean is less sensi-
tive than the arithmetic mean to a few large amplitudes, the detection losses are less in the log CFAR
detector than in the conventional lincar CFAR detector when the reference cells are contaminated.
However, the log CFAR detector’s threshold is very sensitive and is difficult to set to give good opera-
tion over a wide variety of signals.

The purpose of this report is to describe a CFAR detector which is easy to implement and which
will detect targets with little loss in the presence of a contaminating signals in the reference cells. Its
performance is evaluated in a conventional way through simulation. First, the thresholds for fixed
false-alarm rates are set. The probability of detection is then evaluated in the absence and the presence
of contaminating signals in the reference cells.

The basic idea of this nonsuppressing CFAR detector is to divide the set of reference cells into
batches and estimate a threshold based on each batch. A contaminating signal in one of the reference
cells will only contaminate the threshold based on the batch containing the extraneous signal. By only
requiring the test cell to exceed M out of N thresholds, we may still detect (with some loss) in the
presence of at least N — M contaminating signals.

DESCRIPTION OF CFAR DETECTORS

The conventional and the nonsuppressing CFARs are discussed in this section. Figure 1 depicts
the conventional CFAR. The signal is fed into a tapped delay line where the clock rate corresponds to
the range resolution of the radar. As the signal propagates through the delay line, each sample or cell
is tapped off to an appropriate destination. The first Ng/2 and the last Ng/2 cells (reference cells) are
fed to an adder which forms the sum. The cells referred to as guard cells serve only to isolate the test
cell from the reference cells. The number, G, of guard cells on each side of the test cell will be a func-
tion of the resolution of the radar and the expected size of the target, and are there to keep a target
with appreciable return in more than one cell from being included in the reference cells and suppressing
itself. The sum of the reference cells can be represented mathematically by

Ng/2
Y@)= Y [X(i-G-j)+X(i+ G+ )]
j=1

where X (K) refers to the sampled value of the Kth range cell, and N; and G are defined as above.
For cach isuch that

where Ny is the tota! number of range cells in a range sweep. There is a test cell, X (i), which we wish
1o test for the presence of a target, and a value Y (i}/ Ny, which is an estimate of the environment sur-
rounding X (i). Conventional CFAR operation can be expressed mathematically by declaring a detec-
tion in range cell i when

K'X(i) 2 Y(@). (2)
K' is a multiplicative factor (which includes the number of reference cells, N;) determined by either
analysis, simulation, or experimentation to yield the desired probability of false alarm, Pg,.

Figure 2 depicts the nonsuppressing CFAR. Again the nonsuppressing CFAR employs a tapped
delay line, but the individual samples in the reference cells feed into a number of adders, each of which
forms a sum of a contiguous subset of the reference cells.

2



NRL REPORT 8671

GUARD CELLS
TEST CELL

FTSCYTIND

i
t

3
T

TAPPED
DELAY LINE

» TAPPED
DELAY LINE

TARGET
DECLAR-
ATION

ADDER (Z)

Fig. 1 — Conventional CFAR

TAPPED DELAY TAPPED DELAY
LINE LINE
; I |

GUARD CELLS
TEST CELL

3 . SR
©- ©
©- ©
G ©

b
M
TARGET
DECLARATION
Fig. 2 — Nonsuppressing CFAR
For this detector, a detection in the ith range cell is declared if
Ny
Y 8,() > M, (3)
J=1

where M is an integer threshold and
1 if K"X() 2 Y;(i)
0 otherwise,

8,(i) = 4)

with K" being a multiplicative factor (including the number of cells added in each adder), Y;(i) is the
sum in the jth adder and N4 is the number of adders.
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In Fig. 1 and Fig. 2, the time-ordered sequence of range cell amplitudes is clocked through the
delay line from left to right. The appropriate sums of the amplitude cells are performed each clock
cycle. The test cell is multiplied by a factor K’ or K" to avoid a division of the sums. The remaining
operations are simple comparators. In some applications it may be advantageous to implement the
moving window integrator given by Eq. (1) in a recursive form as described in Ref. 5. The recursive
implementation can yield a significant hardware savings when Ny is large.

DESCRIPTION OF SIMULATION AND THRESHOLD DETERMINATION

To perform an evaluation of the nonsuppressing CFAR detector by purely analytical means would
be very difficult if not impossible. With the availability of a large digital computer, the numerical deter-
mination of probability of false alarm (P;,) and probability of detection (P,) of the CFAR is possible
through simulation.

The signals generated for this simulation are linearly detected Gaussian noise for the interference
environment and a constant level signal for the target. The random numbers generated by the com-
puter are uniformly distributed between 0 and 1. The Gaussian distributed random variables G| and G,
needed can be generated from these uniformly distributed random variables U; by

G, = o /=2 In(U)) sin Qw U,), (5
and

Gz’—" o \/—2 lanl) {0} (27TU2),

where o is the desired standard deviation of the Gaussian random signal. The linearly detected signal

R =\/G? + G3 (6)

is Rayleigh distribnted with mean up and standard deviation, o g given by

we=o [ ®
0'R=0'1/2_%: (8)

where o is the standard deviation of the underlying Gaussian process. Notice that the Rayleigh distri-
buted signals may be obtained directly from the uniformly distributed signals U by

R =0 ~=21n(0). ()]

The noise samples in the reference cells were generated by Eq. (9) but when it was necessary to add
targets to the noise then the noise components were generated by Eq. (5), the target added, and the
envelope signal is generated by Eq. (6).

and

Since the CFAR we are evaluating required the test cell to exceed M out of N thresholds, each
threshold based on a subset of reference cells, we found it convenient , especially for determining false
alarm levels, to order the thresholds by value (e.g., ¥, < ¥, £ Y3 < ... < Yy) and check only the
M™ value Y),. The threshold Tis derived from

T=K fig,

where K is a constant multiplier of an estimate of the mean of the Rayleigh distribution ug. The
coefficient, K, is the multiplicative factor of Egs. (2) and (4). The estimate [y is made for each of the
N subsets of reference cells. Conventionally, the multiplier K is defined in terms of the the underly-
ing Gaussian process, that is,
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T= K]O'-
Using Eq. (7) and the fact that g is an unbiased estimate of ug, we can define
2 .
T = Kl —— KR, (10)
T

where the threshold T is now defined in terms of the standard deviation of the underlying Gaussian
process. We wish pow to determine the value of K, which will yield a given probability of false alarm
P;,. We can do this by performing a large number of trials in each of which:

® The noise in each reference cell is simulated.
® The references cells are summed in subsets and the subsets ranked.
® The noise in the test cell is simulated.

®  An estimate of K is made based on

where S is the value of the test cell, NR is the number of reference cells in each subset,
Y, is the sum of the reference cells in the Mth subset, and C is the conversion factor
V.

® The value of K, is placed in a histogram which is a sample density of the random value of
the test cell normalized by an estimate of the standard deviation of the underlying Gaus-
sian process.

In short, for each case, for the given S and Y),, a false alarm would occur if the threshold were set by
the value of K, calculated by Eq. (11). This is the relationship between threshold and false alarm for
which we are looking. When the trials are completed, the sample distribution is obtained by integrating
the sampled density from the tail. The value of the sample distribution at K is the P, associated with
the threshold T, given, by Eq. (10).

Since we are interested in small Pg,’s, a large number of trials would be necessary to have any
confidence in our estimates of Py. To increase the number of trials which result in the occurrences we
are measuring (in this case false alarms), we use importance sampling [8,9]. The basic principal of
importance sampling is: if the event we wish to observe is unlikely with the true density function,
obtain the samples from a modified density function with a higher probability of yielding values in the
region of interest. Because we obtain more samples, each sample is weighted by

W= p(X)/P,(X),

where p(-) is the true density function, p,(-) is the modified density function, and X; is the sample
value. Since X, is sampled from the density p,,(-), a typical value of X; would yield values of W < 1.
From Eq. (11), we see that we are examining a ratio of a test sample to a set of reference samples. If
we select all samples from the modified density function, the output K, from Eq. (11) is unchanged
and importance sampling will not help. However, following the example in Ref. 9, only the test cell is
sampled from the modified density, the reference cells are obtained from the original density. The rea-
soning behind this is that the variance of the sum of the reference celis is much less than the variance
of the test cell, and the behavior of the test cells sampled from the tails of the density have more
impact on the outcome than the sum of the reference cells. This means that importance sampling is
more effective with many reference cells; with fewer and fewer reference cells, more and more Monte
Carlo trials must be run to accurately estimate the thresholds.
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The thresholds themselves have no meaning except as intermediate results in generating P,s for
each detector. A set of typical thresholds is shown in Fig. 3. The notation to be used on the rest of
the figures of the report follows. The symbols plotted are values obtained from simulation, the lines
drawn are spline smoothed to the values. In the legend, the first label refers to the case where the
thresholds are known. The second label refers to a conventional CFAR in which a moving window
integrator (MWI) sums up 12 range cells from each side of the target and uses them to estimate one
threshold. The third label refers to exceeding 4 thresholds of 6, each threshold estimated by 4 samples,
to declare a detection, in this case, a false alarm.

10" 3mg ;
10° \ 3
10° ¢ -
x ]
[
& ]
= -4
T 10 3
% 3
= -
bl ]
5 10 3
S =
= ]
= 4
€ 10" 4
[a] 3
o 3
@ p
o .
10™ N 4
E
10" LEGEND x .
+ = EXACT THRESHOLDS - PFA - 10x-3 E
x - CONV. CFRAR - 24 SAMPLES 1
o= 4TH OF 6 BATCHES OF 4 SAMPLES h
10°
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

THRESHOLD/SIGMA OF NOISE
Fig. 3 — Typical examples of threshold values for various types of detectors

Once we have the thresholds for each detector, we may run a Monte Carlo to obtain the P,.
Since we are only interested in values of P, between 0.1 and 0.99, a straightforward sampling scheme is
sufficient. Importance sampling is not necessary. To estimate P,;, Eq. (11) is rewritten as

S > T=K|X CYM/NR,

and declares a detection, where, as before, S is the test cell, Ny is the number of reference cells in each
batch; Y), is the sum of the reference cells in the Mth batch; C is the conversion factor v/2/7, and K,
is the multiplier corresponding to a desired Py,. ’

There are several parameters to be selected; the number of batches, the number of samples in
each batch, and how many batches a test cell should exceed to be declared a detection. Each of these
modifications defines a new detector requiring calculation of the threshold for the desired P, and P,
for various signal-to-noise ratios (S/N). Most of the P, curves are for a Pfa of 1073 because this thres-
hold is much simpler to calculate than for the more common P, of 107®. Because we are making a
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detection decision on each pulse, any further processing would lower the false-alarm rate considerably.
For example, if there were two pulses on target and we require coincidence of detection on both pulses
to declare a detection, the joint Py, drops to 107°.

DETECTION PERFORMANCE IN THE ABSENCE OF INTERFERENCE

In determining appropriate parameters for the nonsuppressing CFAR, we rely heavily on the pro-
bability of detection curves. We include on each figure in this report which displays P, curves, a refer-
ence curve of the P, given the exact value of the noise level. This curve was obtained from the simu-
lation by generating the test cell and comparing it to the known fixed threshold for Rayleigh noise.

There are three principal parameters to be determined
® the total number of reference samples
® the number of batches to divide the reference cells into

® the number of batches we must exceed to declare a detection.

The first parameter to examine is the total number of samples. Figure 4 is P, for a conventional
CFAR (one batch of reference cells), and Fig. 5 is the P, for a nonsuppressing CFAR based on exceed-
ing four of six thresholds. Note a gradual degradation of P, as the number of reference cells decreases.
The decline is fairly uniform until we get to the step between 24 samples and 12 samples, where the
decline is much more noticeable. This strongly suggested 24 as the minimum number of reference
samples. In the preceding, a tacit assumption was made that there would be six batches. This was
investigated further in Fig. 6 where various combinations of batches and samples per batch (total =24)
were evaluated. The only curves which can be identified easily on Fig. 6 are the P, given exact thres-
holds and the P, with conventional CFAR. The other P, curves are essentially the same, given the
resolution of the simulation.

0.9993 v T v T T T

0.999 J-

c.e + +
0.7 +
0.6

0.4
0.3
J.2 + 4
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P T T |
—t——

}

PROBABILITY OF DETECTION
(=]
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Fig. 4 — Detection performance of a conventional CFAR with
various numbers of samples used to estimate the environment

7



PROBABILITY OF DETECTICN

J. D. WILSON

PROBABILITY OF DETECTION

0.9939 v T T T v T
0.993 1 4
0.99 + +
v
0.8 + 4
0.8 < 4
0.7 T 4
0.6 T 4
0.5 T 4
0.4 + 1
0.3 1 4
42 T R
0.1 + 4
| 1

0.01 1 LEGEND

+ = EXACT THRESHOLOS - PFA = J0ww-3

% - 4TH OF & BRICHES OF B SAMPLES

o= 4TH OF 6 BATCHES OF 6 SAMPLES
0.001 + v - 4TH OF 6 BATCHES OF 4 SAMPLES T

m- 4TH OF & BATCHES OF 2 SAMPLES
0.000! t + + -+ t +

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

S/N1DB)
Fig. 5 — Detection performance of a nonsuppressing CFAR with
various numbers of samples used to estimate the environment
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Tentatively setting the total number of thresholds at six, the effect of choosing different numbers
of thresholds which the test cell must exceed to be called a detection is shown in Fig. 7. While there is
a mild preference for using 4 out of 6 thresholds, the worse case of using 2 out of 6 thresholds only
exacts a penalty of possibly 1 dB in additional S/N required for detection. A more serious objection to
using only a few thresholds out of many to determine a detection is that the statistics of the environ-
ment are being estimated by nonrepresentative samples. The detection decision is based on samples
from only a small portion of the range of possible functional values. Two random values could have
very similar density functions over the small valued samples, but quite different probabilities for the
extreme values. This could result in wrong Py, if the wrong set of statistics is assumed. The closer the
nonsuppressing CFAR resembles the conventional CFAR, the less chance of error.

0.9999 — r Y v v v
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0.99 <+ 4
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o« 5TH OF 6 BATCHES OF 4 SAMPLES
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%= 2ND OF & BATCMES OF 4 SRMPLES

0.0001 + + + + + +

2.0 4.0 6.0 8.0 .0 12.0 14.0 16.0
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Fig. 7 — Detection performance of nonsuppressing CFARS with
various values of M with N = 6 and 24 samples used to estimate
the environment

We can now make some general observations. We would prefer the number of thresholds
required for detection to be at least two less than the total number of thresholds. This allows at least
one interfering target at the worst possible location, and two interfering targets if they are fortunately
placed. We also wish to base the detection decision on as many samples as possible. With these
remarks in mind, we selected three of the detection curves from Fig. 6 to display on Fig. 8. The per-
formance of the 4 thresholds out of 6 detectors is marginally better than the 3 thresholds out of §
detectors and uses fewer adders than the 6 thresholds out of 8 detectors; consequently, we have
selected this detector for further evaluation.

DETECTION PERFORMANCE IN THE PRESENCE OF INTERFERENCE

To test for the effect of interference in the reference cells, we ran the P, simulation with a fixed
S/N of target and varied the size and number of interfering targets in the reference cells. We choose a
S/N which yielded a P, of 90% with a conventional CFAR. The candidate nonsuppressing CFAR

AITITLCYIOND
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detector chosen to evaluate is one which calculates 6 thresholds and declares a detection when the test
cell exceeds 4 of the thresholds. In Fig. 9, we see that with a zero interference level, the nonsuppress-
ing CFAR detector performs slightly poorer than the conventional CFAR detector (note that the scale
on the abscissa is not a dB scale). There are 4 cases considered for which the P, is plotted against total
interference. The first case is the conventional CFAR which is reduced to a 0.1 P, by the time the
interference is 3 times the size of the target. The second curve shows the effect of an interfering target
in one batch of reference cells. The P, decreases from 0.85 to a constant 0.8. This can be explained by
the fact that as the interference gets larger, the threshold which is set by the interference becomes so
large that the test cell can never exceed it, and the detector in the limit becomes a 4 out of 5 detectors.
The same reasoning explains curve 3 with interference contaminating 2 thresholds, and in curve 4, with
interference affecting 3 thresholds; we are trying to exceed 4 thresholds when it is only possible to
exceed 3 when the interference is large.

Thus, we see that with only 1 or 2 thresholds contaminated by interfering targets, detection per-
formance is still acceptable no matter what level of interference.

SUMMARY

We have seen that it is possible to implement a modification of a conventional CFAR with a
minimum of additional hardware. It is relatively insensitive to interfering signals in the reference cells
as long as the interference is limited in extent, such as another target. In fact, when declaring a detec-
tion on exceeding M thresholds out of N, the interference has little effect on detection as long as the
interference only affects N — M of the thresholds. The penalty we pay for using such a detector is typi-
cally less than 1 dB additional S/N required for detection at the 0.9 level. This performance is against
Rayleigh noise. An important question left unanswered is the extent of robustness of this type of
detector. How does it operate when the environment obeys statistical laws other than those assumed?

10
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