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ON THE NUMBER OF DEGREES OF FREEDOM USED BY
AN ADAPTIVE ANTENNA ARRAY IN A
NON-NARROWBAND NOISE ENVIRONMENT

INTRODUCTION

It has been known for some time that the eigenvalues of the input noise covariance matrix associ-
ated with the optimal weighting of a linear adaptive array directly affect the performance of the adaptive
array [1-5]. The optimal weights, W, are given by

W=uM'S, (1)

where M is the n X n covariance matrix of the input noise that is received on each of the antenna ele-
ments, n is the number of antenna elements, S is the steering vector of the array, W represents the set
of optimal weights in vector form, and u is an arbitrary nonzero scalar. The set of weights given by Eq.
(1) is optimum in the sense that the steady-state signal-to-noise ratio is maximized. Figure 1 illustrates
the weighting of the array inputs. We assume that the input noises are stationary processes so that M is
a constant. We now give some examples of how the eigenvalues affect the performance-measures of an
adaptive array.

ANTENNA ELEMENT VOLTAGES

fi
oUTAUT= 3 w¥ v =w'y
K=

Fig. 1 — Adaptive array

-Manuscript submitted June 24, 1982.
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For a contrel-loop implementiation of Eg. (1), the eigenvalues of M are related to the time con-
stants of adaptation and the control-loop noise {31, iIf A,, &k = 1, ..., n are the eigenvalues of M, then
the time consiants of adaptation, 7., are given by '

S )

Hence the time constants are inversely proportional to the eigenvalues. In addition, it can be shown
ihat the conirol-loop noise power is approximately proportional to the sum of the eigenvalues if the
input noise is approximately wideband [3].

For any implementation, if the optimal weighis are employed to form the antenna patiern, then #
can be shown that the sieady state signal-to-noise power ratio, {S/N), is given by

£= s 2 a—1
{fv’ S'M'S {3)

where f denotes conjugate iranspose.

Since A is hermitian, it is possibie to write M in the form
M=3A® {4)

where @ is a nonsingular # X # unitary matrix and A is a diagonal matrix of the positive real esigen-
vatues of M (A = ()}, k=1, ..., n Using Eq. (4) and Eq. (3), we can show that

%1
T
-
1N
Py

% ,
(v~ B

where @, is the kth row of the matrix & (it is also an eigenvector of A and {] - || signifies the magni-
tude of the compiex argument. Thus, we see from Eq. {5) that increasing the vajues of the eigenvalues
has a tendency to decrease the output signal-to-noise ratio. Also, the smalier eigenvalues limit the
maximum value of ($/~N).

In this teport, we consider the distribution of the eigenvalues for the case when the nbise
environment consists of internal noiees and a sinele, externat ﬁnﬁhﬁllv digtinct. non-parrowhand noige

(N ERINTEEY RAIIBISLE =iima aaissoaed fddfa 4 lpIU, ARGl GLIALLY LAINENE, BRI a UV USRI s

source {jammer). The distribution of the eigenvalues wili change as we change the bandwidth of the
jammer. We show that as the bandwidth of the jammer increases, then the smaller eigenvalues of A
increase. More importanily, we show that only one of the smalier eigenvalues increases significantly for
smaii percentage bandwidths. Hence, from Eq. {5}, we see that the outpui signai-io-noise ratio will
suffer accordingly. In addition we also develop a methodology whereby this increase in the smaller
eigznvalues can be calculated as a function of the percentage bandwidih of the jammer, the number of
array elements, the angle of arrival of the jammer, the power of the jammer, and the array eiement

antenna pattern. [t is impertant to note that the resuits presented in this report are nof applicable to
adaptive sideiobe cancellation schemes, We assume that gif the antenna elements of an array can be

QURAMIVE SIRICIVDC LATTUTIIAT AT SUITOIEIL S, feehat 3334 iy L4 LaEL To

adaptively controlied.

COVARIANCE MATRIX DEFINITION

H ¥V =1(v, vy, .., v,)7 denotes the input vector of the noise on each anienna element where T
denotes transpose, then

M= E{(V V], (6}
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where E{®} denotes expectation. Let us write M as
M=ol + M, Q)

where o is the internal noise power, [ is the n x n identity matrix, and M, is the covariance matrix of
the external noise sources. Define

= -Lm=14 5 M, (8)
Ty 7o
From Eq. (3}, we can show that
[s}_ 2 SMs )
I~
If i,‘, k=1, ..., nare the eigenvalues of M, then
A=adh, k=1, ..,n (10)
Hence, if we find the distribution of A o k=1 ..., n we can easily find the distribution of
A, k=1, ..., nby using o'ﬁ as a scaling factor. In the following anaiysis we will consider the distri-

bution of the eigenvalues of M.

Let us also normalize M, to o, so that M; = Mfo¢ and
M=1+M,. (11a)

We recognize that the eigenvalues of M ', are related to the eigenvalues of M by the expression

Ne=A,+1 k=1, ... n (11b)
If there is only one external jammer and M, = (Ay,), i, j =1, ..., n, then it has been shown [6)
that
- 1
;= Pyilg, @){1? p;(r) exp l[—‘\— (d, — d)) sin 6, 12)
0

where @ is the angie off boresight of the jammer, g,(¢) is the element gain function, d; and d; are the
distances of the /th and jth elements from a reference poini on the array, A, is the wavelength of the
carrier frequency, fo, of the jammer, { = /=1, P, is the input power of the jammer at any antenna ele-
ment normalized to the internal noise power,
Pfj{’T) = ’Sl‘n‘“_“”_'_——'_(ﬂ 5 TH) ) 13
‘ ™ B,

and
d, — d;

(o

Qi O (1A
(¥ SIHIL . 1S 74

In Eq. (13), B is the bandwidih of the input noise and in Eq. (14), ¢ is the speed of light. Equation

(13} assumes a rectangular bandpass for the jammer. If B = 0 then p;;(r) = 1 and Eq. (12) reduces to

wy = P [12.(8) 1% exp l[ %’L (d; — d;) sin 9]. (15)
0

Ema—
ﬁ
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Equation (13) corresponds to the narrowband approximation that has been used often to evaluate the

performance of the adaptlive array {1-5]. It can be shown that if the input noise is narrowband, then
the eigenvalues of M are given by

):;=}IP_;ng(9)”z+1, {iﬁ}
and

Ay =1 k=2 ..., n an

Hence # — 1 of the eigenvalues are equal.

TYPICAL EIGENVALUES

In this seciion, we present an example of the computed eigenvajues of the covariance matrix
given by Eq. (12). For all cases, we set the number of antenna elements » equal to 8 and fix & = 457
We vary the percentage bandwidth of the jammer {defined as 100 B/ f) from D to 14% in increments of
2% and consider two different normalized jammer powers: 10 dB and 20 dB. The cigenvalues for the
varipus cases are presented in ascending order in Tables 1 and 2.

Tahle | — Eigenvalues vy Percent Bandwidth
(n=28, 6=45° P, = 104dB)

Eigen- Percent Bandwidth
vaiue
0 2 4 6 g 13 i3 i4
Ag 1.0 1.0 1.0 1.0 1.0 i.0 1.0 1.0
A3 1.4 1.0 i.0 1.0 1.0 1.0 1.0 1.0
A 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
As 1.0 1.0 1.0 1.0 i.0 1.8 1.0 1.0
Ay 1.0 1.0 1.0 1.0 1.0 1.0 1.0 i.0
X3 1.0 1.0 1.0 10 10 1.0 1.0 1.1
Ao 1.0 1.1 1.5 2.2 31 4.3 5.7 7.2
I » 818 80.5 ) 805 | 798 789 1 777 1 163 ] 747
Table 2 — Eigenvaines vs Percent Bandwidth
{(n=28,8=145° P, =20dB}
Eigen- Percent Bandwidth
value
0 2 4 6 8§ | 10 12 14
kg 1.0 1.0 1.0 1.0 10 1.0 1.4 18
As 1.0 1.0 1041 10 1.0 i.0 1.0 1.0
Xg 1.0 1.0 1.6 1.0 1.0 1.0 1.0 1.0
As 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
As 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0
hy 1.9 1.0 1.0 1.0 il 1.2 1.5 {9
Ay 1.0 2.4 8.5 13.2 22.5 34.0 47.6 62.9
A 3010 1 7996 1 7955 | 788.7 1 7794 | 767.8 7 753.9 ¢ 738.2
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We note from Tables 1 and 2 that the sum of the eigenvalues is 88 in the first case and 808 in the
second (the eigenvalues have been rounded off to the nearest first decimal place). An important pro-
perty 10 note from these tabies is that, as the percent bandwidth increases initiaily from %, oniy one of
the smaller eigenvalues changes significantly (A,). Hence, it would appear that for a small percent
bandwidth, only one eigenvalue is affected. This phenomenon has been reported in the literature by
Gabriei {5] who showed empirically that a smali perceniage bandwidth jammer can require two degrees
of freedom to be nulled effectively. It is quite fortunate that only one eigenvalue is significantly
affected because we observe from Eq. (5} that this implies that only one term of the signal-to-noise
ratio expression is involved.

As the jammer bandwidth increases, a number of the smaller eigenvalues will increase
significantly., As the magnitudes of these eigenvalues increase, a corresponding larger number of
degrees of freedom are needed to null the jammer. Hence the number of degrees of freedom needed
to null a jammer is a function of the jammer bandwidth. Because the number of degrees of freedom is
an integer, the jammer bandwidihs where an extra degree of freedom is necessary to nuli a jammer will
increase in discrete steps. We shall expand upon this topic later. Next, we demonstrate mathematically
why this occurs and then we derive an approximate expression for the second largest eigenvalue.

ANALYSIS

Let us assume that the antenna elements are equispaced d,;, half-wavelengths apart where d,; is
not necessarily an integer., We set

lp=1rdm sind (18)
¢ = dm —- sin@ (19)
fn
and
Py = P llg. (o)1 (20)

The parameter ¢ is the relative phase change between adjacent elements of the linear array due io the
external jammer. The parameter ¢ is proportional to the jammer bandwidth ratio, B/, element spac-
ing, and the direction of arrival of the jammer. It is also proportional to the bandwidth aperture pro-
duct. The parameter P, is simply the output power due to the jammer from each of the antenna ele-
ments. The elements of the normalized noise covariance matrix now have the form

s _ B Sln(l J)d’ glti=iy

gy = L) ° (l"‘])(ﬁ Lil)
We expand sin (i — j)¢/(i— )¢ into a Taylor series:
sinl=7¢ _ 1 a0 w2y 1 4 o 6
(= e ¢(1 D+ 120qb(r N+ 0 (@Y. (22}
Hence,
i, = Byel i — %ﬁjd)z“ — ) elt=i
150 Pip2(i— )t e’ 4 0(5). (23)
Using Eq. {23) and the definition
Ap) = (1, etV Q200 .. plamIyyT (24)

“
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we can show that

M=1+PA A + ~_¢ P 70 (,4 A1)
I S 3
120 P; q} (447 + O,
1t is straightforward to show that
2 d*4 dA, dA} 41
A TS S R S i Rl WP
di? dy’? Ay d dy?
If we set
. A4
Ay =10, &, 26, . (n—=1) )T g 20
dii
and
2
Ay = (0, e, 2%e¥0, | (n—1)lelr D)7 - _ 44, ,
dy?

then it follows that
J{J = i + }sinAi - %"g}zﬁgA;Aé
+ L¢2?JA2A5 - ‘Lfﬁzﬁfﬂsﬁi

ﬁgﬁ‘*;{, T (4,41 + 0(9).

Furihermore, the above expression can be rewritten as

[

- — 2
M=I+EI(A1—%'A3){A}_~A ){

1ed

i 5= i =
+ 5 6 Prdl = 5o 6 Pt}
4
b
Let us define a coluinn vecior C such that
3‘

2
C=4a,—-2 4
i)

Then A in Eq. {30) can be expressed as
M=1+ M + Ole",

where

Netice from Eq. {33} that the matrix A has rank 2, Hence, M; has exacﬂ
This implies that or small enough ¢, M as expressed by Eg. (32) has two eigenvalu

{25)

(26}

27

(28}

29

(30)
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3. Find i;ﬁ k=2, 3, 4 as a function of ¢ and » from graphs.
4.  Find the eigenvalue scale factor, «,, as a function of 13; from Fig. 5.

5.  The eigenvalue as a function of ¢, N, and P, is then

Ap=a, e — 1+ 1. (45)

For example, if the jammer and array have the following characteristics:

(@) n =10, {d) |lg, (@112 = 1 (isotropic elements)
(b) B/ fy=01; (&) d,; =1 {half-wavelength spacing} {46}
(c) g =452 ) P, =30dB

n=10; ¢ =011, P, =30dB.

—
[sur)
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EIGENVALUE SCALE FACTOR

oy 31

.08
04

03

oz

ol vy

Fig. 5 — Eigenvalue scale vactor Py

Let us find the value of the third largest eigenvalue. We use Figs. 3 and 5 respectively to find that
A3 = 1.2 and a, = 10.0. Using Eq. (45) we find that the third largest eigenvalue is equal to three.

To find (B/ fa)(") we use the following procedure: We plot as a function of » and I-SJ-, the value of
¢ that occurs when the 2nd, 3rd, or 4th eigenvalue equals two in Figs. 6, 7, and 8 respectively. We
denote the values of ¢ that occur when the 2nd, 3rd, and 4th eigenvalues equal two as ¢;, ¢y, and ¢,
respectively. These curves can be obtained directly from using the curves in Figs. 2 through 5 by

specifying the eigenvalue to be equal to two and working backwards to find ¢, k£=2,3,4 as a function
of nand P;. After finding ¢, as a function of k, » and P;, then Eq. (19) implies that

B]“" 2 e

ol T = dy/28in @ S

For example, to find (B/f;)*” when all the conditions of Egs. (46) hold except (b), we find from Fig.
7 that for P; =30 dB and n = 10 that ¢, = 0.1. Hence using Eq. (47), (B/fy)® = 0.9. Thus under
these conditions, the bandwidth of the jammer must be 9% of the center frequency for the third largest
eigenvalue to be significant.

11
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2MD LARGEST EIGENWAL LIE =2

Fig. 6 — 6, vs P, and », Ind largest eigenvalue = 2

IR0 LARGEST EIGENVALUE =2

P, 4B

Fig. 7 — ¢y s 7“; and #, 3rd largest eigenvalue = 2
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Fig. 8 — ¢y vs P, and n, 4th largest eigenvalue = 2

We have also shown in Fig. 6 the approximate value of ¢, as calculated using the approximation
given by Eq. (42). Examining Eq. (42), if we set A 4, = 1, corresponding to the case where the second
largest eigenvalue of M is two, then
_ 6
(B n(n2— IV

b2 (48)

We see from Fig. 6 that this approximation improves as }—’J or n increase. This is reasonable because
our original analysis assumed that ¢ is small and, hence, for larger P, or n, Eq. (48) implies that ¢, will
become smalier.

An important point to be noted from the curves of Figs. 6, 7,-and 8 is the quantum nature of
®1. 3, and ¢, as a function of the kth largest eigenvalue, k = 2,3,4. If we compare Fig. 6 with Fig.
7, we see that for a given n and P, there is a large difference between ¢, and ¢;. This can also be

seert in comparing ¢; with ¢, for a given # and P, from the curves of Fig. 7 and 8. This phenomenon
is further illustrated in Fig. 9 where we have plotted ¢ vs P; for n = 10. (Note that ¢ = ¢,, &3, of ¢4
for k = 2, 3, and 4 respectively.) For example if n = 10 and I_’J = 9 dB, then from the curves in Fig.
9, ¢2=10.1 and ¢; = 0.39. Thus, Eq. (47) implies that the jammer bandwidth where the third eigen-
value degrades performance is approximately four times greater than the bandwidth where the second
eigenvalue degrades performance. This corresponds to the two jammer bandwidths where two and
three degrees of freedom are necessary to null the jammer effectively. Hence, we expect the adaptive

array’s performance as measured by the output signal-to-noise ratios to degrade in discrete steps as the
input noise bandwidth increases.
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Fig. 9—¢ v Pifork =23 4 n=10

CONCLUSIONS

The relative measures of the eigenvalues of the noise covariance matrix of an adaptive array that
is subjecied io a non-narrowband jamiming source have been invesiigaied. These measures are impor-
tant becanse they deiermine the convergence rate and the upper limit of the output signal-to-noise ratio
of the adaptive array. I was found that the adaptive atray’s performance as measured by the putput
signal-lo-noise ratio degrades in guantum jumps as the input noise-bandwidth increases, A methodol-
ogy was developed whereby given the number of elements of the array, the array spacing, the array sls-
ment antenna pattern, the power, and direction of arrival of the external jammer, then these discrete
bandwidihs of the jammer that limit the output signal-to-noise ratio can be calculated.
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