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ON THE ACCURACY OF A NUMERICAL INTEGRATION PROCEDURE
FOR COMPUTING DIFFRACTION FIELDS USING TABLE-LOOK-UP

INTRODUCTION

In a classical electromagnetic problem, it is often required to compute the radiation field either
radiated directly from a known current source or scatiered from a secondary source. In the latter case,
the incident field on the scatterer is known or can be determined with the known boundary conditions.
The vector potential function of such an electromagnetic field is evaluated by integrating the current
source or current distribution on the surface of the scatterer. Then the radiation fieid in space can be
determined from this vector potential function. In general this leads to the evaluation of the integral
(1, 2]

E(, d) =fs I, pexpliGE, n, ©, 0)ldedn, )

where J is the current density excited by the source of the scatterer surface, and £, are the coordi-
nates of the current source; ® and ¢ are the coordinates of a field point. It can be shown that the
above vector integration can be converted into a scalar integration function such that

Fg, @) = kff(lfj nexpliG (£, m, ®, §)]dédy. (2)

In general, the current distribution and the geometry of the source or scatterers are very complicated,
Except for a very few simple caes, it is impossible to integrate the above equation into a closed form.
This integration is usually performed numerically on a digital computer. Although it is straightforward
to program such an integration, the required computation time may sometimes be extremely lengthy.
As an example, if we assume a geomeltry for which the current source is ntot too complicated, a modest
100 mesh points for each of the ¢ and n dimensions may be required. Then it requires 10* points of
summation for this integration for each field point at a given # and &. Now suppose that a 100 by 100
mesh points are needed to map the entire radiation space. Although the F (¢, m) current function does
not need to be repeaied, the complex phase function (the Green’s function) is nevertheless a function
of both source coordinate and field coordinate. Thus, computation of 10% points is required in this
example. At each point a computation of sine and cosine functions is required. In general, computa-
tion of this sine and cosine is a time-consuming process for a digital computer. Most fast machines can
probably compute these sine and cosine functions and its argument within perhaps 100 us. To compute
one sct of cutput data for this example, a central processor time of 2.8 h is required just for the sines
and cosines. Such an exercise is certainly not cheap.

There are many ways to combat this problem. For example, Eq. (2) is a generalized Fourier

transformation. ThPrPFan the Fnct Fourier trnan‘nrmqhnn fF‘FT\ may he apnlied. Unfortunately. the
araliaiQiiiiaueil QAP PLiTa. IV LUatoLry y wiic

exponential function G{@, (I) m, £) in general has no linear relation between source coordinates and
field point coordinates. In general, a prerequisite of the FFT is that the phase function G computed for
any field point (9, ¢) must be contained in a set that is finite and the whole set is generated at a certain

#, @ point. This requirement sometimes puts a contraint on the choice of the integration mesh points
that cannot be achieved.

There are other ways. One example is found in the computation of reflector antenna patterns. In
this case Galindo-Israel and Mittra [3] proposed to expand the integral with an infinite series as a func-
tion of the fieid point coordinates. The coefficients of such a series are the Fourier transformation of
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the 7, ¢ coordinates, To compute such coefficienis, similar integration of the phase function is
required. Furthermore, this series expansion method applies onty to this special case.

The third way, perhaps the simplest approach, is table-look-up. In this approach, at the beginning
of the computer program, sine and cosine functions with a 2« period are computed and stored, using
an adequate number of sampling points. In later computations, the required sine and cosine functions
are found from the tabie, thus avoiding the repeated computation of such functions. However, unless
the arguments of these sine and cosine functions coincide with the sampling points in the 1abie, grrors
will be introduced. The amount of error is a function of the number of sampling points in this sine and
cosine table. Therefore, one must decide how much error one can tolerate and then one can determine
how big a table one must have. In this report we analyze this problem and present the resulis.

TABLE-LOOK-UP ERROR

For a numerical integration, Eq. (2) can be {ransformed into the form
F8. @) = ¥4, exp(iG,), {3
i

where 4, = fin,, £,) 2 0
G, = Gly,, £, 6, ®).

For simplification, the double summation of % and ¢ in Eq. (2) is converted into a single summa-
tion index. The funciion F(#, ®) is 2 complex function having both real and imaginaty components,
thus

Fla, &Y= x + jy

When table-look-up is used to determine the phase of the exponential term, errors are introduced, and
Eq. {2} becomes

Fi8, ®) =¥ 4, expliG,lexp(j8,), 4

where the 8, are independent random variables. Therefore, 4, exp{jG,}exp{j3,) ate also independent
random variables, and the function F{#, ®} is the sum of many independent random variables,
According to the central limit theorem [4], the probability density function of F{8, @) is asymptotically

T % 3 3 3 i niataly dAetarminad hy tha HBretr and carand mamante anr
normal. Sfﬁ‘ce a normal {}%S{E‘i{}u%mﬂ 1S Compigiely geiermingd DY € Orst ang sedond moemenis, gur

nexi task is to find the mean and the variance of the random complex function F(8. ¢).

It can be shown that the mean of F(8, ¢) is

ia
o

e,
wh
ot

h R FIVYES 4 i I
JBi =l 3 A, explUG,
a

’

where ¢{1) is the characteristic function of the random variable 8, which is defined:
6(i) = | p®expjks)as, (6)

and p{8) is the probability density function of the random variable 8. If the entries of the sine and
cosine table are sampled uniformly within a 2 & range having a total number of sample points X, then

p(8) = 1/a na <8< (n+ Da N
=10 otherwise,
and o = 2#/K.
2
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There are two ways to use this table. The first is to choose the sine and cosine function of the
next index if the argument of the phase angle is larger than the angle na. The second method is to

1
choose the function of the angle ne if the argument is less than (n + i}u For the former case the
characteristic function is
sin -l—kal
{ 1 ] { 2 ) _
¢(k) = expl-—j-é-kal—l————, (8)
—ka
2
while for the latter case it is
1
sin—ka
d(k) = ———. 9)
}-ka
2

One may see that the difference between Eqgs. (8) and (9) involves a constant phase (1/2) ke
which in general is not important because the reference phase of the function F(9,®) is arbitrary.
However, in the actual programming, the first method is somewhat easier. One has

sin—ka o
—t e Lk (10)
e 4 6
2
Since « is usually very small, the high-order terms are ignored. By use of this result, Eq. (5) becomes
Flg, ®) = (1 — 0.042a%) Z A, exp (G,). an

In the appendix it is shown that the variances of the real and imaginary components of F(8, ®) are
respectively:

ol = %(1 - ¢2(1))2":A,,2 + —;'[qb(Q) - ¢2(1)1§A3 cos(2G,),
and

2
Ty

I
(ST

(1~ 42003 47 - S8 - #(DIY, 47 052G,).
while the covariance of xand y is

o= 362 - $2IY 47 5in(2G,).

The joint probability density function of the real and imaginary components x and y is then:

_ I Jor [e=-7 2e-00-7 | - P2 1
P 2ra,o,N1—r? exp lZ(l-—rz)[ 2 ’ (12)

oy O'XU'y
where ¥ and ¥ are respectively the real and imaginary components of F(§, ®), and

y

Oy =TT, . : (13}

Our goal is to find the required number of samples, or how big a sine and cosine table is required to
.achieve a certain prescribed accuracy for both real and imaginary components, x and y. The probability
density function of Eq. (12) is too complicated to estimate this relation. However, certain approxima-
tions can be made.
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Since 3 A4, sin2G, and ¥ 4, cos2G, are in general much smaller than Y4, for a first order estima-
tion, DI;E may assume {ha: ’
ol =ol=ol= (- INE 42 | (14)
”
and
o, =0

The probability density then becomes

Plx, y) = exp = 27 [(x = 07+ & - ) (15)
o

i
e

This equation implies that the real and imaginary components of F(#, @} are two independent
variables and have the same variance. Hence, from Eq. {11)

X = {1 — 0.042aM}Re ¥ A4, exp(G,), 16)
and — 2
¥ =A{1-0042a%Im Y 4, exp(G,). - an
"
If the table has enough sampling points and « is small, then the 0.042a? term can be ignored.

Both x and ¥ are then equal to the actual value. The probability density function for either x or y can
be written separately as

1 {x — %x)?
Plx) = exp |- ———1; {i%)
* <o P [ lg?
when « is small, the variance can be approximated by
1 ot )
ot =3 ; Al
Let us assume that 4, is normalized such that
Y 4,=1 (19
il
This normalization implies that
IFo, ¢l < L.
According o Cauchy’s inequality,
N 2 v oMy
Y x| S ExA Y
n=1 n=1 n=1
Let p, = 1, then
v ) N ‘
Y] SN Txl (20
=1 a=1

Therefore,

i pL 4 ‘
e 2 jm [—I_(_l 22
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Since |x — x| < 3o with a probability higher than 99%, if one desires that x or y values should not
deviate from the actual value by an amount € with a probability of at least 99%, then the number of .
sampling points of the sine and cosine table should be

3.85

VN’
where N is the number of terms summed in Eq. {3). For the example given in the introduction, where
N = 100 x 100, if one desires that the error ¢ < 107, then we find X > 38 500. Rather than com-

pute the sine and cosine terms 10% times, a table of the size 40 000 will be adequate to yield results
accurate to —120 dB relative to the absolute sum of the integrated terms.

K> (23)

NUMERICAL EXAMPLE

A numerical example is presented here. In this example, the antenna pattern of a uniformly
excited line source is plotted. Sirictly speaking, this is not quite the same as that predicted by Eq. (23)
because in the previous analysis, in the interest of general scattering problems, the scattered field is
presented as a complex number with real and imaginary components separated. In an antenna pattern,
the amplitude plotted is the square root of the sum of the squares of the real and imaginary com-
ponents. Probability density of such amplitude is known as Rictan distribution. However, the illumina-
tion function of a line source is symmetrical and the pattern function contains only the real component.

. Therefore, the results of Eq. (23) can apply to this case. A 30-wavelength line source pattern is plot-
ted. Since this pattern function is a sinx/x function, this exact pattern function is used in both Fig. 1
and Fig. 2 as reference. Next, this same pattern is computed by numerical integration. A total of 100
points is used in the integration. Figure 1 shows the pattern plotted with a table of 32 entries. Accord-
ing to Eq. (23), the error should be in the order of 0.012. In Fig. 1 the maximum error occurred at an
angle of about 80°. The correct pattern has a —36-dB sidelobe level while the approximate pattern has
a peak of —31 dB at the same angle point. At —36 dB the radiation amplitude is 0.0158 while at —31
dB it is 0.0282. The deviation of the amplitude is about 0.0124 which is very close to what Eq. (23)
predicts. Figure 2 shows the same antenna pattern, except that the number of table entries increases to
128. The maximum error in this figure is about 0.0038 while Eq. (23) predicts 0.003.

CONCLUSION

In this report we have analyzed the error introduced by table-look-up for the numerical integra-
tion of an electromagnetic diffraction integral. We have shown that in order to keep the error of both
real and imaginary components to be less than e, the required table should have at least X entries uni-
formly distributed within a 27 range, and K > 3.85/e~/N where N is the number of terms used for

numerical integration.
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Appendix
COMPUTATION OF VARIANCE

Let F(@, ®)=x+ jy ' (A1)
E(lF-Fl}=al+0c} : (A2)
E{(F- F)}=al-ol+2jo, (A3)
E{IF - FI} = E{IFI} - IE(P)]? _ _ (A4)

E{iF} = T 41+ 33 4,4, expli(G, — G - [¢(1}]? (A5)

" n"?ﬁn:n
[E(R) =1 (DIPY 34,4, expli(G, — G,)] (A6)
ocltol=(1-lp(D)YA42 (A7)
E{(F = F)Y) = E{(F)? ~ [E(F)? (A8)
E{(F))? = T 426 Qexplj2G,] (A9)
+ 33 4,4, expli(G, + G,)1p*(1) (A10)
(E(PP =90 (DY T 4,4, expli(G, + G,)] (AID)
ol—o}= Q) -2 (INY 42 cos(2G,) (A12)
205 = Q) = $2(N T 4, sin2G,) B




