
a:

NRL Report 8598 ":
co:

A Comparison of Errors in Different
Software-Development Environments

DAVID M. WEISS

Computer Science and Systems Branch
Information Technology Division

July 14, 1982

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter-d)
REPORT DOCUMENTATION PAGE ~READ INSTRUCTIONS

REPORT DOCUM^ENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 8598
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Interim report on a continuing
A COMPARISON OF ERRORS IN DIFFERENT NRL problem
SOFTWARE-DEVELOPMENT ENVIRONMENTS

6. PERFORMING ORG. REPORT NUMBER
7590-097 :DW:rmr

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(.)

David M. Weiss

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory 61153N; RR0140941;
Washington, DC 20375 NRL Problem 75-0199-0-2

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research July 14, 1982
Naval Research Laboratory 13. NUMBER OF PAGES

Washington, DC 20375 18.
14. MONITORING AGENCY NAME & ADDRESS(If different from Conlrolling Office) I5. SECURITY CLASS. (of thin report)

UNCLASSIFIED
I5a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of ihis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It dlfierent from Report)

It. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It necessary and Identify by block number)

Software measurement
Software error data
Software error analysis
Software development methodology evaluation

20. ABSTRACT (Continue on reserae side If neceesary _nd Identify by block nuotber)

Error detection and error correction are now considered to be the major cost factors in
software development. Much current and recent research has been devoted to finding ways to
prevent software errors. The purpose of this paper is to compare error data obtained from two
different software-development environments using different software-development methodologies
The data are used to characterize the similarities and differences in the environments and may
be used to evaluate the success with which different methodologies meet the claims made for
them. Data were obtained by the use of a goal-directed data-collection process, which is
described briefly. A key feature of the process is that data are collected and validated

(continued)
DD I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-014-6601
SECURITY CLASSIFICATION OF THIS PAGE (When Daes Entered)

C:

-r'

I

SECURITY CLASSIFICATION OF THIS PAGE (W.en Data En,,r-d)

20. ABSTRACT (Continued)

concurrently with software development. Validation often involves interviewing the programmers
supplying the data. The results are data distributions across categorizations, such as effort to
correct error, type of error, and locality of error. The distributions show that in both environ-
ments the principal error source was in the design and implementation of single routines. Re-
quirements misunderstandings, specifications misunderstandings, and interface misunderstandings
were all minor sources of errors. Few errors were the result of changes, few errors required
more than one attempt at correction, and few error corrections resulted in other errors. Most
errors were correctable in a day or less.

SECURITY CLASSIFICATION OF THIS PAGE(When Dale Entered)

ii

CONTENTS

INTRODUCTION ... 1

RESEARCH METHODOLOGY . .. 1

PROJECTS STUDIED ... 2

ARCHITECTURE RESEARCH FACILITY ... 2

SOFTWARE ENGINEERING LABORATORY ... 4

RESULTS.. 4

CONCLUSIONS.. 9

ACKNOW LEDGMENTS.. 14

REFERENCES ... 14

iii

A COMPARISON OF ERRORS IN DIFFERENT
SOFTWARE-DEVELOPMENT ENVIRONMENTS

INTRODUCTION

According to the mythology of computer science, the first computer program ever written con-
tained an error. Error detection and error correction are now considered to be the major cost factors in
software development [1-3]. Much current and recent research has been devoted to finding ways to
prevent software errors. One result is that techniques claimed to be effective for preventing errors are
in abundance. Unfortunately, there have been few attempts to verify empirically that proposed tech-
niques work well in production environments. The purpose of this report is to compare error data
obtained from two different software-development environments using different software-development
methodologies.

To obtain data that were complete, accurate, and meaningful, a goal-directed data-collection
methodology was used. The approach was to monitor changes made to software concurrently with its
development. The results reported here were obtained by applying the methodology to three projects at
NASA's Goddard Space Flight Center (GSFC) and one project at the Naval Research Laboratory
(NRL). Although all changes were monitored for most projects, we are concerned here only with
results obtained from the error data and only with data that may be used to compare the two environ-
ments. Readers interested in a more detailed description of the research methodology or in analyses
using other data from the same sources can find these in Refs. 4 through 6.

RESEARCH METHODOLOGY

The methodology is goal oriented. It starts with a set of goals to be satisfied, generates a set of
questions to be answered, and proceeds step by step through the design and implementation of a data
collection and validation mechanism. Analysis of the data yields answers to the questions, and it may
also yield a new set of questions. The procedure relies heavily on an interactive data-validation process;
those supplying the data are interviewed for validation purposes concurrently with the software-
development process. The methodology has six basic steps, as described in the following paragraphs.

Establish the Goals of the Data Collection

Goals are usually related to claims made for the software-development methodology being used.
As an example, a goal of a particular methodology might be to develop software that is easy to change.
The corresponding data-collection goal is to evaluate the success of the developers in meeting this goal,
i.e., to evaluate the ease with which the software can be changed.

Develop a List of Questions of Interest

Once the data collection goals are established, they are used to develop a list of questions to be
answered. In general, each goal will result in the generation of several different questions of interest.
For example, if the goal is to evaluate the ease with which software can be changed, we may identify
questions of interest, such as: Is it clear where a change has to be made? Are changes confined to sin-
gle modules? What was the average effort involved in making a change?

Manuscript submitted March 9, 1982.

1

D. M. WEISS

Establish Data Categories

Each question of interest generally induces a categorization scheme on the data to be collected. If
one question is how many errors result from requirements changes, then one will want to categorize
errors according to whether or not they are the result of a change in requirements.

Design and Test Data Collection Forms

To provide a permanent copy of the data and to reinforce the programmers' memories, a data col-
lection form is used. Form design was one of the trickiest parts of the studies conducted, and it will
not be discussed here.

Collect and Validate Data

Data are collected by requiring those people who are making software changes to complete a
change report form, for each change made, as soon as the change is completed. Validation consists of
checking the forms for correctness, consistency, and completeness and interviewing those filling out the
forms in cases where such checks reveal problems. Both collection and validation are concurrent with
software development.

Analyze the Data

Data are analyzed by calculation of the parameters and distributions needed to answer the ques-
tions of interest.

To apply the methodology to the collection of change data, the following definitions were used:

* A change is an alteration to baselined design, code, or documentation.

* An error is a discrepancy between a specification and its implementation.

* A modification is a change made for any reason other than to correct an error.

PROJECTS STUDIED

The studies reported here contain complete results from four different projects. Two different
environments and several different methodologies were used. One environment was a research group
at NRL, and the other was a NASA software-production environment at GSFC. Table 1 is an overview
of the data collected for each project. For the Architecture Research Facility project, only error data
were collected. Table 2 gives the values of parameters often used to characterize software-development
projects. It shows several different measures of size and effort for each project. Size is shown as total
number of lines of code, number of developed lines of code (code that was either new or modified),
and number of components, where a component is either a FORTRAN subroutine or block data.

ARCHITECTURE RESEARCH FACILITY

The purpose of the Architecture Research Facility (ARF) project, developed at NRL, was to
develop a facility for simulating different computer architectures. The simulation is based on a descrip-
tion of the target architecture written in the Instruction Set Processor (ISP) language [7]. A complete
description of the ARF simulator is available elsewhere [8]. Briefly, to simulate a machine the ARF
uses a set of tables that describe the machine being simulated and its state, a module to perform
instruction simulation, and a module to handle the interface to the user. The machine description con-
tained in the tables is produced by an ISP compiler (an existing compiler was used). The ARF
developers had no previous experience with such simulators.

2

NRL REPORT 8598

Table 1 - Overview of Data Collected

Project Number of Number of Number of
Changes Modifications Errors

SELl 281 101 180

SEL2 229 110 119

SEL3 760 453 307

ARF 143

Table 2 - Summary of Project Information

Project Effort Number of Lines of Dev. Lines Number of
(months) Developers Code of Code Components

(k (k

SELI 79.0 5 50.9 46.5 502

SEL2 39.6 4 75.4 31.1 490

SEL3 98.7 7 85.4 78.6 639

ARF 44.3 9 21.8 21.8 253

The primary goal of the ARF designers was to produce a working simulator that would permit the
simulation of small target-machine programs. The designers also viewed the ARF development as an
experiment in the application of recently-developed software engineering technology [8]. The key parts
of the technology used were the following:

* Rather than developing the whole system at one time, the ARF project used the family
approach to software development [9]. The designers planned to build the system in
three main stages. Each stage was to produce a member of the ARF "family" of pro-
grams, providing different facilities.

* The information-hiding principle [101 was applied to conceal design decisions that were
expected to change during the lifetime of the ARF.

* Informal design specifications, standardized interface specifications, and high-level
language coding specifications were written for each major module of the ARF before any
code was written. Each specification was reviewed before its successor was produced.

* FORTRAN code was written from the coding specifications, compiled, and then reviewed
by someone other than the coder prior to debugging. The coder debugged the code and
delivered it for testing. A tester, usually someone other than the coder or designer, was
selected to test the debugged code.

* At the possible expense of some run-time performance, several debugging aids were
designed into the system to make development easier. These. included a method for
detecting and reporting errors involving improper access to table entries and a mechanism
for inserting, and turning on and off, debugging code through the use of a compile-time
preprocessor.

SOFTWARE ENGINEERING LABORATORY

The Software Engineering Laboratory (SEL) is a NASA-sponsored project to investigate the

software-development process and is based at GSFC. A number of different software-development pro-
jects are being studied as part of the SEL investigations [11,121. Studies of changes made to the
software as it is being developed constitute one part of those investigations.

Typical projects studied by the SEL are medium-sized FORTRAN programs that compute the
position (known as attitude) of unmanned spacecraft, based on data obtained from sensors on board the

3

D. M. WEISS

spacecraft. Attitude solutions are displayed to the user of the program interactively on CRT terminals.
Because the basic functions of these attitude-determination programs tend to change slowly with time,
large amounts of design, and sometimes code, are often reused from one program to the next. They
include subsystems to perform such functions as reading and decoding spacecraft telemetry data, filter-
ing sensor data, computing attitude solutions based on the sensor data, and providing an (interactive)
interface to the user.

Development is done by contract in a production environment, and it is often separated into two
distinct stages. The first stage is a high-level design stage. The system to be developed is organized
into subsystems and then further subdivided. For the purposes of the SEL, each named entity in the
system is called a component. The result of the first stage is a tree chart showing the functional struc-
ture of the subsystem, in some cases down to the subroutine level; a system functional specification
describing, in English, the functional structure of the system; and decisions as to what software may be
reused from other systems.

The second stage consists of completing the development of the system. Different components
are assigned to teams of programmers, who write, debug, test, and integrate the software. Before
delivery, the software must pass a formal acceptance test. On some projects, programmers produce no
intermediate specifications between the functional specifications produced as part of the first stage and
the code. Some projects produce pseudo-code specifications for individual subroutines before coding
them in FORTRAN. During the time that the SEL has been in existence, a structured FORTRAN
preprocessor has come into general use.

In contradistinction to the ARF developers, NASA is not concerned with experimenting with new
software-engineering techniques. It is concerned with improving its software development process by
introducing techniques that have been shown to be better than those currently used. Nonetheless, the
principal design goal of the major SEL projects is to produce a working system in time for a spacecraft
launch. Results from SEL studies of three different NASA projects, denoted SELl, SEL2, and SEL3,
are included here.

RESULTS

The results presented here are derived from analyses of several different data parameters and dis-
tributions. Table 3 shows error density, errors resulting from change, and repeated error ratio for each
project. These parameters indicate that for all projects most changes were made correctly on the first
attempt.

Figures 1 and 2 are an overview of the change distributions for the SEL projects (data on
modifications are not available for the ARF project). Figure 3 shows sources of modifications, i.e., rea-
sons for modifying the software; and Fig. 4 shows sources of nonclerical errors. Although there were a
significant number of requirements changes for two of the SEL projects, none of the projects shows a
significant number of errors resulting from incorrect or misunderstood requirements.

Table 3 - Measures of Erroneous Change

Project Errors Per K Lines Errors Resulting Repeated Error Ratio
Of Developed Code From Change (average number

(as percentage of corrections
of nonclericals) per error)

SELI 3.9 5 1.02

SEL2 3.8 14 1.08*

SEL3 3.9 12 1.05

ARF 6.6 13 1.007

*Upper bound. Exact number of repeated errors for SEL2 is unknown.
By conservative means, the ratio could be estimated as 1.04.

4

NRL REPORT 8598

47

NONCLERICAL ERRORS

CHANGE TYPE

(a) SELI

44

17

CLERICAL ERRORS

8

NONCLERICAL ERRORS CLERICAL ERRORS

CHANGE TYPE

lb) SEL2

32

8

NONCLERICAL ERRORS

CHANGE TYPE

CLERICAL ERRORS

(c) SEL3

Fig. 1 - Changes

5

70

60 -
60

a 50-4
U
, 40-

o 30
z

i) 20
cc

10

0

70

60
V,

z 50 -
4I
. 40 -

o 30 -

z
u 20 -

10 -

0

36

MODS

48

MODS

70 -

60 -

Z 50 -
4

* 40 -

O 30 -

z
. 20 -

10 -

0

59

MODS

D. M. WEISS

57

NON CLERICAL ERRORS

CHANGE TYPE

(a) SEL1

MODS NONCLERICAL ERRORS

CHANGE TYPE

(b) SEL2

35

NONCLERICAL ERRORS

CHANGE TYPE

(c) SEL3

Fig. 2 - Changes with clerical errors excluded

6

70

2 60-

U 50

U
XU- 40-

a,

Z 30-
M
U
a 20

z
'I 10-

a- 0

43

MODS

70

60

50

40

30

20

10

4
MU

U

co

z

c

U
x

z
U
0c
TW

70 -
4
2 60-
M

U 50 -

U- 40 -

a,

2 30 -
M
U
L 20-0
2

10

a 0

65

MODS

NRL REPORT 8598

20

10

___L ~23
-I

REQ DESIGN DEBUG ENV PE OTHER

CHANGE TYPE

(a) SEL1

29

49

REQ DESIGN

12

4 4 1 2

DEBUG ENV PE UNKNOWN

CHANGE TYPE

(b) SEL2

70 -

60 +

a,
00
0

I-2
Cc

50 -_

40 -

30 -

20 -

10 -

0

24

45

24

1X6

REQ DESIGN DEBUG ENV PE OTHER

CHANGE TYPE

(c} SEL3

Fig. 3 - Sources of modifications: Design = modifications caused by changes in design; Debug = modifications to insert or
delete debug code; Env = modifications caused by changes in the hardware or software environment; PE = planned enhance-
ments; Req = modifications caused by changes in requirements or functional specifications; Unknown = causes of these
modifications are not known

7

70 -

60 ±
62

a0

0
z
U
cc

50+

40+

30 +-

20 -+

10 -

0

3

70 T

60 t

a,a
0

0
I-
2.
Q
2

50-1

40-

30

20

10 -

0

1

14

2A 7
2~~~

67

RED FNL SPEC DESIGN DESIGN LANG
MULTI- SINGLE
COMP COMP

TYPE OF ERROR

(a) SEL1

4

zU

0

0
I-
w
cc

B

1 1I

ENV OTHERS

80-

70 -

60 -

50+

40 +

30±

20 -

10 + 4

REQ

78

B

1 1
1. I _ _ _ _ _ _ _ _

FNL SPEC DESIGN DESIGN LANG
MULTI- SINGLE
COMP COMP

ENV OTHERS

TYPE OF ERROR

(b) SEL2

24

- 6 5

57

a,

4

zU

z
2

U
2c

3 3

RED FNL DESIGN DESIGN LANG ENV OTHER
SPEC MULTI- SINGLE

COMP COMP

70 1

60-

50

40

30 -

20-

10 -

0

TYPE OF ERROR

(c) SEL3

p

18

9 ~

57

RED DESIGN DESIGN
MULTI- SINGLE
COMP COMP

ui
En
Enr

13
I I

I i 3 -3

LANG OTHER

TYPE OF ERROR

(d} ARF

Fig. 4 - Sources of nonclerical errors: Design Multicomp = design error involving several components; Design Single Comp =

error in the design or implementation of a single component; Env = misunderstanding of external environment, except
language; Fnl Spec = functional specifications incorrect or misinterpreted; Lang = error in use of programming language or

compiler; Req = requirements incorrect or misinterpreted

60--

70 -
w
< 60-

X 50-
U2
0 40-2

O 30-
z
U 20-

10 -

0

00
70 +

4
UFE
2

U

z

0

U
c2
ar

60 -

50-

40 -

30 -

20 -

10 -

0
I - I

I

80 T80 7

1

NRL REPORT 8598

For all projects, the major source of errors was the design and implementation of single com-
ponents (nearly always a FORTRAN subroutine or block data). Relatively few errors were the result of
misunderstandings of requirements, specifications, programming language, or compiler or of software or
hardware environment. Aspects of the design involving more than one component were also not a
major source of errors. Figure 5 shows a continuation of the same pattern. For most projects, inter-
faces were not a significant source of errors.

30
cc27

22X
,0 20--
20z
0

I-~~~~~~~~~1
Z 10 1

L)10

0
SEL1 SEL2 SEL3 ARF

PROJECT

Fig. 5 - Interface errors

A further categorization of design and implementation errors, including both single-component
and multicomponent design errors, is shown in Fig. 6. The pattern for the SEL and ARF projects is
quite different here; relatively few ARF errors involved the use (including definition, representation,
and access) of data. For the SEL projects, data errors were a significant fraction of design and imple-
mentation errors.

A direct measure of ease of error correction is shown in Fig. 7. For all projects, the overwhelm-
ing majority of errors took less than a day of effort to correct. Indeed, most error corrections took an
hour or less of effort.

Figure 8 is a measure of locality of errors with respect to project components. Only components
that required at least one error correction (one fix) are represented. The majority of these required no
more than one correction. For all projects, 80% or more of such components were corrected at most
three times.

The locality of errors with respect to project subsystems (project module for the ARF) is shown in
Fig. 9. The distributions here show the reverse pattern of those in Fig. 8; i.e., most corrections are
clustered in a few subsystems (modules).

CONCLUSIONS

The ARF and SEL projects involved different applications and were developed in different
environments, using different methodologies, people with different backgrounds, and different com-
puter systems. Despite these differences, there are the following similarities between the two:

* There is a common pattern to the sources of error. The principle error source is in the
design and implementation of single routines. Requirements, specifications, and interface
misunderstandings are all minor sources of errors.

9

D. M. WEISS

N

e 0 0 0 0 0

N U M t U- N _

SlV3IMIU3DNON d0 1N3:OU3d

a,

o 0 0 0 0 0

I w 0 S M N °

S1VOIUI1DNON 40 lN30U3d

0

a)

i-
4 0

M
2

0

a-

I..

-U
Ca

CC0
D

az
I.
2

0

z,
0
a

R S St R R °

S1VDIU31DNON 310 lN3DHUd

1:

I0

4 r0

0
IL

0

a
E
I-

0 09 0 0~1
N tD 3tNNI1N _

S1VDIH31ONON 40 lN3DU43d

4
a

0

a

az
_

U

0
2I-

g O0

e , o >

Do

cc r

2 £)

U C

-0

o c-

UC

U- S

C00

C .

2e ,. CC

a- U0 l

a-C.

co~

10

UO

ri

0

0

w

0M

I I

36

10

4

EASY: LE 1 HR MEDIUM: 1 HR TO HARD: GT 1 DAY UNKNOWN
1 DAY

EFFORT

(a) SELl EFFORT TO DESIGN CHANGE (b) SEL2 EFFORT TO pESIGN CHANGE

80 _

70 --

60 --

50 -_ 48
42

40 -

30

20-

10 -- 6
0 -

EASY:LE 1 HR MEDIUM:1 HR HARD:1 DAY
TO I DAY TO 3 DAYS

80.

70 -
70

< 60
e -2

a 50-

40-0

0 30-
2
m 20-

10 -

0
13

FORMID
GT 3 DAYS

UNKNOWN

77

SIMPLE: LESS THAN
A FEW HOURS

EFFORT

(c) SEL3 EFFORT TO MAKE CHANGE

z

10

00

22

MEDIUM: A FEW HRS DIFFICULT: MORE THAN
TO A FEW DAYS A FEW DAYS

EFFORT

(d) ARF EFFORT TO FIX

Fig. 7 - Effort to change nonclerical errors

nlT 3TCtC13U

80

70

< 60
c2

C. s

z

o 40z

0 30

0 20

10

64

EASY

80

70

C 6
a 60

2w 50
z

ZO 40

0 30

O 20

105
2

EFFORT

UNKNOWN

co

u.4
0
2

z0

0

I-
2c
C.

;

1

7

26

I~~~~~~~i 9

. I i -4 2,1
2 3 4 5 6

70 -

° 50-

a 40-

2
2
0

z 20-

w 10

0

1 1 1

7 8 9 20

_ 49

NUMBER OF FIXES

(.) SELl

22

I L- 1
I I 3 r '~~~~~~

2 3 4 5 6 7 9

NUMBER OF FIXES

(b) SEL2

Ct

14

1---]6 6
1 1 1

1 2 3 4 5 6 7 9 10

Fig. 8 - Frequency distribution of fixes

so

w

E
w

z

2
2
0

a
X

0
z
c.cL

70

60 -

50 -

40 -

30 -

20 -

10 -

0

70

60

2
° 50-2
E0

a 40

' 30

z 20

U- 10

0

61

11

3

70 -

w 60 -
z

4 50 >

a

rL 30 -

0
20- z

j2j

U- 10 e

0
1 2 4

NUMBER OF FIXES

8 9

(c) SEL3

NUMBER OF FIXES

(d) ARF

NRL REPORT 8598

18

10
5

8

1 1 1
DA AD TP IC IB LG SY

SUBSYSTEM I (= ALL OTHERS)

(a) SEL1 FIXES BY SUBSYSTEM

4 4

FS TP GO G2 BL UA DR GI

SUBSYSTEM (- - ALL OTHERS)

(b SEL2 FIXES BY SUBSYSTEM

60 --

50+

33

a B
5

1 1

RT CL RE TA UT CR PR PA

MODULE

(c) ARF FIXES BY MODULE

Fig. 9 - Fixes by subsystem or module

13

55
60 -

50-

a,
X

0

Lll

40±

30±

20 +

10 -

0

go

X

0
C-

i~CC)
2

0

4

42

40-XIL

0
c-
2

U

UL

30+

20+

10-

0

D. M. WEISS

* Few errors are the result of changes, few errors require more than one attempt at correc-
tion, and few error corrections result in other errors.

* Relatively few errors take more than a day to correct.

These similarities may be explained by different factors in the different environments. The SEL
projects may be viewed as redevelopments. Much of the same design, and some of the same code, is
reused from one project to the next. As a result of experience with the application, the changes most
likely to occur from one project to the next have been identified by the designers. The systems are
now designed so that these changes are easy to make. Confirmation of this explanation was provided
by one of the primary system designers in discussions held after the data were analyzed. In the ARF
environment, the explicit use of techniques to identify and design for potential changes is a likely con-
tributing factor to the similarities in the distributions.

Common factors to both the SEL and ARF projects were the stability of the hardware and
software supporting the development and the familiarity of the programmers with the language they
were using.

The most striking difference between the ARF and SEL projects is in the proportion of intended-
use errors to data errors. The ARF project has a considerably smaller proportion of data errors than the
SEL projects. One reason for this may be the conscious attempt of the ARF developers to apply
abstract data typing and strong typing in their design.

One might interpret the similarity in error distributions between the different environments as
evidence that the conscious application of modern software-engineering technology may be the
equivalent of considerable experience with a particular application.

ACKNOWLEDGMENTS

Support for a research project involving data collection in a production environment must come
from many sources. These sources include project management, the programmers supplying the data,
those maintaining the data base (in both paper and computerized form), those assisting in data analysis,
and those providing technical review and guidance. A few of the people providing such support were
Frank McGarry, Dr. Victor Basili, Dr. David Parnas, Dr. John Shore, Dr. Gerald Page, Honey Elovitz,
Alan Parker, Jean Grondalski, Sam DePriest, Joanne, Shana, and Joshua Weiss, and Kathryn Kragh.

REFERENCES

1. B. Boehm et al., Information Processing/Data Automation Implications of Air Force Command and
Control Requirements in the 1980's (CCIP-85), Vol. 4, Technology Trends: Software, Space and Mis-
sile Systems Organization, Los Angeles, Feb. 1972.

2. B. Boehm, "Software and Its Impact: A Quantitative Assessment," Datamation 19(5), 48-59 (May
1973).

3. R.W. Wolverton, "The Cost of Developing Large-Scale Software," IEEE Trans. Comput. C-23(6),
615-636 (1974).

4. V.R. Basili and D.M. Weiss, "Evaluation of a Software Requirements Document by Analysis of
Change Data," Proceedings of the Fifth International Conference on Software Engineering, 1981, pp.
314-323.

14

NRL REPORT 8598

5. D.M. Weiss, "Evaluating Software Development by Error Analysis: The Data from the Architec-
ture Research Facility," J. Syst. Software 1, 57-70 (1979).

6. D.M. Weiss, "Evaluating Software Development by Analysis of Change Data," Ph.D. Thesis,
University of Maryland, 1981.

7. C.G. Bell and A. Newell, Computer Structures: Readings and Examples, McGraw-Hill, New York,
1971.

8. H. Elovitz, "An Experiment in Software Engineering: The Architecture Research Facility as a Case
Study," Proceedings of the Fourth International Conference on Software Engineering, 1979, pp. 145-
152.

9. D.L. Parnas, "On the Design and Development of Program Families," IEEE Trans. Software Eng.
SE-2(1), 1-9 (1976).

10. D.L. Parnas, "A Technique for Software Module Specification with Examples," Commun. ACM
15(5), 330-336 (May 1972).

11. J.W. Bailey and V.R. Basili, "A Meta-Model for Software Development Resource Expenditures,"
Proceedings of the Fifth International Conference on Software Engineering, 1981, pp. 107-116.

12. V.R. Basili et al., Technical Report TR-535, The Software Engineering Laboratory, University of
Maryland, May 1977.

15

