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PROPERTIES OF EVEN-LENGTH BARKER CODES
AND SPECIFIC POLYPHASE CODES WITH

BARKER TYPE AUTOCORRELATION FUNCTION

INTRODUCTION

A Barker code is a sequence of N numbers xi (where xi = ±_ 1), which has the following auto-
correlation function:

€-K [N forK=0
R (K)= i x•x+ (Ia)

t1 0or± IforK= 1, 2. (N- 1)
i.e., the "time sidelobes" in the autocorrelation function do not exceed the level of I.

In radar applications, the sequence modulates the phase of the signal (some constant carrier fre-quency) from code element to code element. For a stationary target the above property (1a) holds, butnow, since the time variable is continuous, we get small triangles in the autocorrelation function whosepeaks are 0 or ±L I, and a big triangle whose peak is N (the match point). For a moving target we actu-ally have the crosscorrelation function of the transmitted code and the target return, resulting in highersidelobes. Only the autocorrelation function will be considered here.

The known code lengths having the property of Eq. (la) are 2, 3, 4, 5, 7, 11, 13 [1].

It has been shown that no Barker code of odd length exists for N > 13. Also, if an even-length
Barker code exists, it must be a perfect square [21, i.e., N = 12. Since Nis even, / is also even.

The purpose here is to investigate the possibility of even-length Barker codes greater than theknown of length 2 (+ + and - +) and 4 (+ + - + and + + + -). Possible candidates for this are, forexample, lengths of 16, 36, 64, 100, etc., but is was verified [21 that up to N = 6084 (1 = 78) no
Barker code exists.

If x1 is not restricted to +1, -1, but can be any complex number whose magnitude is unity
JxJ. = 1, then the autocorrelation function is required to fulfill:

N forK=0
N-K

(K) - xi = 0 or < unity magnitude (ib)

forK= 1, 2 ... N-I
In general, R (K) is a complex number. The complex conjugate is denoted by *

DEFINITION (for convenience): A code with property (ib) is a polphode. It is actually apolyphase code with Barker type autocorrelation function (excluding the real Barker codes). Specifictypes of polphodes are the generalized Barker codes [31 which are derived from a "father" real Barker
code. These will be discussed later.

Manuscript submitted February 9, 1982.
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SHIMSHON GABBAY

The following analysis will investigate the properties of even-length Barker codes and polphodes

(where N = 12, N and tare even), if they exist. The analysis of Barker codes (for which Turyn [21 can-

siders evidence overwhelming that they do not exist) will lead to the analysis of the general case of pot-

phodes.

GENERAL ANALYSIS: SPECTRUM

The general description of a phase-coded signal is shown in Fig. 1. We are interested in a con-

stant amplitude code; thus, without loss of generality, we assume its amplitude is 1, and its carrier fre-

quency is constant fo.

thCODE ELEMENT
T COMPLEX ENVELOPE

S-N" -t

o T
Fig. I - General description of a phase-coded signal

The signal duration T is divided into N code elements, each of T/N duration, and each code ele-

ment has phase &i (for Barker codes 4z, can take only 0, r values corresponding to real x, which equal

+1, -1 in the sequence), where i = 1, 2, .... , N. For polphodes, q can take any value resulting in a

complex sequence x,. We will specify the restrictions on Oi whenever they apply.

Taking out the carrier frequency, the complex envelope of each code element is ILfL = 4'. The

analysis from now on will be carried out with the complex envelope.

The spectrum of the signal is
N

S(_f) i=I (f (2)

where S1(f) is the spectrum of the Ph code element:
'Li

Si(f) = £__ S1(,)e-j2wdt = £7 St(t)Ce2-rfdt (3)

N

V~) = LoN SlWe i 2wf~dt + fT NS 2 (t)eC12 ,r9 di +1.
N

+ JT T . SNW J2rfdt' (4)

and after a change of variables in the integrals (in order to have the same limits in each one)

T T T

S(f) = L 'N eJe-J2-ftdt + e N ej42eJ2rftdt

2T
+ ejif7fN e j¢Ae-j2rftdt + ..

2
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S1f)= [e'ji - e-i2fT1/N] + e'j021 - -j21rfTN) e-J2rf/INS (f) = - . f [

+ e - e-j27irf/NJC-J27rf2T/N+ .. (6)

S 1-_ Cj 21rfT•N fel + ej(02-
2rfT/N)

+e 3i(b3-2wf2TiN) + (7)

SVf) = e-j2#rT1/2N _L. _iI sin (21rfT/2N) fAbove N8)
[2 NJ 2rf T/2N Terms J' (8)

define

2-rf. "-N T = (9)

and tp is a scaled frequency variable. Then,

+ 3-4*) + ... + eJ[-NN-)2@]J. (10)

This is the basic spectrum expression that we will utilize through the analysis. The sin q/11P term
in Eq. (10) is due the basic code element length TIN, and the terms in the right bracket are due to the
phase coding inside the code.

If the signal bandwidth is B, and we sample it at the Nyquist rate, then TIN = 1/B (this is
because in general we use I and Q processing, which requires sampling at once, and not twice, the
reciprocal of the bandwidth). In this case * = irf/B and (-1/2) TIN = -1/2B. But we will proceed
with the general analysis.

The power spectrum is

IS(f) 12 = S f) S*(f), (11)
and it is the Fourier transform of the autocorrelation function. Note that IS(f) 12 is always a real func-
tion of f, and R (T) is an even function of r for real codes, while R (r) = R*(-7r) for complex codes.

To see this relation in the discrete phase code, let us examine in detail Barker codes of lengths 7
and 4.

BARKER CODE 7

This code is known to be:

+ + +- - + -
'k1 0 0 0 IT IT 0 IT"

3



SHIMSHON GABBAY

Notice here that changing the signs of alt the code elements does not change the property of the
autocorrelation function. This means that one can choose arbitrarily the sign of the first code element.
This is true for any Barker code, and polphode, and we will choose the first code element to be x, +4
(or equivalently 01 = 0°) from now on, unless otherwise stated.

The autocorrelation function is shown in Fig. 2 (where r = KTK = 0, 1, N - 1)

NN

R(T)

7
CORRELATION PEAK AS RESULT
OF 7 TERM IN THE POWER SPECTRUM

TIME SIDE LOBES
AS RESULT OF

4W)

84

- -5 -4 -3 -2 -1 3 6 T

MATCH POINT
(PEAK OF CORRELATION)

Fig. 2 - Autocorrelation function of Barker code 7

According to Eq. (10), substituting the known 0,, for this code we get:

s V) T ~-tje" ;4 I + e1 20 + e"J4 - C6 - ci8*' + ec'1 4 - euit2ij (12a)

and

S*(f = 2N e sin' t i + e 24, + ej4'1' - eO- e1g* + e11o'k - eu124k. (12h)

Carrying out the multiplication of Eqs. (12a) and (12b), we get:

[S(f) 12 
=SVf) 5*(f sin 7 .[- e- -- e 18'4 -e-80_ '2"_ej - f4

122  7 - 2 cos 4(1 - 2 cos 8q - 2 cos 110 (13)

We see in Eq. (13) the Fourier transform relation between [S(f)12 and the autocorrelation func-

tion; the 7 term in the square bracket of Eq. (13) gives the correlation peak. (The triangle, whose

width is one code element TIN, is the result of the [sin ' term, as known by Fourier transform

4
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theory.) The three sidelobes (on each side of the match point) are the result of the 2 cos 44', 2 cos 84',
2 cos 124' terms in Eq. (13), (for convenience, we will call these terms in IS(f)12 "pseudo-
frequencies," though we should remember that they don't represent frequencies of the spectrum, since
the spectrum is actually continuous); these "pseudo-frequencies" give impulses when transformed.
When these impulses are convolved with the triangles due to , they give the triangle-shaped

sidelobes on each side of the match point. Note that the amplitudes of the cosine terms in Eq. (13) are
2, but in the transform process each cosine appears as 2 impulses whose amplitudes are 1, so that the
amplitudes of the sidelobes are 1 in this specific code. Note also that the sign of the "pseudo-
frequencies" determines the sign of the sidelobe (in this example, all the sidelobes are negative).

Note also that for this example, the multiplication of S(f) by S*(f) caused several e-j2'n terms
of the spectrum to disappear; here the e2p, e- and e-J610 ' terms of the spectrum disappeared after
the multiplication, resulting in zero level sidelobes at the corresponding locations of the autocorrelation
function (see Fig. 2).

It is clear that the last term of the spectrum (generally e-i(N - 1)20, and here e-J' 20) will never
disappear after the multiplication (since no other term can cancel it), corresponding to the fact that the
furthest sidelobe of such code is always +1 or -1.

Clearly, these observations will hold for any phase-coded signal with unity amplitude (e.g.,
polyphase codes like Frank codes), but to any sidelobe in the autocorrelation, say of g magnitude, there
will be a corresponding 2g cos (K • 24' + 0) "pseudo-frequency" in the power spectrum. Generally g
can be bigger than 1 but for poiphodes g is required to be smaller than 1 (0 is some angle that depends
on the code).

To show this process for even-length codes, examine the Barker code of length 4. It is known
that there are two possibilities which we designate as Barker Codes 4A and 4B.

BARKER CODE 4A

01, 0 0 0 7-"

The autocorrelation function is shown in Fig. 3:

SWf 2N--fv e-J@ [sin, +' J f -± 12 + c14* - C6o6], (1 4a)

S*2f) = (-u 1 + eJ2 ý' + ej'4 - e16] (14b)

and

Is(f) 2 = (f) s (f) = f i 4 + 2 cos 24 - 2 cos 69'. (15)

Again, the autocorrelation function corresponds to the "pseudo-frequencies" of the power spec-
trum in Eq. (15); the match point is 4, the first sidelobe is +1, the second sidelobe is -1, and the
cos 44 term is missing, resulting in zero level at the corresponding point of Fig. 3 (K = 2).

Note that here, for an even length code, the signs of the "pseudo-frequencies" cos 2?4, cos 64 are
opposite, which results in opposite sign sidelobes in R ('). t'his property is true for any even-length
(N - 12) Barker code [11, that means;

5



SHIMSHON GABBAY

R(r)

RESULT OF

2w
- 6W

T=K T

N

Fig. 3 - Autocorrelation function of Barker code 4A

R(K) + R(N- X)-- 0 (10

for any K = 1, 2 ... N- 1, or equivalently, in [S(f)12 we will have for any ± 2 cos K24 term a

corresponding T 2 cos (N - K)21# term, such that their signs are opposite. This also means that

RIK = .NI 0 since the point K = N does not have an 'image.' Figure 4 shows the image structure
2o 2

of R (). The point K=ýI is the "image!'of K= N-I1, K =2 is the 'imnage ofK -N -2, etc,

N

R (K = -) = 02

N-2 NA- x (ji

Fig. 4 - Image structure of the autocorrelation function of an even-length Barker code

BARKER CODE 4B

01: 0 0 ir 0

WlI = e-§4 I er Sin~ }[ + e6 J2 * - e6J4 ± -f]

and

S*() T ef Sin 4# 11 + eil* - ei4
*P ± ~

[8(f) [2 = N 1~ sn4 2 [4 -2 cos 24' + 2 cos 61fi.

6

4

3

2

.R(r)

"IMAGES"

0 1 2 3

t
R (K =0) = N

KT

N

(I~a}

(1I)

(18)l

| | • , ,, | | | | --
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The correlation function is shown in Fig. 5. Figure 5 is "similar" to Fig. 3. But now in the power
spectrum (Eq. (I8)), the 2 cos 24', 2 cos 64' terms both have changed signs when compared to Eq.
(15), so that Eq. (16) is fulfilled. This caused the sidelobes in Fig. 5 to change signs when compared to
Fig. 3.

RR(T)
4

3

2

- -2 V 01 V 2 3 T

Fig. 5 - Autocorrelation function of Barker code 4B

Note that Eq. (16) does not hold generally for polphodes.

DEFINITION: Define a G-polphode as a polphode in which

R(K) + R*(N- K) 0 0. (16a)

This is actually a generalization of Eq. (16). Notice that R (K) can be a complex number in gen-
eral.

As an example, examine the generalized Barker code 4 [3]:
1 " -1 j

6p: 0 n-/2 i- r/2

SWf = I- T [j',4] + j1c12* - e<j4'P + i -e64'I, (I19a)

S*f) = FT2-1 eJ,, Jsin i P Je 2 - '1 ej* - jej6Vp], (19b)

and

IS(f)12- 1 Sin 0 2 4+2 sin 2q4 +2 sin 64J (20)
S4N 2  1

corresponding to the values of the autocorrelation function:

R(K=0)-=4, R(K= 1)=j, R(K-2)=0, R(K=3)=j.

We clearly see that Eq. (16a) is fulfilled, which means that the above code is a G-polphode.

SYNTHESIS ATTEMPT

With the above analysis we now try to synthesize the Barker type autocorrelation function for
even-length (N = P2) codes, Barker and G-polphode.

7
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Barker Code

Suppose there exists an even-length Barker code x1, x2, ... . x. is either +1 or -1.

The autocorrelation function of the code must be as illustrated in Fig. 6.

The match point R (K = 0) - N appears. The nearest and furthest sidelobes must appear with
magnitude I and opposite signs (corresponding to cos 2tp and cos (N - 1) 20' terms of the power speQ-
trum). In Fig. 6 we plotted arbitrarily one of the two possibilities for these sidelobes. At the midpoint

RIK = = 0. as explained before. The dotted sidelobes in the figure might or might not appear,

But if one dotted sidelobe (say of index K) appears, there will be a corresponding "image" sidelobe (of
index N - K) with the opposite sign, as required by Eq. (16). Of course, there will be another two
sidelobes on the other side of the match point (negative r).

R'(r

N

2,W (N-i1 2w

IMAGES

t-1 1

Fig. 6 -- Autocorrelation function of even-length Barker codes (generally)

Now, from looking at the desired R (7) in Fig. 6, we can determine the structure of the power
spectrum:

[sft)= [ [ (21)

{N±:2 2cs2f : 2cos44f ± ... +02os-2-'2 +± ...- W2cos (N-2)204+2cos(N- 1)2.

must appear-- -•

The spectrum S(f) of the code is given by Eq. (10). The magnitude of S(f) must equat the
square root of the power spectrum IS(f)12 at every point 4' (6 was defined in Eq. (9) and represents
the frequency variable). Specifically, at the N sampling points

' = O, if = •r/N, 4, .=2 w/N, _ , t4r= FIN, . = (N -- Or/N

'f= 0, f--= I/ T f=ý 21T, .... , f = i/T, ... f = -.N I

8
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we must have:

Isf)[I -
AT

N

- _150 _)12
7T

N

(22)

This is a necessary condition for the existence of even-length Barker codes, but might not be a
sufficient condition. Actually, Eq. (22) gives us a set of Nequations that must be fulfilled.

Note that in Eq. (21):

cos 2 0 = cos (N - 1) 2 0
cos04 0 = cos (N - 2) 2 0
cos 6 - 0 cos (N - 3) 2 • 0
etc.

for 4' = 7r/N

for q4 - ir/N

or generally:

cos 2 n ir/N = cos (N - 1) 2nr/N
cos 4 i'r/N = cos (N - 2) 2nr/N
cos 6 ir/N = cos (N - 3) 27r/N
etc.

cos
Cos
cos
etc.

2 - inr/N = cos (N - 1) 2 ir/N
4 ihr/N = cos (N - 2) 2 ihr/N
6 inr/N = cos (N - 3) 2 inr/N

cos K • 2 ihr/N = cos (N - K) 2 i hr/N. (23)

This means that the power spectrum at the N sampling points 4' = 1r/N (i = 0, 1. N - 1), is
(see Eqs. (16), (21)):

IS V =12 -ýjfýtk {N+0+0+J...+

Nir 
NN N

(24)

i.e., the power spectrum samples at ' = in'/N (i = 0, 1. N - 1) must be some constant N •N 2
4N2

times (sin 4'/q4)2 (the last term was interpreted as the contribution of the basic code element

N

length TIM.

Now the spectrum in those Nsampling points (see Eq. (10)) is:

1N, = [ J tI Ii

N N

• jifr 22 .i 1
ej0 3 + ... + eij(N-1) N . eJ4,N

9

for ep = 0

+ -e'2 e

(25)
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Denote
2r

e- =W (26)

(this is the known basic phasor of DFT where WI = 1).

8(11) = -fj {rJ@ [I; 4' 01 [1. e'ol+ WlejT'*2 + + ... + + WOD!'14"V (27>

IV. I.-
N N

and requiring (22) results in Nequations:

i=0: ji efi + I - e"2+1. e + ... + l e JO [= V-N = (28.10

__1- _1-#0+ W-e02+ W2 J3+ + WN- I (28.2>

2= N: Ii e., + W2 t' + W 4 eJ0' + + W +-2 = -.N = I (28)3)

N-1: 1 • d• + wIV-1 eJO + WN'-'2 IN•+.. d* - I 28N

and in matrix notation:

I 1 e I/_t
I W W2  ... W1 -1  e '42 I/t2
I w2 W ... WN2 W' e/a* (290

I W- WN-2Ž W e JON .a

Going from Eq. (28) to Eq, (29), we had to take care of the absolute value in the left side of
(28), by placing some unknown phases a1 in the right side of (29) for each element whose magnitude
should be exactly I = -JNW.

We can write Eq. (29) as:

A X= V (2a)

where A is the known DFT matrix (N x N matrix), which is nonsingular with det A • 0.

10
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The phasor Wis on the unit circle (see Fig. 7).

x 1  
ejo]

x 2  
ej4"2

X3 e j03

XN e""b'

is our unknown vector, which represents the required Barker code (x, = ± 1, qi is either 0 or 7r).

1/a

L--t V2

I/fl3 V3
V is a vector whose

qLýN VN.

"elements have magnitude I = IN, with unknown phases ce.

COMMENTS

(1) Equations (29) are exact necessary conditions.

(2)• Equations (29) hold only for even-length codes N = 12. A similar analysis for Barker codes 5, 7,
11, and 13 shows that the spectrum samples (of the sequence) are not required to have a constant
magnitude.

IMAG.

21r

" "C• REAL

I w2

Fig. 7 - The basic DFT phasor W, on the unit circle

11
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G-polphode

A similar analysis for the G-polphode, where Eq. (16a) is fulfilled, will give us the same result.
For any time sidelobe R (K) there will be a corresponding R (N - K) time sidelobe such that,

R(K) + R*(N- K) = 0

or equivalently: Real [R (K)] + Real [R (N - K)] = 0

Im[R(K)1 - Im[R(N - K)] = 0.

This means that the pair of sidelobes R (K) and R (N - K) contribute to the power spectrum:

2 Real [R (K)I {cos K • 2t0 - cos (N - K)2} + 21, [R (K)1 (sin K • 21p + sin (N - K)2*1.

This contribution of the pair goes to zero for the N sampling points hj = r / N, since

cos K 2 2 = cos (N - K) 2N}N Nr /(30)

sin K -2 = -sin (N-K)2
N N

thus resulting in

S~f= [2 7-s{ 1N + 0+ 0+ 0+ + 01
4N1 ..

as before.

So Eqs. (29) and (29a) hold also for G-polphodes, but the code elements can be any complex
number with unity magnitude 1xdI = 1.

Thus, from now on we can proceed with a a sequence of numbers X, (real for Barker and complex
for G-polphode) which when DFT transformed (Eq. (29)), gives a vector with constant magnitude ele
ments I = -/N.

We will examine first Barker codes.

BARKER CODE STRUCTURE AND PROPERTIES

To derive several properties of an even-length Barker code (if it exists), we write the mapping Eq.
(29) in a convenient form:

I • x] +I X1 • 2+I •X3 + I - X4 + "-'--+I ' XN = 1_1 (31J)

1'Xl+ W'X2+ W 2 "x 3 + W3 -x 4 +.+ + WN-1-xN-I/._ 2  (312}

X1 + W2 "x 2 + W4 •x 3 + W'x 4 + -.- + WNY "xN -/_ 3 (3,3)

12
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X • 1 'X 2 + 1 - 1 X4 + .. - IXN = l/aN,2+ 1 (31.N/2+1)

1 .xi + WN-2 x 2 + WN-4 ' x 3 + WN-6 x 4 +...+ W2 " xNN= /al- (31.N-1)

1 x1+ WN-1 x 2 + WN-2"x 3 + WN- 3 x4 +...+ W'XN= Ia.•_ (31.N)

From Eq. (31.1): since x1 is real (± 1), a1 must be 0 or ir, so that:

X+X2+ X+...+3 = ±,
i.e.,

number of pluses - number of minuses = ± L (32)

But since their sum is N = 12; then:

=12 +1 thnnme1f iue 2-1
CASE 1: if number of pluses 2 then number of minuses 12-

(e.g., Barkers + + - + and + ++ -)

1_--1 12 +1
CASE 2: if number of pluses = 2 then number of minuses + 22 2

(e.g., Barkers + - - - and - + - -

For simplicity we'll discuss only Case i in the following few paragraphs (Case 2 is the "opposite" case).

Note that the difference between the number of pluses and minuses gets larger as the code length
increases, which is not the case in PN binary sequences.

From Eq. (31.N/2+1): again aN,2+I must be 0 or ir, and:

X1 - x2 + X3-- X4 + ... +XN- - - XN±l. (33)

Odd pluses and even minuses contribute positive numbers in Eq. (33), while even pluses and odd
minuses contribute negative numbers.

Denote:
j2 + t

m = number of odd pluses, then - m = number of even pluses
2

n = number of odd minuses, then - n = number of even minuses
2

From Eq. (33): I -1 12+
m + 2 - nj - [[ 2 mj + n = ±1

2 (m - n) - I = ±1

13
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We have two possibilities:

(A) m = n, but since m + n = T (number of all the odd elements), we get:
2t

number of odd pluses = number of odd minuses = (34-.1
4

"(e.g., Barker+ + - +

(B) m - n = /, this implies similarly that:

number of even pluses = number of even minuses - - (341)4

(e.g., Barker + + + -)

From Eqs. (31.2) and (31.A): each weight of the real code elements (xi = t1) in Eq. (31.2) is the
complex conjugate of the corresponding weight in (31.N, e.g., W* = WN•1. (W 2) = WI-2. etc., so
that I/. 2 must be the complex conjugate of IL/aN, or:

aN= -a 2.. (35.1)

Similarly:

a-= (35,2)

aN_2 = -C4 (3W.31

aN/12 + 2 -c-N/2 (35.4)

These equations say that for real codes, Eqs. (29) take the form:

X/a 2

t/a3

orOorr
A (361

*J IL-a2-

14
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From Eqs. (31.1) and (31.N12+1): by adding and subtracting, we get (taking into account Eq.
(36)):

0
2(xl + x3 + X5 + x7 + ... + xN-1) =or (37a)

I

2(x2 + x4 + X6 + x8 + ... + xN) =or (37b)
0

which are another form of Eq. (34).

Further properties of Barker codes can be derived if one can follow the requirements logically. As
an example, consider the (N/4+I) which is a member of Eq. 31, and its conjugate. With property (36)
in mind (note that these two equations give ± 90' shift in the weight from each code element to
another), we get:

•x-Jx2 - x 3 +ix4 + 1xs-x 6  - 1x7 + jx8 + . I (38.1)

and

1 + 1 IA4 + x 6 -5 1 + ... = l+IfA. (38.2)

By adding and subtracting we get

2(xl-X3 + X5-X7 + X9-X11 + X13 -X15 t ... )I--LA + I- ,(39.1)

and

2j(-x 2 + x 4 -x 6 + xs-x10 + x 12-x 1 4 + x6-...) = I/L - IZ/,1 (39.2)

or

(x - x 3 +x-x 7 + ... ) = I cos, (40.1)

and

(-x 2 + x 4 - x 6 + xi-...)= I sin/. (40.2)

Equations (40) can be fulfilled simultanously for a few possibilities of the angle 8, since their left
side is an integer (with plus or minus sign). Actually, if 1- 5p (not multiple of 5), the only values for
/3 are 0, ± 90', + 180', which result in an integer on the right side of Eqs. (40.1) and (40.2). If
I = 5p (multiple of 5), there are other possibilities to get an integer in the right side, since
cos p = 3/5 or cos/3 = 4/5 results in sin 3 = 4/5 or sin /3 = 3/5, which means we have another "fam-
ily" of possibilities that can fulfill Eqs. (40). Actually, they are all the possible combinations of ± 3/5,
± 4/5 for the cos /3, sin P,of Eqs. (40).

Another important observation is derived by adding all the equations of (31). Then in the left
side, all the code elements, except x1, will cancel (because the weights are uniformly distributed pha-
sors in the unity circle of the complex plane), resulting in:

11xi =//gjl+IQ012 + la 3 ±+ + laN,

15
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and since we can assume x, = 1,

12 = ILO + ILa. + 1&0 +.. + Q0 -®r IF + ... + • + 1ý-a,2
(41>

which means that all the 12 phasors in the right side of (31) or (36), whose magnitudes are A and which
appear in pairs of complex conjugates, must sum to /2. This means also that one possible choice of the
phasor's vector in the right side of (31) is the code itself X times I In such a case, the right side of
(31) is:

(42)

as required by (41).

All the above properties ((31) through (42)) can be utilized to reduce the search for even-length
Barker codes.

PHYSICAL INTERPRETATION FOR BARKER CODES

. We can examine now the physical meaning of Eq. (36), as illustrated in Fig.' 8. We need to- input
the real code x(±- 1) to a DFT system, such that we get a constant amplitude tin the output, while the
phases of the output must fulfill some constraints.

X2

XN r *..

REAL

DFT

(N = 12

POINTS)

"n

XN

V1 =

IMAG.

~-I 1 a4

t tk OR i

-~ iL-az

REAL

j /n OR &

IMAG.

TIME DOMAIN FREQUENCY DOMAIN

Fig. 8 - Physical meaning of Eq. (36): the DFT of the real sequence X, gives constant magnitude phasors
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Now we'll see how the Barker codes'for N = 4 (1= 2) are derived by the above analysis (see Fig.
9).

W = e-j 27/N = e' 21r/4- -j

1 W W2  -.- 1
A- w2W4 = W- 1W6

W13 W6 & j -i

We need:

X3 2/irorO0
X41 .2 1

We see from Fig. 9 that C1 only can create the dc-frequency term 2/0, C 2 only can create the
fundamental frequency 2 /a, etc. Thus the required code C is a linear combination of C1, C2, C3, C4
( in the time domain). If-we can find a code C all of whose elements are of unity magnitude, then it is
the required code (note that C3 has two possibilities).

Cj:

C2:

C3: ®

C 4:

1/2 1/2 1/2 1/2
1/2/_a -j . 1/2/ -1 • 1/2Ž +j . 1/2/L

1/2 -1/2 1/2 -1/2
-1/2 1/2 -1/2 1/2

1/2 , -j. 1/2/:-a -1.1/25-a +j. 1/2 1-a

CA XA X2  X3  X4

We have only one parameter (a) to choose in order to have the required code, all of whose elements
must have unity magnitude. We see that if C 3 2J is examined, a must be +90' or -90f (from the first
column, in order to have x, = 1), so the code is:

C: x1 -= 1, x2 -- 1, x3 = 1, x 4  -1 for a = 90'

C: x1 = 1, x2 =-1, x3  1, x 4  I for a = -90'

and if C3 ® is examined, a, must be 0' or 180':

C: x=1, X2 =1, x 3 =--1, x4 = lfora= 0°

C: x1 =-, x 2 = 1, x 3 = 1, x4 = I for a = 1800

All the above codes C are legitimate Baker codes which fulfill all the requirements. Here for N =

4, we had only parameter a to choose, but when N is large, we have many parameters to choose, such
that all the elements in C will add up to unity.

A pictorial interpretation of the requirement established by (36) is illustrated in Fig. 10 (only for
Barker codes) for three elements of the vector matrix described by that equation.

17
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IDFTI

TIME SAMPLES

DC TERM

FUNDAMFATA4. TERM

2h

�' La-

Fig. 9 - Derivation of Barker code 4 by physical interpretation
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IMAG.

/RADIUS F\

LINEARALGEBR POINTOF VIELUSES

We now analyze our problem for either Barker codes or C-polphodes. Equation (29), which is a
necessary condition for both of them, can be written as:

2

AX= " =1

or:

11+

OAX= "

ai /a

19
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Define:
B = -LA

I

which is a modified DFT matrix (each element in A is divided by tin order to get B.

Then:

(43)

B x=Y, (441

where Yis the vector:

Y =(44a)

Equation (44) requires the code vector AX to map to vector Y (unity magnitude elementsl through

the modified DFT matrix B.

This can happen in two ways:

1. The vector Yis some scalar A (might be complex) times XA Then:

BX = AX (45)

We will call this case an eigenvector mapping code (we have mentioned this possibility for Barker

codes after (41))

2. Y•; X X (46>

We will call this case a noneigenvector mapping code.

In order to investigate the eigenvector mapping case, we will use some properties of the matrix B

(over the complex field).

Writing (44) in detail, we get:
1 1 t 1

I W & wN1
I I 1 x2 Y2

1 W2  WI4  WN-2 St 
X3 Y3•

/ 1 1 1

(47)

I WN- 2 WN-4 W2 XN-pI YN-

I w' WN-2  W

where Ix, 1, Y- I i- 1, 2 ..... N.
20
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PROPER TIES OF B

a. The columns (or rows) of B are orthonormal:

()T(-- t I i=j 
(48)

where fr denotes the ith column vector (note that this is the definition over the complex field, as a gen-eralization of orthonormality over the real field).

b. B is symmetric:

B BT 
(49)

Also, its rows (except the first and (N/2 + I)th) are pairs of complex conjugates, e.g., the Nth rowis the complex conjugate of the 2 nd row, the (N - 1 )th row is the complex conjugate of the 3 rd row, etc.c. B is a unitary matrix (this is the complex generalization of an orthogonal matrix over the realfield, where A is an orthogonal matrix if AA T = 1), which is defined by:B(BtJ) I-(-0

or equivalently: (50)

B-1 - (B*) , (50a)
and in our case, due to (49):

From (47), (51): (51)

X B* Y. 
(52)d. fdetB H =i 
(53

for any unitary matrix (see [41, p. 112), which means that B is a nonsingular matrix of rank N. (53)

22); e. All the N eigenvalues of B (as a unitary matrix) are of unity magnitude (see [4] p. 155, prob.
[2i2 = ; i-- 1, 2 ... , N. (54)

It can be verified that in our case, at least X1 = 1, A2 - -1 are eigenvalues of B, possibly withsome multiplicity. To show this:
1 1 1

1 F 2

1 -- W -

(55)

i WN- y WN- 2  WI I I " - -

21
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Adding all the rows of (55) to the last row we get:
1 1 1

S.... 
IB - XIH

I-A --x ... -x•

(560

This last determinant is zero for A1 = 1 and k2 = -1 (since for both of them we get two propor-

tional rows in the determinant).

f. B, as a unitary matrix, maps any vector AX to vector _Y, such that their energies are the same

(mathematicians call this property preservation of length) i.e.:

IT XI+A 2 X 2+-..+XN 4 YI YI+ 
(+

Y2 Y; +... + r Y;Y.

Note, however, that if 1x1 I = I (unity magnitude code) Yj generally are not necessarily of unity

magnitude. Our problem is to find that Kx, I = 1 that will map to I YJ 1, and, of course, it is possible

from an energy point of view.

As an example, check the case I = 2 (N = 4):

1.2
1
2
1
2

2

I
.2

-22
1

IL

2

I
2

.7--_I_
2
1
2

-_1
2

2

2

i
2

.2

If the code is an .eigenvector of B, then, BAX =X

The eigenvalues are, A1 - +1, A2  +1, K3 = -, 4 = -J

so that:

det [B-xl =-(K-I) (A-I> (x + 1) (X +-j>.

Note that indeed Ix.1 - and idet Bt = 1.1 = 1 (when substituting A = Gin (5))S

The eigenvectors are:

1. for K1 = K2 - 1 we have two eigenvectors:

0 o;0j0(B - I)_V = o - .10 -1 -2 = 0,

io 1 0 1 -1

22
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V1 - and V2 = •

_V is a Barker code, while Z2 is not. Actually, any linear combination of V1 and V2 that has

constant amplitude is also a good solution (in our case only _, and -V1 are Barker codes).

2. for 43 -1,

0 00 01
21 0 1

(B+i) V=O 1 0 1 0 V
j -1 -j + 2

Z3=

V3 is the eigenvector Barker code (of course, -Z3 is also a good solution).

3. for X4 = -A

(B+jI) V=0. - 10 1 0 1'i-0 0 01
10100 001

0

=4 V
The eigenvector V4 is not a Barker code. Now we will prove that for the eigenvector mappingBAT -_X, only A = +1, X - -1 can give us a legitimate Barker code or G-polphode (where 1< - 1).

For an eigenvector mapping we require

1 1 1 1

I1 I "" X2 X2
i w2 ... X3 x3

1I 1 I ... • =x •

(59)

XY¢ XN
1 WI- WW-2
I I 2

23
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From the first row:
1 (XI + X2 + ,,+ XN) = •XX1, M6)

1

From summing all the Eqs. in (59) we get:

('+±x+ + xxx + ... + xj) + 0 X2 + 0 X3 + + 0 -x X(x + X2 + + X- (61)

From (60) and (61):
x=)-'k X A&, (62)

or

x- A X2 x1 . (62a)

Equation (62a) can be fulfilled only if:

a. x, = 0, which will not give a Barker code or G-polphode (requires Ix, = I),

b. \ 2 = I or,
(63)

which might give a Barker code or a G-polphode.

Thus, an eigenvector code can be achieved only for the eigenvalues X = ± 1.

The other complex eigenvalues [xkF I will not give a desired code (we saw it in the example for

I = 2, where X4 = -j did not give a Barker code, and, indeed, the first element of the eigenvector ..

was x, = 0).

Now we prove that an eigenvector mapping does not have a solution for a Barker code

(xi= ± 1) for I > 2.

If _X (xI, x 2, ..... x'dis real, then the eigenvector possibilities are:

for X = 1: BX I - X and, (64a)

for X = -1: BX = -1 AX. (64b)

Before proceeding with the proof, it will help to observe the case 1 = 2.

a. BX = 1 - X gives the eigenvector Barker codes
-_ = (+ + - +)T

-_ = - (- - +_)r

b. BX = -1 -Xgives the eigenvector Barker codes
- 2 = (_+ ++)T

-v2= (+- ).

But note that Z3 = (+ - + +) T and -•3 - (- + - -) T are not eigenvectors of B, though they

are Barker codes, which are obviously "symmetrical" to the above V1 and -VI. For example,
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1
2

-j
2

2

2

1
2
1
2

1
2

1
2

-1

2

2
1

2

-j
2

J* ii 1]

I-il Il
.1 I I.

I 11= II'[ij .-4

•3 is not an eigenvector though it
-__4 = (_ - - +) T (which are symmetrical

vectors of B. This happens because of the
following structure (for A = ± i:

B

is a Barker code. Similarly, Z4,= (++ + -) T and
to the above Z2 and -Z2) are Barker codes but not eigen-
general requirement that a real eigenvector must obey the

X1

X2

X3

XN- I

XN

=X

x2
X2

X 3

X*

X* 2.

(65)

This was explained in Eq. (36) and Fig. 10, for a real code X. But if x1 is real (±- 1), then x1 = x•,
so that Eq. (65) recjuires:

XN X- = X2,

XN-1 = X3 = X3,

XN_2 = x4 = x 4 , etc. (66)

We see that .1, -I, _V2, -Z2 above fulfill this requirement (x2 = x4), and therefore can be real
eigenvectors. On the other hand, Z3, -Z_3, •4, -Z do not fulfill (66) (since x4 = -x2), and there-
fore cannot be eigenvectors.

Now to proceed, with the proof, the next candidate for our problem is I = 4 (N = 16).

According to the above analysis, for the real eigenvector mapping, the code structure must fulfill
Eq. (66). Thus, the eigenvector code must be:

CODE:
ELEMENT NO.

X1 X 2  X3
1 2 3

X 4

4
x 5 . x 6
5 6

... X 6  X 5  X 4  X 3  X 2

... N-4 N-3 N-2 N-1 N
where xj is either 1 or -1 (note that the above VI, - V1, V2, - V2, fulfill this structure).

To show that this is impossible for 1 > 2, we return to the time domain autocorrelation process
by steps.

FIRST STEP

... X 5 X4 X 3 X 2

x1 x 2  x 3  ...
X1, x 2 can be ±1, so that R(N- 1) = ±1.

25
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SECOND STEP

,.. X 5  X 4  X 3  X 2

x1 x2  X3 X4  X5 ...
R(N - 2) = x2 x 2 + x1 ,x 3 =I + x x3.

Since R (K) is allowed to be 0 or ± 1, it follows that x3 = -X1

THIRD STEP

... X6  X5 X 4
X1

X( XS
X1

-Xl X2
X2 -XI X4 X5 ...

R (N - 3) = x, (x 4 - 2x 2) so that x4 = x2.

X2  -X 1  X 2

X 2 -- Xl X2  X5 ...

R(N -4) = x2 + x1 x +x 2 x2 + x1 x5 = 3 + x' x5.

No xi, xs (which are t_ 1) can give the desired autocorrelation function (0 or ±j- 1), thus proving that no
real eigenvector code exists for 1 > 2.

By now, we see that the remaining possibilities to meet:
(68)BXA=Y

[xj = 1, L, F = 1

are:

1. Barker code (real), x= ---- 1:

B

X1

X2

X3

XN-I

.XN

Y1

Y2

where Y • X X (not an eigenvector) for I > 2. This possibility
(40).

(68.1)

has to meet properties (32) through

2. G-polphode:

a. B X = ±_ I A Xeigenvector mapping. (See the appendix for further properties in this case.) (68.2)

b. noneigenvector mapping, _Y • A, A .

As an example of possibility 2.b, consider the specific polphodes that are given by the generalized

Barker codes [3]. These are derived from a "father" Barker code AT0 by:

(69)xi = (x1)0 ejG-1)o

where 0 is some angle 2nr/P (P is an integer).

26
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It is actually the addition to each element (x,38 , of a progressing phase step (0 can be further gen-eralized). This modification does not change the envelope of the autocorrelation function.

Thus, all the codes defined by (69) form polphodes, some of them are G-polphodes.

Examples for N = 4:

1.

BT_,-

1
2

1

2

I2

0- 90f
X 1 = AX=

2
2

1

2

1
2

-1=I
1
2

2

1
2

i
2

2

Yj

1

J

1[-l=k�i

We see that X is not an- eigenvector, but it is a G-polphode since; R (3)= j, R (1)= , as
required by (16a).

0-90.

x=

BA B1
Xis not an eigenvector, but it is a G-polphode since, R (3) = j, R (1) = -j.

3.

r,10-45' 1 /45_

2 2 2 2 F

1 1 12- 2 2 2- &L

1 1 /-45'
72 22 2

1I-+

1
2
1I-+
1
2

1- I + cos 45'
2
1

- 1 j+ sin 45C2

12 j - cos 45c

1
-2 j - sin 450

27
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X is a polphode, but not a G-polphode since the autocorrelation funtion is,

R(0) = 4, R (1) = 1 /45, R(2) = 0, R(3) = 1 /-4S_, and R(I) + R*(3) • 0, in contrast to Eq.

(16a), Note also that the right side of Eq. (70) 'd not have constant amplitude elements. This last

example shows that there might be polphodes that are not &-polphodes, thus our analysis does not

cover them.

At this point, we review our results as shown in Fig. I1. A question mark denotes codes that

were not investigated in this paper.

CODES

2 BARKER TYPE AUTOCORRELATION FUNCTIONPOPH/t
REAL (BARKER)

/ \

ODD LENGTH EVEN LENGTH

BARKERS
3, 5, 7,.Itt. I3

N= Nl
2  N. "

2

(+ [-'] IMPOSSIBLE

[-41N=4 2>2

2'2 BX= Y0 XX

+-÷ NoN-EIGENVECTOR.
PROPERTIES

(-321 THROUGH (401

POLPHOOEV1XJ•=t

'ODD LENGTH .EVEN LENGTH

N*A
2  N') 2

G-POLPHOOES NOT G-POLPHOOES

/ \ ,-
BK'=± I, I X=YLXx

EIDERVECTOR CODE NON-EIGENVECTOR
--- CODE

ILat I

I L;'2
1&93

,IG
IL"'L4  /7
:ILo2

"REDUCED SEARCH PROBLEM-

Fig. Iz -- Review of results; a question mark denotes codes that were not investigated in the paper

Z-TRANSFORM INTERPRETATION

Further insight into the problem of generating a code is achieved by using the Z-transform. Basi-

cally, we need a sequence x1(Ix1x = 1, i = 1, 2, .... N, where N - j2) such that its DFT will have

constant magnitude.

The DFT of a sequence is given by N sampling points of the Z-transform. The sampling points

are uniformly distributed on the unity circle of the Z-plane (see Fig. 12).
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Z PLANE

-- SAMPLING POINTS.

Fig. 12 - The DFT of a sequence is given by N sampling points (uniformly
distributed on the unity circle) of the Z-transform

The Z-transform of the sequence xl, x2, ... , XN is:
X(Z) - x 1 + x 2Z-' + x 3 Z- 2 + ... + XNZ-(N-l) (71)

x, ZN-1 + x 2 ZN-Z + x 3 ZN-3 + ... + xV€l Z + XN
zN-1

Then:

[DFT of xi] = X(Z) = X(K) (72)

Z- WK

where W = e-J 2 r/J, K = 0, 1 ...... N- 1.

We see in (71), that X(Z) has N - I poles at the origin (Z = 0), and N - 1 zeroes that depend
on the sequence xi.

If the xi's are real (± 1), the roots of the polynomial in (71) are either real or complex conjugates
in pairs.

Since N is even, N - I is odd, so that out of the N - 1 zeroes of X(Z) there will be an even
number of complex conjugate zeroes and an odd number of real zeroes.

Thus X(Z) for a real sequence x, can be factored to the form:
T(z) -NN_ (Z - Z 1)(Z - Z2)(Z - Z 3 ) ... (Z -Z 4)(Z -Z ... (Z - Z)(Z )(73)

odd number of real zeroes pairs of complex conjugate zeroes

Since we are interested in the magnitude of the DFT of the sequence at Z = WK e-2zrKINwhere K = 0, ... , N - 1, we can ignore the (N - 1) poles at the origin (they do not affect the magni-
tude of X(K)).
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As an example, examine a Barker code of length 4:

X1= x2 = 1 x 3 =-- x 4 = 1

X(Z) = I + Z-1 - Z-2 + Z- 3 = ZI + Z2 - Z + I =
z3

(Z- ZI)(Z- z 2)(z- ZI)
(740

Carrying out the factorization we get:

Z, =z -1.84, Z2 - 0.42 + j0.6. Z 3 n-- 0.42 - jO.6 = Z*.

Those values are calculated approximately for the sake of illustration (see Fig. 13).

B
Z PLANE

D

Fig. 13 - Poles and zeroes of the Z-transform for Barker code 4.
A, B, C, D are sampling points of the Z-transform.

The sampling points of X(Z) are A, B, C, D. When X(Z) is evaluated at those points, we get

the DFT X(K) of the sequence.

As a geometrical interpretation, we see that the exact values of Z1, Z2, Z3 present an exact "sym-

metry" towards the sampling points A, B, C, D, in the sense that the product of the magnitudes of the

three phasors (from the sampling point to the zeroes Z1, Z2, Z3) gives exactly the value 2, for each

sampling point. In Fig. 13, we sketched the three phasors for the sampling point B.

For point B:

1J - Zd) (J- Z2) (j- Z73)1= taiL 10a2l [a31 = 2.

For point A:

RI - z,) (1 - z2) (1 - Z3)1 = 2,

and similarly for points C and D.

This property (75) is evident when looking at the Z transform:
-X(Z) = I + Z-1 - Z"2 + Z-3,

(75.1)

(75.2)

(76)

and substituting directly the sampling points A, B, C, D. But from a geometric point of view, it is a

rare combination of the zeroes of X(Z), that present such a "nice" symmetry.

30



NRL REPORT 8586

Notice, however, that these specific zeroes of Barker code 4 (ZI, Z 2, Z3) do not present theabove symmetry towards any number of uniformly distributed sampling points on the unity circle. Forexample, for eight uniformly distributed sampling points, one of them will be Z = e"' 1 4, and substitut-
ing it in (76):

1X(Z = er 1/4) 1= + e-jir/4 -e-Jr/ 2 + e-J3 r/4I ;e 2,
which means that these specific zeroes of Barker code 4 cannot be "used" for generating higher length
codes.

Of course, the same analysis holds for a complex sequence I xi,- 1, except that the N - 1 zeroesof X(Z) will not be in conjugate pairs. But again for a G-polphode, these N - 1 zeroes of X(Z) arerequired to present the above "symmetry" towards the N sampling points Z = WI.

One might suspect that some uniform distribution of the zeroes of X(Z) will give the desiredsymmetry.' A moment of reflection shows that it is impossible since we have N - I zeroes of X(Z)
and Nsampling points.

This means that if there is a solution, the zeroes of X(Z) will be distributed on the Z plane in
some "rare" combination (and, of course, not on the unity circle).,

Beyond the above "symmetry" these N - 1 zeroes of X(Z) must fulfill other requirements.

Suppose we found some "symmetric" structure (in the above sense) of the zeroes, Z], Z2,
ZN_1.

Then:

X(Z) (Zzl)(zz2).(z N-1) x Z- + X2 zN-2 + ... + X
ZN-1 V-Z 1

X(Z) ZN-I - (-Z 1 ) (-Z2) ... (-ZNL) = XN (78)
Z-0

i.e.;
IZ1 "Z2".... ZN-11 - 1, 

(78.1)
which means that some of the zeroes are outside the unity circle while the others are inside, such that
their product has unity magnitude.

Another point to mention is that the necessary condition is "similar" to designing an exact all passdiscrete filter whose finite impulse response is h (W) = (x,,x 2, .... , x.), where Ix! I = 1.
In Ref. 5, it is shown that an all-pass discrete filter has a Z transform that factors to terms of the

form:

HI (Z)- 1 -a (79)
I - a Z-1where 0 < a < 1 (a is real), such that the pole and the zero in (79) give a constant amplitude forevery frequency. This is actually more than we need, since our requirement is to have constant ampli-tude I only in the N sampling points of X(Z). But, of course, in our problem, since we have a finitelength, we don't have poles of X(Z) (except those in the origin), and we cannot get terms of the form

(79).
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FINAL COMMENTS

1. It is interesting to note that Frank codes of even length meet the requirements of constant

amplitude DFT, and R (K) + R*(N - K) =2 0, but still they don't form G-polphodes. For example,

the Frank code of length N = 16 is:

J(deg): 0, 0, 0, 0, F 0, 90, 180, -90, 1 0, 180, 0, 180,

I Lo 1/0
1./0 W
1 /o 1/-90
1 /9 -w
1, o I _
1 /o 1/o.1 /9o W

01/29so
I" Z 7-9o2
1/o 1/o

1 /180 -- W
1 LO9o
1 /180 W

1 /-9o
1 /180) 1z¶22

1 /90- 1

10, -90, IS0, 9o I

where W = =-j2f/16 ý 1/-22,

Also, it is easy to verify that R (K) + R*(N - K) = 0, but clearly some time sidelohes of the

Frank code are bigger than unity magnitude.

This provides evidence again that our analysis gave necessary conditions, but not sufficient ones.

Therefore, we have to search for the solution.

Note also that Barker 4 codes are actually a special case of Frank codes. The analysis can help in

searching for structures of either the code sequence x1, or the distribution of the zeroes of XW(Z)

2. An issue to be further investigated: Is it possible to approximate the requirement of constant

amplitude DFT of the sequence, and thus approach the "Barker level" of the autocorrelatiot function?

At least intuitively we might think that a constant amplitude DFT is a 'good property."

CONCLUSION

The motivation for the analysis was to find a finite length code with Barker type autocorrelation

function beyond the known ones. Though no specific code was found, the analysis derived necessary

requirements for even-length Barker codes and G-polphodes. These requirements can reduce the

search problem for the above codes.

The different points of view presented here (time domain, DFT of sequences, the Z-transform

geometrical interpretation, linear algebra) might also suggest structures and properties of good codes,

which only approach the Barker level in the autocorrelation function.
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Appendix

FURTHER PROPERTIES OF AN EIGENVECTOR G-POLPHGDE

We have seen that an eigenvector G-polphode must fulfill Eq. (68,2) of the text:

BAT-- ± 1._AT

Let X._ 74 be eigenvectors of B, which correspond to K = + 1, A = -1, respectively.

BL& =- X (alsopX =X& )

B X =1 b, (also B*Xb = -- X )

From (A.2.1), multiplying both sides by B6

BBL -' BX= B2AX -AT.

Similarly, from (A.2.2):

BAX =-BX,=> B 2 Xb - _,

i.e., X, and _X, are also eigenvectors of B2; both correspond to the eigenvalue K I of Ba

The matrix B2 (N x N matrix) is:

00
00

0
0
0

0
0
1

0
0
0

0
1

0

0
0
0

0
0
1

I
0
0

0
I
0

0
0
0

The matrix B2 has N eigenvalues; some of them are K = 1, and
way, the eigenvalues K = ± I of B map to the eigenvalue K = 1 of B2).

From (A.3), (k5): X1

X2
X3

X4

B 2Xa= B 2

XN-2

XN

X,xt

XN-

XN- 2

AT4
X3
AT2

X,

AT2

-AT4

XN-L

ATN-XNIV

(A.5)

the others are A = -1 (by the

(A.6)
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i.e.,:

ture:
The same analysis holds for _Xb, so that if a G-polphode eigenvector exists, it must have the struc-

1Ž2

01Ž2

1/pj2+l
;Xb =

1/9

1 /13

1

1/104
1 /103
1 /12

(A.7.2)

Now from (A.2.1) (by conjugating) we get:

B* _XB a = BXt,
BB* X_* = BLX_* , ->_hXa = X_*,,

(A.8)

(A.9)

and similarly,

BATx,, = -X2- (A.10)

Equations (A.2.1) and (A.9) mean that if AT is an eigenvector of B (for X = 1), then X* is also
an eigenvector of B (also for X = 1). If _X is real, then X, = la (they are identical).

But we look for an eigenvector code X. (in which IX,.I = 1). We have seen in the text, that such
an XA cannot be real for I > 2. So la, if it exists, is a polyphase code. Therefore, AXT is another
(linearly independent to X4) eigenvector code.

Similarly, if AXb is an eigenvector code (for K = -1), then X'b is another (linearly independent)
eigenvector code.

To summarize, the eigenvector G-polphodes (for I > 2) will fulfill:
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BLX.=I B•BtB

[1

11

1

/0-3

taN/2+I

I/a 3

I a 2

1 /183

1
IflVf2+I

S/13~

/P32

1 /a2

I/a2

I L13

/19N12+11

/133

, BA_•=B

I/.2

1 /-a3N/2+l

I 1-a'

�I

-1

.1

1

I

I

I -133

I 1-Thvn+�

'/±

(A.111

(A. 12>

Note that in (A.tl), and similarly in (A.12), out of the N equations for X., we have N/2 - I
redundant equations which can be erased; the last equation is identical to the second, the (N - t)th
equation is identical to the third, etc. Thus, if we erase the last N/2 - 1 equations, we are left with
NA2 + I equations (some of them are also redundant) that should be solved parametrically for at, a2 ,
a .. Nf, aV/2, a)/2+!.

Since we have parametric relations for the at's, we have to choose some of them such that we get
the desired autocorrelation function. This again is a search problem.

Applying the above analysis for N = 16 we get:

BAT =7_s

KrT= 11 /IX 1 /"2 1 03 a I Las I/0 /06 1/07 1/as 1 /09 1/a8 I1 1/0I L6 IL/aS 1/a 4 I J 3
1 /Osb
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After solving the N/2 + 1 = 9 equations, we get the parametric relations:
[1/a3 + 1 Ž + 1/71 = 1/2 [1 1c + 1 /ao1,

[I/__2 + 1 + 1/_6 ± ýi/ = [1/• - 1/ 9] 1,

[ ~Lt4- I + 1cta 1/3- L9 cos (2 "27-/16)' (A. 13)
and

[/_X4 -I _ ] -[1 06 -1 /a Las] 1 - Cos (27T/16)
cos (3 27r/16)

Since the conjugate code XA is also an eigenvector (also for K = 1), we must have the above fourrelations when 1 ,{j is replaced by 1 -oi. Adding and subtracting equations in the above eight rela-tions (complex) gives eight real relationsTwith cos al and sin a,).
For example, the first equation of (A.13) together with the corresponding one (with I/-at)

result in:

cos a3 + COS aS + cos a7 = 1/2 (cos al + cos ag),

and

sin a3 + sin a5 = sin 07 - 1/2 (sin ao + sin ag).

A code (of length 16) that satisfies the eight relations is a candidate for eigenvector G-polphode
(has to be verified in the time domain).

Note also that if the structure (A. 11) is a G-polphode, it is required that for any length N:

27r/3 < (a 3 - al) < 47r/3,
since the second step of the autocorrelation process gives:

R (N - 2) =- ILO + I/_. 3 - ,
and its magnitude must be smaller than or equal to one.
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