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POLYPHASE PULSE COMPRESSION WAVEFORMS

INTRODUCTION

Pulse-compression techniques have been recognized for some time as a means of obtaining
sufficient average power on targets for detection, while retaining a desired range resolution with
peak-power limited radars. In radar practice, waveforms having a constant amplitude are usually
generated to obtain maximum transmitted signal power. Under these conditions, a constant-ampli-
tude pulse of length T can be compressed to a pulse of length T by phase modulating the signal so
that the spectral bandwidth is approximately equal to 11r. The resultant pulse compression ratio p
is then equal to Tir or TB, where B is the bandwidth which is equal to lIT. This phase modulation
is commonly achieved by a linear fin, or chirp waveform where the phase varies quadratically with
time so that the instantaneous frequency varies linearly with time. The frequency spectrum of the
chirp signal is nearly rectangular with a width B, and the compressed pulse is approximately equal
to the Fourier transform of the frequency spectrum.

The resultant sin tit pulse has large time sidelobes which are capable of masking a nearby
weak target and therefore a weighting, such as the Taylor weighting, is generally applied to reduce
the sidelobe levels [1,2] . These weights symmetrically reduce the amplitude of the rectangular
spectrum at the edges of the band and result in lower sidelobes. A weighting applied to the received
waveform results in a mismatch which causes a loss typically on the order of 1 to 2 dB in the output
peak-signal to noise ratio. Also the pulsewidth of the compressed pulse is widened.

Another common pulse-compression waveform is the binary-phase-coded waveform where the
carrier is modulated by 0° and 1800 phases. Pseudo-random binary sequences may be generated by
using shift registers and, in general, the best binary pseudo-random sequences have a peak sidelobe
level which is down from the main response by a factor of p. These codes are useful where a thumb-
tack ambiguity surface is desired. The doppler response of these codes is generally poor, and mul-
tiple doppler channels are required over the range of expected doppler returns.

Complementary codes generally consist of two binary sequences which are combined after
pulse compression and result in low sidelobes. However, these codes likewise have a poor doppler
response and are not generally useful in radar because of the need to separate the two codes in
frequency, time, or polarization to permit them to be compressed separately. This separation can
cause decorrelation by radar targets or distributed clutter and prevent cancellation of the side-
lobes of the combined compressed pulses.

POLYPHASE CODES AND DIGITAL PULSE COMPRESSION

Advantages

The polyphase-coded waveforms discussed in this report offer many advantages over analog
pulse-compression waveforms. These advantages include the ability to achieve low sidelobes without
weighting, although weighting can be applied easily to achieve still lower sidelobes. Also, the poly-
phase coded waveforms are: (a) relatively doppler tolerant; (b) easily implemented; (c) have no

Manuscript submitted August 27, 1981.
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reflections, as there may be in acoustic delay lines; (d) relatively insensitive to phase errors; and
(e) enjoy the advantages of digital processing. These advantages include reliability, reproducibility
and compatibility with other digital signal-processing functions, such as moving-target indicator
(MTI) and pulse doppler. The use of digital pulse compression allows the digital MTI to precede
the digital pulse compressor without requiring multiple A/D and D/A conversions. Also, placing
the MTI before the pulse compressor reduces the dynamic range requirements of the MTI.

Equivalance to Analog Processing

In this section we denote by ai the complex (I,Q) baseband samples of a received uncom-
pressed pulse having an intermediate frequency (IF) bandwidth B. The complex video bandwidth
is B/2 and it is assumed that samples are taken every 1/B s. Recalling that the optimization criterion
leading to the matched filter maximizes the output peak signal to average noise power ratio SpIN,
which is given by 2E/NO, [2] it will be shown that digital processing achieves the same value for
SpIN.

For the digital case, the peak signal output power at the matchpoint is given by

Sp = k (Eaai )2 = k ( Jai12)(1

where k is a constant. In the above and following summations, the index ranges from 1 to p. The
output noise voltage of the matched filter is

n = k .ai ni (2)

where ni is equal to the complex value of the ith noise sample. The average noise power in the signal
envelope is then

Jn12 = k E E apijnjn' . (3)

For complex, zero-mean, band-limited white noise, the coefficients are uncorrelated for a
sampling interval T, equal to 1/B and Eq. (3) becomes

in1l2 = k 1ni12 E: 1ai12 .4

The noise powers of interest may be computed by considering the narrowband representation
for the IF noise waveform x(t) given by

x(t) = n1(t) cos cot + nQ(t) sin oot

2
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where nj and nQ are slowly varying independent Gaussian noise processes; no and nQ have 0 means
and equal variances cu2 and au, which are also denoted by a2 . The average noise power is --

2 = a2 + U2 ) /2 = a2

=KTOFB = NoB, (5)

where K is the Boltzman constant, T0 is the standard noise temperature, and F is the noise figure.
Also,

niI2 = o2 + a2 = 2U2 = 2NoB. (6)

Substituting Eq. (6) in Eq. (4), the average envelope noise power is

in12 = k2N0BjIai12, (7)

and using the relation that N is equal to one half of the envelope noise power computed in Eq. (7),
we have

Sp 1 il (8)

N NoB

From Reference 3,

ia i 12 = 2BE

so that

Sp 2E (9)

N No

is in agreement with the analog value.

Note that although the ratio Sp IN is the same for the analog and digital compressed pulses,
the sidelobes are generally different.

THE FRANK-POLYPHASE-CODED WAVEFORM AND A COMPARISON
WITH OTHER WAVEFORMS [4,5]

It will be shown that the phases of the Frank-coded waveforms are the same as the appropri-
ately sampled phases of a step-chirp waveform. These phases are shown to be the same as the
steering phases of a discrete Fourier transform (DFT), which means that this code can be generated
efficiently or compressed by using a fast Fourier transform (FFT).
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The doppler properties of the Frank code are similar to those of a step-chirp waveform and the
Frank-coded waveform is more tolerant of doppler than the pseudo-random binary codes or the
nonlinear chirp waveforms [1] . The doppler response of the compressed Frank-coded waveform is
down approximately 4 dB, like the binary code, when the total accumulated phase shift due to
doppler across the uncompressed pulse is 7r. The binary-code response continues to decrease with
increasing doppler shift, while the Frank-code response increases to nearly full amplitude for a
phase shift of 2ir. The Frank-code response is cyclic with troughs occurring at odd multiples of 7r
and with peaks occurring at multiples of 27r phase shift across the uncompressed pulse. This was not
recognized in the publisher literature [1,6] since the doppler cuts were taken at much larger dop-
pler intervals. The cyclic nature of the Frank code doppler response can be easily compensated to
further improve the doppler response.

It is later shown that for a Frank code consisting of N2 = p phases, the peak sidelobe is down
from the main response by a factor of (pOr2). The best pseudo-random shift-register binary codes
have peak sidelobes that are down by a factor which approaches p so that the Frank-code wave-
forms have lower peak and rms sidelobes than the binary codes. This means that, in a distributed
clutter environment, the clutter received via the Frank-code-waveform sidelobes is less than that
received via the binary-waveform sidelobes.

The sidelobe level of the Frank code decreases with increasing pulse-compression ratio and low
sidelobes are achieved without weighting. However, a further reduction in the sidelobe level can be
achieved easily by weighting. In contrast, the chirp signal is generally weighted and there is an atten-
dant loss in S/N and widening of the pulsewidth. This section of this report concludes with a dis-
cussion of polyphase-code sidelobe reduction techniques and the sensitivity of polyphase codes to
phase errors.

Frank-Polyphase-Coded Waveform

The Frank-polyphase-coded waveform may be described and generalized by considering a
hypothetically sampled step-chirp waveform [4] . The Frank code was not originally described in
this manner, but was given in terms of the elements of a matrix [7]. As an example, consider a
four-frequency step-chirp waveform as shown in Fig. 1(b) where the Fi's denote frequency tones. In
this waveform, the frequency steps are equal to the reciprocal of the tone duration 4Tc, where To
denotes the compressed pulse width. Assuming this waveform has been beat to baseband I and Q
using a synchronous oscillator having a frequency the same as the first tone frequency, the resultant
phase-vs-time characteristic consists of four linear sections as shown on Fig. 1(a). The corresponding
baseband frequencies are the subharmonics of the frequency 1/re. If the baseband phases of the
step-chirp waveforms are sampled every rC s and held for rc s, the phase sequence shown in
Fig. 1(c) is obtained. This sequence of phases constitutes the phases of a Frank code for N = 4, cor-
responding to the four baseband frequencies of the hypothetical step-chirp waveform. The actual
transmitted Frank-coded-waveform consists of a carrier whose phase is modulated according to the
indicated baseband waveform sequence. For each frequency, or section, of the step-chirp phase
characteristic, a phase group consisting of N phase samples is obtained and the total number of code
phases is N2 which is equal to the pulse-compression ratio. Note that the phase increments within
the four phase groups are 00, 900, 1800 and 2700. However, the phases of the last group are ambig-
uous (>1800) and appear as - 900 phase steps or as the conjugate of the F1 group of phases, which
corresponds to the lower sideband of F1 . The last group of phases appears, because of the ambig-
uity, to complete one 3600 counterclockwise rotation rather than the (N - 1) rotations of the end
frequency of the step-chirp waveform.
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Fig. 1 - Step-chirp and Frank-polyphase-code relationships

The Frank-code phases may be stated mathematically as follows. The phase of the ith code
element in the jth phase group, or baseband frequency, is

ij = (27r/N)(i - 1)(j - 1) (10)

where the index i ranges from 1 to N for each of the values of j ranging from 1 to N. An example of
a Frank-code pulse generation for N = 3 is shown in Fig. 2. The Frank-code phases are the same as
the negative of the steering phases of an N point DFT where the jth frequency coefficient is:

N -j-2(i-1)(j- 1)
Fj a~e N ,(1

i=1

where ai is the ith complex input time sample. This means that a considerable savings in hardware
can be achieved by using the efficiency of an FFT.

The matched-filter output for an N = 10 or 100-element Frank code is shown in Fig. 3. This
figure and the following figures showing the compressed pulse were obtained by sampling the input
baseband waveform once per code element or per reciprocal bandwidth unless stated otherwise.
Using a discrete-time matched filter the output signal is also a discrete-time sampled signal.
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However, for ease of plotting and viewing, the points were connected by straight lines. The four
sidelobe peaks on each half of the match point (peak response) are of equal magnitude. The first
peak sidelobe at sample number 5 in Fig. 3 occurs as the last phase group having - 360 phase incre-
ments indexes halfway into the first phase group of zero phase vectors in the autocorrelation
process. In general, at sample number N/2, there are N/2 vectors adding to complete a half circle.
The end phase group indexing into the first phase group of 00 vectors makes an approximate circle
since the phases of the last phase group make only one rotation as stated previously. The peak
sidelobe amplitude may be approximated by the diameter D of the circle from the relation,

Perimeter = N = irD

or D =N/lr.

(13)

(14)

At the match point the amplitude is N 2 so that the peak-sidelobe to peak-response power ratio R is

N 4

R N= ) = N27r2 =2 p7r2
(Nl1r) 2

(15)

For a 100-element Frank code, this ratio is approximately 30 dB as shown in Fig. 3.

Had the phases of the polyphase-coded waveform been generated by using the phases of step-
chirp phase characteristics sampled at 1/5 of the interval used for the Frank code, the compressed
code would appear as shown in Fig. 4. In this figure, five samples are equal in time to one sample
in Fig. 3. Note in Fig. 4 that the near-in sidelobes are approximately 13 dB and that the envelope
of the sidelobe peaks is approximately that of a sin x/x pulse. The 13-dB sidelobes also appear for
an oversampling of 2:1. Also note that the compressed pulsewidth in Fig. 4 has not decreased since
it is determined by the underlying bandwidth of the step-chirp waveform.

A comparison between the Frank code and a "good" binary code may be made by referring to
Figs. 5 and 6 which have similar pulse-compression ratios. Fig. 7 shows a comparison of the

_U

-J

SRMPLE NUMBER

Fig. 4 - Compressed pulse of oversampled step-chirp (5:1)
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Fig. 5-Compressed pulse of 121-element Frank code
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Fig. 7 - Comparison of mean-squared sidelobes

mean-square sidelobe power of the two codes. From this, one can see that better performance is
achieved with the Frank code in a distributed clutter environment where clutter is introduced via
the sidelobes of the compressed pulse. Also shown in Fig. 7 is a point, for the sake of comparison,
for an unweighted chirp signal. The relatively high mean-square sidelobe level is due to the high
near-in sidelobes.

Sidelobe Reduction Techniques

Various methods have been investigated to cause a further reduction of the Frank-code side-
lobe levels. One method is based on a least-squares technique [8] whereby, for a given input wave-
form, the filter coefficients are found such that the output of the compression filter best approxi-
mates an idealized impulse function. This technique can also be applied to binary waveforms. It was
found that this technique did not produce a symmetrical output waveform for a Frank-polyphase-
coded input waveform. However, for the new P1 coded waveform, to be discussed in this report, a
small sidelobe reduction was achieved.

Another method for reducing the sidelobes was investigated by Somaini and Ackroyd [9].
Their approach was to perturb the phases of a Frank code by search methods until an improved
autocorrelation function was achieved. Using their resultant perturbed waveform, the peak sidelobes
for a 100-element code were reduced from 30 to approximately 36 dB.
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The shortcomings of the preceding techniques are that the doppler responses are not quite as
good as the Frank code and that the filter cannot be implemented using FFT efficiency. The most
effective method that has been found for reducing the sidelobes is achieved by simply weighting the
output frequency ports of the FFT compression filter. Any of the recognized weightings can be
used in this manner. Fig. 8 shows the results of using a cosine-on-a pedestal (of 0.4) weighting on
a 100-element Frank-coded waveform. The peak signal is reduced as shown but the loss in signal-to-
noise ratio (S/N) is small.

Doppler Response of Frank Code

A partial ambiguity function for a 100-element Frank code is shown in Fig. 9 which shows the
amplitude in dB of a matched-filter output for given doppler shifts of the input. The doppler is
normalized to the signal bandwidth and the delay axis is normalized to the uncompressed pulse
length. The vertical scale ranges from 0 dB to - 60 dB, and the - 30-dB sidelobes for 0 doppler are
evident. A front view is shown in Fig. 10 where the sidelobes are plotted down to the - 30-dB level.
The normalized doppler shift of - 0.05 shown in this figure corresponds to a mach-50 target for an
L-band radar having a signal bandwidth of 2 MHz. The first doppler cut shown in the literature [6]
is taken at this normalized doppler and the resultant high-peak sidelobes have perhaps discouraged
usage of the Frank code. The region shown between 0 and mach-5 doppler and a delay interval of
±0.3 is of interest, and it is shown on an expanded scale in Fig. 11. In this region the doppler
response is good in terms of the sidelobe levels. At the doppler shift of - 0.005, or more generally
1/(2p), the total phase shift across the uncompressed pulse is 7r and the peak response drops approx-
imately 4 dB. At this doppler, there is a range-doppler coupling of 1/2 of a range cell with the
result that the signal splits between two range cells. At a normalized doppler shift of - 0.01, or in
general lp, there is a range-doppler coupling of one range cell resulting from a total phase shift of
27r radians across the uncompressed pulse, and the main peak response is nearly restored to full
amplitude as shown in Fig. 9. This effect is cyclic and an approximate loss of nearly 4 dB is en-
countered when the total phase shift due to doppler is an odd multiple of 1800. This also occurs
for the binary code except that the response is not cyclic and it monotonically decreases with fre-
quency. Moreover, the troughs in the doppler response of the Frank code can be easily compensated
by using an additional channel having a phase compensation of 1800. Also, it has been found that

o

CD coJ

Zf)

°O rn Fig. 8 - Compressed pulse of weighted Frank code
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Fig. 10 - One hundred-element Frank code, partial ambiguity diagram
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0-

Fig. 11 - Magnified ambiguity diagram of 100-element Frank code

that the use of weighting improves the sidelobes and reduces the variation in the mainlobe peak in
the presence of doppler.

Figure 12 shows the output pulse for a 100-element-Frank-coded waveform having a doppler
shift of - 0.005 or a total phase shift of ir across the uncompressed pulse. Figure 13 shows the effect
of weighting on receive. In addition to the reduction of the end sidelobes, the mainlobe width has
been reduced. These aspects of doppler compensation techniques are discussed in more detail in
Ref. 10.

Error Analysis

Computer simulations were performed to determine the sensitivity of the polyphase codes to
phase and amplitude errors. The two types of errors considered were random errors in I and Q and
quantization errors in I and Q which are encountered in A/D conversions.

Random Errors

Two types of random errors were considered as shown in Fig. 14. In each case independent,
uniformly distributed errors in I and Q were generated over an interval ±x. For the first type shown
in Fig. 14(a), the error e was determined by letting x be a given percentage of the nominal I or Q
value for each code element phasor. The resultant vector is denoted as ER . The other type of error
e', shown in Fig. 14(b) was generated as explained above, except that x was specified as a fixed
error rather than a percentage of I or Q. In this case, the resultant vector is denoted by EA - In deter-
mining ER and EA, the nominal signal amplitude is assumed to be unity.

Monte Carlo simulations were performed to determine the effect of the relative and absolute
errors on the peak and average sidelobes of Frank codes with pulse compression ratios of 256 and
64. The results for p = 256 are shown in Fig. 15 with similar results obtaining for p = 64. Each
point, other than for zero error, was obtained by taking an average of 100 compressed pulses to
compute the indicated peak sidelobe and average sidelobe levels. The errors were assumed to occur
on either transmission or reception but not both. The results of this simulation indicate that the
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sidelobes are not sensitive to the errors. For example, for the absolute error case, an error distribu-
tion of ±0.10 results in approximately a 2-dB average degradation in the peak sidelobe and a 1.2-dB
degradation in the average sidelobe power.

Quantization Errors

The results of the Monte Carlo simulations previously described indicate the robustness of the
polyphase codes to random errors. To quantify the effects of quantization errors, computer simula-
tions were performed. The average and peak sidelobes were determined for a symmetric A/D
characteristic having the phase and amplitude specified within the accuracy of the quantization
levels determined by the number of bits (including sign). Compression ratios of 144 and 36 were
considered in the simulations, which did not include noise. It was assumed that the errors were due
only to the A/D converters and that the matched-filter phases and amplitude were perfect. The
results are shown in Fig. 16 where each curve exhibits a knee. The knee location is seen to vary
the most between the p = 36 and p = 144 peak sidelobes. The general conclusion reached from these
results is that the polyphase code is relatively insensitive to the number of bits beyond a certain
number. Other considerations, such as dynamic range, may dictate the use of more bits than indi-
cated in Fig. 16.

NEW POLYPHASE CODES [4,51

Effects of Bandlimiting Prior to Pulse Compression

A Frank-coded waveform is depicted in Fig. 17(a) where the GO'S denote the phase groups
corresponding to the sampled phases of a step-chirp waveform as previously discussed. Each group

40 - p = 144

/ ~~~~~AVG. SIDELOBE

36-

/ a= ~~~~~~~~144
32 - PEAK SIDELOBE

c 28 _ X /

24 _= 36
20/ PEAK SIDELOBE

2 4 6
NO. BITS

8 10 12

Fig. 16- Frank-polyphase code, A/D
quantization errors
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Fig. 17 - Effect of bandlimiting before
pulse compression

consists of N vectors beginning with a vector at a phase angle of 00. The phase increments within
the Kth group are

3600
_K -= (16)
N

Thus GO consists of N vectors at 00, G1 has vectors separated by 3600 /N until at the center of the
coded waveform the phase increments approach or become 1800 depending on whether N is odd or
even. For phase increments greater than 1800, the phases are ambiguous with the result that the
phasors of phase group GN- K are the conjugates of the phasors of phase group GK so that the vec-
tors have the same increments but rotate in opposite directions. The result is that the phase incre-
ments are small at the ends of the code and become progressively larger toward the center of the
code where the increments approach 1800 from opposite directions.

If a receiver is designed so that it has an approximate rectangular bandwidth corresponding to
the 3-dB bandwidth of the received waveform, the received waveform becomes bandlimited and a
mismatch occurs with the compressor. This bandlimiting would normally occur prior to sampling
in the A/D conversion process in order to prevent noise foldover and aliasing. The result of any
bandlimiting is to average (or smooth) the vectors constituting the coded waveform, and for the
Frank code, a weighting W(t) such as illustrated in Fig. 17(a) takes place due to the larger phase
increments toward the middle of the code. This weighting causes an unfavorable mismatch with the
compressor which results in a degradation of the sidelobes relative to the peak response.

16
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New symmetrical codes have been found which have the common property that the phase
groups with the small phase increments are at the center of the code and the larger increment
groups progress symmetrically toward the ends of the code. This is illustrated in Fig. 17(b) where
a favorable amplitude weighting resulting from pre-pulse compression bandlimiting is shown.

P1 and P2 Polyphase Codes

The two new polyphase codes which tolerate bandlimiting are referred to as the P1 and P2
codes. The P1 code was derived from use of the previously described relationship between the
Frank-code phases and those of a sampled step-chirp waveform. The desired symmetry, having the
dc or small incremental phase group at the center of the code, can be achieved by determining the
phases which result from placing the hypothetical synchronous oscillator at the center frequency
of the step-chirp waveform. For an odd number of frequencies, the synchronous oscillator fre-
quency corresponds to one of the waveform frequencies and the resultant phases are the same as the
Frank code except the phase groups are rearranged as indicated in Fig. 17. If there is an even
number of frequencies, the synchronous oscillator frequency placed at the center frequency does
not correspond to one of the frequencies in the step-chirp signal. The phase of the ith element of
the jth group is

0j'j=-(irIN) IN- (2j - 1)] [(j - 1)N +(i - 1)],- (17)

where i and j are integers ranging from 1 to N.

An N = 3, P1, code is given by the sequence

oij1 02,1 03,1 01,2 02,2 03,2 01,3 02,3 03 3

0 - 2iT/3 -47r/3 0 0 0 0 27r/3 47r/3

which can be seen to be a rearranged Frank code with the zero frequency group in the middle.

The P2 code, which also has the desired features, is similar to the Butler matrix steering phases
used in antennas to form orthogonal beams. The P2 code is valid for N even, and each group of the
code is symmetric about 0 phase. The usual Butler matrix phase groups are not symmetric about 0
phase and result in higher sidelobes. For N even, the P1 code has the same phase increments, within
each phase group, as the P2 code except that the starting phases are different. The ith element of
the jth group of the P2 code is

jj= [(7r/2) - - (7rlN)(i - 1)1 [N + 1 - 2j1, (18)

where i and j are integers ranging from 1 to N as before. The requirement for N to be even in this
code stems from the desire for low autocorrelation sidelobes. An odd value for N results in high
autocorrelation sidelobes.
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An N = 4, P2, code example is given by the sequence

01,1 02,1 03,1 04,1 01,2 02,2 03,2 04.2 01,3 02,3

+9iT/8 +3iT/8 -3iT/8 -9iT/8 +3iT/8 +iT/8 -iT/8 -3iT/8 -3iT/8 -iT/8

03,3 04,3 01,4 02,4 03,4 04,4

+iT/8 +3iT/8 -9iT/8 -3iT/8 +3iT/8 +9XT/8

This code has the frequency symmetry of the P1 code and also has the property of being a palin-
dromic code which is defined as a code having symmetry about the center.

The ambiguity diagram of the P1 code for N odd is identical to that of the Frank code. For N
even, the ambiguity diagrams of the P1 and P2 codes are similar to each other and to that of the
Frank code.

Simulation of Precompression Bandwidth Limitations

The effect of a restricted bandwidth in the IF amplifiers and the I,Q detectors preceding
analog-to-digital conversion and compression of the phase codes was simulated on a digital com-
puter. The various codes to be compressed were over-sampled by 5 to 1 and sliding-window-averaged
by 5, 7, and 10 to simulate the precompression bandwidth limitation. Only the results for the
sliding-window average of 5 samples are presented here. Similar results were obtained for the other
cases. The compressor phases were matched to the input phases which existed prior to over-
sampling. The resultant oversampled and averaged waveform was then sampled every fifth sample
beginning with the first sample and sent to the compressor. To account for take time-of-arrival
variations, the sliding-window average for the five-sample case was taken starting 4, 3, 2, 1, and 0
over-sample-periods ahead of the first received code element and sample correlation functions were
developed for each case. Note that a match condition occurs for the latter case and otherwise a
mismatch occurs.

The results of this study revealed that precompression bandwidth limitations were similar to
amplitude weighting the frequency output ports of the digital filters in the compressor when the
symmetrical P1 and P2 codes were employed and time-of-arrival variations were taken into consider-
ation (Fig. 18). However, this was not the case when the Frank code was processed (Fig. 19). For
the Frank coded waveform, the bandwidth limitation did not affect the dc group and had little
effect on the highest frequency code group since it is the conjugate of the frequency code group
closest to the dc term. As a consequence, precompression bandwidth limitation did not drop the
far-out sidelobe caused by the dc group indexing into the highest frequency filter and vice versa.

Comparison of the sidelobes between the -30 and -40-dB lines of Figs. 18 and 19 shows that,
for each corresponding time-of-arrival case, with the exception of the match condition shown in
Part (e) of each figure, the sidelobes of the P2 code are lower than the Frank code, while the cor-
responding peak values are the same.

We mention at this point that although a sliding-window average was used to simulate the band
limitation effects in this report, similar results would be expected for any other bandlimiting filter
since the sidelobe reduction is due to the smoothing effect of the filter.
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The average loss of the peak signal values shown in Figs. 18 and 19 is the same for both the
Frank and P2 codes. Some of this loss can be attributed to the passband limitation while the remain-
ing loss represents the loss due to time-of-arrival variation or range cusping. The passband limitation
loss is due to the loss of the signal power contained in the sidelobes of the signal spectrum. The
thermal-noise contribution is also reduced by the bandlimiting and is the same for each code in
Figs. 18 and 19 which account for signal only. It is important to note, however, that the symmetrical
P1 and P2 code sidelobes drop more than the peak due to precompression bandwidth limitation
the sidelobes of the Frank code do not drop at all. This results in lower sidelobes in the new codes for
the same signal-to-noise ratio loss due to the precompression bandwidth limitation.

APPLICATION OF POLYPHASE CODES

The polyphase codes discussed in this report may be used wherever pulse compression is needed
and where the anticipated doppler-to-bandwidth ratio is less than approximately 1/(2 p) corre-
sponding to a range-doppler coupling of 1/2 of a range cell. This doppler extent would apply to
many search-radar and radar-mapping applications. These polyphase codes have much better dop-
pler tolerance than the binary codes and have lower sidelobe levels.

The polyphase codes may be efficiently implemented to provide large pulse compression
ratios, with normalized peak sidelobes given by 1/(p7r2). The achievable compression ratio is pri-
marily limited by the signal bandwidth, which impacts on the A/D sampling rates and the digital
circuit speeds. The polyphase pulse compressor does not become less efficient for long-duration
waveforms as the analog acoustic delay-line compressors do.

For odd N, the P1 code, which is tolerant of precompression bandlimiting, can be imple-
mented using FFT technology. This results in a considerable hardware savings for large p and allows
the compression of different pulsewidths using the same processor.

The use of digital processing to compress the polyphase codes is compatible with digital MTI
and pulse-doppler processing. As mentioned previously, the digital MTI can precede the digital pulse
compressor to reduce the dynamic range requirements of the MTI without the need for multiple
A/D and D/A conversions.

SUMMARY

The properties of Frank polyphase codes have been investigated in detail and extended. It was
shown how the Frank code can be conceptually derived by appropriately sampling a step-chirp wave-
form and how the Frank and new polyphase codes are useful for doppler-to-bandwidth ratios less
than approximately 1/(2 p). Doppler compensation techniques were presented to improve the per-
formance of the polyphase codes. Also it was found that the polyphase codes are not very sensitive
to amplitude and phase errors.

New polyphase codes were described which have more tolerance to precompression band-
limiting than the Frank codes. The precompression bandlimiting acts as a weighting on the Frank
codes, which increases the sidelobe levels relative to the peak. The normalized sidelobe levels of the
new codes are reduced by the effective weighting caused by precompression bandlimiting.
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