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ALGORITHM FOR THE INVERSE OF
A HERMITIAN TOEPILTZ MATRIX

INTRODUCTION

The efficient inversion of a given matrix and the related problem of solving a system of linear
equations has been a subject of intense study for many years. The literature on this subject is so vast
that no survey can be exhaustive. For example, a tentative classification and bibliography on solving
systems of linear equations written by Forsythe [1] contains over 400 titles. An excellent handbook on
the various numerical methods of matrix inversion and the solution of linear equations has been writ-
ten by Westlake {2]. Different methods are compared based on such measures of effectivencss as
speed, storage requirements, and convergence rates if applicable.

Numerical methods for matrix inversion and the related problem of solving a system of linear
equations can be divided into two classes: the direct methods and the indirect (iterative) methods.
Direct methods such as Cramer’s rule [3), Gaussian elimination [3], and orthogonalization [3-4] vield
an exact solution after a finite number of operations if there is no roundoff error. Tterative methods on
the other hand such as gradient methods [4], the back and forth Seidel [4], and successive overrelation
[5], begin with an approximate solution and obtain an improved solution with each step of the iteration.
The accuracy of the solution depends on the number of iterations performed.

For most direct methods of matrix inversion, the number of arithmetic operations is proportional
to M?* where M is the row or column dimension of the given square matrix. For iterative methods, the
number of operations per iteration is proportional to M2 In general, the speed of an algorithm if there
is no parallel processing is propertional to the number of arithmetic operations so that this measure can
be used to evaluate the performance of a given algorithm.

A direct procedure for finding the solution of simultaneous linear equations where the multiplying
matrix is Toepiltz was developed by Levinson and presented in Norbert Weiner’s book, Extrapolation,
Interpolation, and Smoothing of Stationary Time Series [6]. This algorithm takes advantage of the Toepiltz
form to reduce the number of arithmetic operations to be proportional to M2, This algorithm has been
used by Burg [7] to estimate line spectra in a methodology commonly called maximum entropy spec-
trum analysis (MESA).

This repott presents a new direct method for finding the inverse of an M x M hermitian Toepiltz
matrix. An M X M hermitian Toepiltz matrix, H, has the form

ho Al hy - huo
By he - hyea
hy Ry hy o hyes
H= 1
hp-y hy-z hy—z -0 hy

Manuscript submitied August 16, 1981,



K. GERLACH

where A, is always real and * indicates the complex conjugate. Note that it is only necessary to specify
the elements of the. first column of a hermitian Toepiltz matrix in order to define the entire matrix.
Therefore, we introduce the shortened notation: if # is an M x M hermitian Toepiltz matrix, then we
write

H = (Chg, hry, by ooy By D)) V)

where ke, k= 0,1, ..., M — 1 are the elements of the first column of A,

We will take advantage of the form of a hermitian Toepiltz matrix and develop new direct
methods for the solution of simultaneous linear equations and the matrix inverse. The basis of these
related algorithms lies in discrete Fouries series theory. Efficient algorithmic procedures are presented
which use the theory of the preceding sections to find the matrix inverse and the solation of simulane-
ous linear equations respectively. We then discuss the software implementation of the matrix inversion
algorithm.

SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

In this section, we will develop an algorithm for solving for the unknowns of a system of M
independent linear equations. Using this algorithm, we will see in the next section that an algerithm
for obtaining the inverse of a given hermitian Toepiltz matrix can be derived.

Consider the vector equation
Hx=c¢ (3)

where H is an M X M nonsinguiar hermitian Toepiltz matrix, ¢ is an M X 1 known vector, and X is an
M % 1 unknown vector. We desire to find ¥. We use the following approach. Let us define a system
of N = 2M — 1 independent linear eguations as

!
VA SF A | I
e T L1 @
Pyt Py 0 X

where X, is an M x | unknown vector, Ty = T, Xy_; is an (M — 1} x 1 unknown vector, 0 is a zero
filted (M — 1) x 1 vector, and

|
! . . .

------ |===>-== ((ho, hl, BRI hM—l: hMA]. hMﬁz, ) h1)) (5)
{ L

¥
Afe

(g

We call a matrix defined by the form seen in Eq. (5) as an up-down hermitian Toepiltz matrix
(UDHTM) because the subscripts of 4, seen in Eq. (5) increase and then decrease. We also assume
thar D te emmenterrrtasm Tl e sdmias 1) wo omme tea Doan §AY nwed (&Y in smamtitimeand oo Frllasgas DM} i, o
kllaL I M I3 1UIIDILE R ULAl., LILIC JI1dLilA, I Ms A3 BCGIL J11 LAYD. (7 dIiU 77 0 Paititiviidia ad (Uiiuydy. & 11 N a

M x M matrix, P# is an M x (M — 1) matrix, PH* is an (M — 1} X M matrix, and P is an

(M — 1) x (M — 1) matrix. In addition, we can also show that P{#' = H and thus is hermitian Toe-
piltz and that Pz(éw ) is also hermitian Toepiltz. In fact
nitM) _ s r I. I 1 f£Y
gy = \NJig, Fiy. Fiy, ..., Tipggo2)7s Wiy
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Note that the system of equations defined by Eq. (4) contains (2M — 1) unknowns and has a unique
solution if P’ is nonsingular. Also note from Eq. (4) that if PM) = Hand G, = T, then Xy = x.
Thus, if we solve for the unknowns in Eq. (4), we have aiso solved for X in Eq. (3).

Let us rewrite Eq. (4) as

!
5 [ ot | 0w || 7 )
= o T o 1l @
0 Qi 1 On Xp-1
where
|
oit” | on”
...... |------= Pi'A Qu (3)
oit” | 0" -

such that O™ is an M x M matrix, Q4" is an M x (M — 1) matrix, O is an (M — 1) x M
matrix, and @3 isan (M — 1) x (M — 1) matrix. We show in Appendix A that

1 Fn A7V Fy
N

_—
N
—

)
M

where Fy is the Mth order discrete Fourier series (DFS) matrix defined by Eq. (A6), and A is a diago-

nal matrix whose element, k., consists of the Nth order DFS of the sequence {ho, Ay ooy Bacs
hyg_1s Bag—as -, Byl (the Ath order DFS is defined by Eq. A4). In fact, if
[So, Sl ven s SN—l} = DFS {ho, h], P hM—lr hﬂ.d'—l’ e hl.} (10)

where {sp. sy, ..., Sy—} is the sequence that results by finding the DFS of the sequence {hg, Ay, ...,
hM—ls h;'!—ls R | h]-}, then

M= Sy k=1,2, ..., N. (11)
It is also shown in Appendix A that if Py, is a UDHTM then Pj;! or @y is also a UDHTM. Thus we
see that (4, can be written
- -
Ou= (g0, £1, --- 8M—1» 8M—1 -+ 81)). (12)

Hence, it is seen that Q{7 and Q44 are hermitian Toepiltz matrices with

Ql(im = ((go, 81+ -, Gu—1)) (13a)
and
Q{;“ = (g0, &1, .-, gu-2)). (13b)

Now, let us rewrite Eq. (7) in the equivalent form as
Fu= O o + QU Xy (14a)

= O Ty + O Xy (14b)

[=]]
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Equation (14b) can be rewritten as

M—1
P( )xM }_CM 1 (143)
where we have defined
(M—1 M), = — M) =
P ) = Qz(z ), Cpy—1 = — Q2(1 ! Cag- (15)
If we had a solution for X Xpr—1 in E{i (14&}, wa could ﬁ.ﬂ‘d .r‘_CM To ﬁﬂd X f—1, We uUse ‘p‘,—. (14“‘ How-

ever, PV isa (M — 1) x (M — 1) hermitian Toepiltz matrix and €y _; is a denvable (M—1)x1
vector. Thus, we have reduced the order of the problem from finding an unknown M x 1 vector, Xy,
to finding an unknown (M — 1) X 1 vector, X,_;, whose multiplying matrix is also hermitian Toepiltz.
Hence, the above procedure is reiterative and must be repeated M — 1 times with the assumption that
P k=12, ..., Mare nonsingular. On the M — I iteration, the equations have the form

%=02%+ 09 % (16a)
@)
e Qsb)__
12

Note that X, and (3’ are now scalars. Thus, no matrix inversion of 043 is necessary (it is assumed
08 =0), Tharefore X, is known and X X (a 2 x 1 unknown vector) can be found by using Eq. (16a).

In general, the unknowns, X,, K = 2, 3, ..., M can be obtained by using the forward reiterative for-
mula
%=0P 7t +0o¥ %1 (17)
The constant k x 1 vector, ¢,, k = 2, 3, ..., M can be obtained by using the backward reiterative for-
mula
G=—0 G k=M M-1,...,2 (18)
with the final condition that ©,; = ¢ In the discussion of software algorithm for matrix inversion, we
discuss how to obtain the matrix, Q,, k =M, M — 1, ..., 2.

TOEPILTZ MATRIX INVERSION ALGORITHM

We can use the algorithm for finding the unknowns of a system of linear equations discussed in
the preceding section to obtain the inverse of a given hermitian Toepiltz matrix. Let us define the
k x k matrix, £, such that

QAPPY k=23 ... M (19)

and

Note from Egs. (3), (4), and (19) that Q ,, = H!. Now for k = M, Eq. (14¢) implies that
%y = 0y T Q1)

Equations (21) and (15) imply that A
Ty = QT = — Dy O By = — QR G O & (22)
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Therefore, if we substitute Egs. (21) and (22) into Eq. (17), we obiain
Qyc= (M) 7 — Ql(éu) Qe 1Q(M) : 23)
=@ - o} Q0T

Because € is an arbitrary M x 1 vector, Eq. (23) implies the following formula:

Qy= 0 — o QM—le(fv")- : (24a)

Similarly, we can find a formula for Q , = [P{*~V 17! . We do this by choosing a new arbitrary
vector, ¢, of length M—1, and initiate solving a system of M—1 simultaneous equations as we did in
the preceding section. Using equations similar to Egs. (21) to (23), we would derive an equation
exactly like Eq. (24a) except that the index is M—1. Hence it is possible to write a reiterative formula

Q=0 - o @,y OFF (24b)

with k = 2, 3, ..., M, and with , given by Eq. (20). Thus if we reiterate Eq. (24b) A — 1 times,
we obtain H1 = Q,,.

SOFTWARE ALGORITHM FOR MATRIX INVERSION

In this section, we present an efficient procedure for obtaining the inverse of a hermitian Toepiltz
by using the methodology described in the preceding sections. To begin with, it is seen from Eqs. (20)

and (24b) that all that is necessary for computing the 1, matrices, k= 1, 2, . M are the O,
matrices. The partitions, m{f‘), Ql(é‘), Qz({‘), and Qz(é" can be obtained easily f,u,u Q,\ Now (, is a

UDHTM, so that all that is necessary to completely specify it is the first column of the matrix (actually
because of the up-down property, just the first A elements of the first column are needed). The matrix
0O, can be found by using the formula

O = !

m F’;k—l A;:lf'zk‘l; k=23 ..., M (25)

where F,,_; is the (2k — 1) order DFS matrix defined by Eq. (A6) and A, is a diagonal matrix. The

diagonal element, A §), =1, 2, ..., 2k — 1 is found as follows, If
Qv = ((g(k+1) (k+l) e, gk(k+1), gk(k+1)" o gl(kﬂ)')) (26)
and
[S(k) Slk o 52(.512} = DFS [go(kﬂ)’ gl(k+“- . ’g(ic+l), g(fﬂ) o gl(k+l)'}’ 27
then
AR = gt p= 1,2, .., 2k - 1. (28)

Now in order to generate all Q;, A must be known. However, the matrix, A, can be obtained
by using the elements that define H and Eqs. (10) and (11).

To evaluate {;, seen in Eq, (25), it is not necessary to perform all of the matrix operations indi-
cated by this equation. In fact, it is straight forward to show (see Appendix A) that

{g (k) g(k) r e » gk(f).l gk(k) sy glk)l =
1 1
DFS . RSN . (29)
| @k - mffi 2k — AP 2k — N - ok -n |
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Thus, based upon the preceding discussion, we present the following algorithmic procedure for
finding AL

A, Setk=M~-1,gMV=p I=01,..,M-1.

B. Calculate {s*’, s, ..., 5§82} by using Bq. (27).

C. Caleutate {gd, g/, ..., g1} by using Eqs. (28) and (29).
D. Store lgd®, 2 ..., g4},

E k=k-1

F. GotwBifk > 1.

G. Set@y= —i (note gf? = 0) and k = 2,
8o

H' Set Qk = ((g (k)a gl(k)! LN gk(f‘%s gk(k)'a sy gl(k).))

I.  Construct partitions: @, 0, oF.

Lo Q=0 - 0ff 0, o

K. k=k+1.

L. GotoHifk € M

M. H'=0,.
The algorithm can be divided into two parts: the firsi part (steps A-F) consists of finding the elements
of Oy, k=123, ..., M, and the second part (steps G-M) calculates through a reiterative formula (step
I} the (1, matrices.

It can be shown that gé*’ and s, 1= 0, 1, ..., 2k — 2 are always real. Because of computa-

tional errors, however, these values may have a small imaginary part. It was found that the accuracy of
the matrix inverse, A~ !, improved if only the real part of the computed #f¥ or %) was used in

succeeding steps of the algorithm.

A Fortran computer program listing that implements the matrix inversion algorithm is given in
Appendix B. i

SOFTWARE ALGORITHM FOR SOLUTION OF SIMULTANEOUS EQUATIONS

Simiiar to the preceding section, we present an algorithmic procedure for ﬁndmg the solution of a
system of simultaneous finear equations as given by By, (3) as follows:

A Seth=Mg"V <R 1=01,2,..., M~ 1,Ty="1
B. Calculate {s{*, s{*, ..., s5¥,) by using Eq. (27).

C. Calculate {g6*, g%, ..., &*}} by using Eqs. (28} and (29)
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D. Store {gd¥, g, ..., g¥ll.

E. Construct partition O{f’ by using {g{*’, g{¥, ..., g}
F. Gy =— 05 &; store T,

G, k=k-1.

H GotoBifk > 1.

I.  Setx, = c/gd? (note %, ¢ are scalars) and k = 2.

1. Set Q= (¥, gf®, ..., g}, g1, ..., g ).

K. Construct partitions: Q{, Q%.

=0 e 4+ oW x|
1 K ' l(. hhf Sl

~k

M. &

k+ 1.
N. Gotolifk € M

0. X=X

IMPLEMENTATION OF THE MATRIX INVERSION ALGORITHM

The value of any algorithm that is used as a computer library subroutine is determined by such
measures as speed, the amount of computer memory needed, and the amount of hardware necessary to
implement the algorithm. The last two measures can sometimes be traded-off to obtain faster speeds.

For the matrix inversion algorithm, the amount of memory (double words for a complex number)
needed is at most M2 To see this, we observe from steps A-F that it is necessary to store
M (M — 1)/2 complex numbers. For steps G-M, it is necessary to store at most M%2 complex

numbers. This results because it can be shown that if @, = (@ %), k =1,2, ..., M, then
0 k= o W= mn=1 2 &h)
L L un Ul' m+”U( -ﬂ'""U? Freprs Ly Ly aaey Ny

Therefore, only half of the elements of the (), matrix need to be stored. Since & € M, this number is
at most M2/2. Hence, it follows that the maximum memory needed for steps A-M is M2. Storage
requirements for most matrix inversion algorithms are of the order, M? [2]. Thus there is no advan-
tage in eliminating memory by using the matrix inversion algorithm presented in this report.

A good indication of the speed of an algorithm is the number of multiplications (Xs) that are
necessary to perform the algorithm. Multiplications and divisions that are implemented digitally are
generally much slower operations than the addition, subiraction, loading, and storing operations and
hence may account for the greater portion of the processing time, For steps A-F of the matrix inver-
sion algorithm, the approximate number of Xs is 2M3/3 and for steps G-M the approximate number of
Xs is M*/4. Hence, the total number of Xs is of the order of M* [For most direct methods of matrix
inversion the number of Xs is of the order of M? [2]. Thus it is seen that the algorithm presented in
this report is comparatively slow at least when implemented in pure software.

There are two other disadvantages associated with this matrix inversion algorithm. First, if the
given hermitian Toepiltz matrix H is singular, the algorithm does not indicate this. Second, if H is
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nonsingutar, the intermediate UDHTMs employed in the algorithm may be singular. In this case, the

algorithm faits. It is possible to determine if an intermediate UDHTM is singular by noting whether

e AF thha wralinna ~F ) r— 1 N YL 1 anlsiilatad im Ba QY non macsr T one A thhana sraliias
aiily Ui oGl Vasuls i A, ¢+ = 1, 2, o0. y &R i, CarCHRIC0 15 4. Le0r 470 ZOI0. 11 Ay Q1 1Nncdic Vaiucs

are zeto, then the given UDHTM is singular and the algorithm fails.

SUMMARY AND CONCLUSIONS

A new method for obtaining the inverse of a hermitian Toepiltz matrix was presented. In addi-
tion, a related technique for finding the solution of the system of linear equations, Hx = ¢, where H is
a hermitian Toepiltz matrix, was developed. Efficient algorithmic procedures for both of these methods
were listed. ‘
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Appendix A
INVYERSE OF AN UP-DOWN HERMITIAN TOEPILTZ MATRIX

=

(ao, al, ag, ey aM_l, a,;,_l, 0;4_2, fae af)) (Al)

where a is real and ¥ = 2M — 1.

The methodology of finding 47! is embedded in discrete-Fourier-series (DFS) analysis. The DFS
periodic convolution theorem [A1] states that if x(k), p(k) and z(k), k= ... =2,-1,0,1, 2, ...,
are periodic sequences with a period equal to N and

z(n) = Ni x(myyln — m), (A2)
m=0
then
Z{k)=X(k)yY(k) (A3)

where X (k), Y(k), and Z (k) are the Nth order DFSs of x(n), y{(n), and z(n) respectively. Recall
that a DFS is defined by the mapping of a sequence, # (n), of length & into a sequence, U/ (%), through
the transformation

N—1
Ulky= Y uln) Wi, k=0,1,2 ..., N-1 (A4)

n=0

where Wy = exp {—27j/M , j= ~/—1. The sequence, u{n), can be found from the inverse transfor-
mation
N

t

Uk) W, n=10,1,2, ..., N— L {A3)

uln) = %

I
=]

.
LY

Let us define Fy to be an N X N matrix such that
Fy= )i S = Wm0 Domn=1,2 ..., N (A6)

The matrix Fy will be called the Nth order DFS matrix because we can rewrite Eq. {(A4) in matrix nota-
tion as

U= Fyu (A7)
where U= (U, U, ..., UIN= 1T, 5= (u(0), u(1), ..., u(N — 17, and T denotes tran-
spose. The DFS matrix has the property that

p—— 1 - - o~
Fyl=— Fy.
N v (A8)

This property can be shown by rewriting the inverse DFS transformation, Eq. (A5), in matrix notation
and comparing this to Eq. (A7).
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Let us define a periodic sequence y(n), n=10,1,2, ..., N — 1 such that

a, n=01] ..., M—-1
Y= =M M+1L ..., N-1 (49)
It can be shown that ¥(k), k=0, 1, ..., ¥ — 1 are real.

We can now rewrite Eq. (A2) in matrix notation and show that Z = A4X or equivalently
X=A"17 (A10)
where 4 is an N x N UDHTM defined by Eq. (A1), z= (z(0), ..., z(N =T and ¥ = (x(0), ...,
x{N — 1))}7. We can also write Eq. (A3) in matrix notation as

Z=AX (A1)

where A is a diagonal matrix with real diagonal elements Ay, = ¥(k — 1}, k=1, ..., N, Z = (Z(0),
o ZIN= 1) and X = (X(0), ..., X(N — 1))7. However, we know that Z = Fyz and X = FyX,
so that Eq. (A11) can be rewritten as

Fyi=AFyX (A1)

I we solve for X in Eq. (A12) and use Eq. (A8), we find that
1

X = 1 firl 1 Z. (1\13)

0= -;I—F&A“IFN— 4z (A14)

Since Z can be chosen arbitrarily, this implies that

A= }N—Fng‘IFN. (A15)

We summarize our result by the following theorem:

Theorem: iIf Aisan N X N UDPHTM, then 4 can be written in the form
1

A=5

F,* A Fy

where Fy is the Nth order DSF matrix and A is an N x N diagonal matrix with real elements. In addi-
tion, if 4 is nonsingular, then 4™} has the form

- 1 e,
A ]="EFNA]FN.

We now prove the foliowing theorem:
Theorem: If A is a nonsingular UDHTM, then 4~ is a UDHTM.

10
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Proof:
Let us derive an individual element of the matrix A~! by using Eq. (A15). By direct calculation,
it can be shown that if 47! = (a,,) mn=1, 2, ..., N, then
N—1
- —1— T aih Wi (A16)

We show that 47! is hermitian by using the fact that A, k= 1, ...N is real and Wy'= Wjy.
Thus

l -
Xum = [ E )\k+1 W(m n)kl
k=0 ]
N

1 .
—1l [W!\S,m—n)k]

=
R
—

y -l li—mdk

"K+i A ]

L

1
N
1
N |

i {VJ

= Q-
Alé) that the diagonal elements {m n) are real.

We use the form of Eq. (A16) to show that 47! is Toepiltz. We see that it is possible to write
.. in the form a,, = 8,,-, for all m and n, which is exactly the form of a Toepiltz matrix.

We show that 47} has the up-down property by demonstrating that for the elements in the first
row that

ay, = al‘(N—n-v-Z)' (Al—"‘)
We do this as follows:
. L .
Xin-n+2) = | > oAgh WM
k=0
i MN—1
(N—n+1)k
= 7 2 .k+l lW ]
N >
1 =1}k
=N A1 W'

Hence, the theorem is proved.

We see from Eq. (A16) that in order to find the elements of the first row of 47!, we can write
N

|
—_

1
(!1" = 7\7 z Ak W(” l)k (AlS)
However, we notice that the form of Eq. (A18) is that of a DFS (see Eq. {A4)) except for a scalar fac-
tor of 1/ N. Hence to generate the ﬁrst row of 47!, we merely find the Nth order DFS of the sequence
Arh ash o, AR" and divide all elements of the DFS by N. Therefore, since the first row of a hermi-

tian Toepiltz matrix specifies the entire matrix, we have found a simple method of generating the

11
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inverse of 47!, Firstly, we gencrate A1, Az ... Ay by calculating the Nth order DFS of the sequence
ag, @y, .- 8y-1,a5-2 .- a;. Secondly, the first row of 47! is found by calculating the Mh order DFS
of the sequence A{'!, A7, ..., Ay! and then dividing all elements of the DFS by N. Finally, because

A" is a hermitian Toepiltz matrix, all other elements of the matrix are specified by elements of the
first row.

REFERENCES

Al. AV. Oppenheim and R.W. Schafer, Digital Sigm! Processing, Prentice-Hall, Inc., Englewood
Cliffs, N.JI., 1975,
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Appendix B
PROGRAM LISTING OF THE MATRIX INVERSION ALGORITHM

SUBRQUTINE TOEPLZ (H,OMEGA,H,N)

C ek okokoeok o o oK e ok A oK ok ok 0k o R R R OKOK R X ROk 3R R ROR R R R R KR 0K R R Kk

C

C TEIS SUBZOUTINF PINDS Tul LoVERSE OF A oivied SI8SINGULAE
¢C HEBRMITIAN TOZIPILTZ MBATEIX wiikE

C

C H=THE HEEBWITIAY TCFEILTL #ATERIX

C (NCTE THE DIAGONAL ZLAMENTS HUST 8o s8iAL)

C

C OXEGA=THE MATRIX INVEZSE OF H

C

< M=THE RCw ©F COLUNK DIAERS LGN OF

C

C N=2 M1

C

C TUF ALGOR2ITHEK #MAY FAIZL IF Ab ZISZofMIDIAla 2ali3 X TaAT IS
C USED IN CALCULATING THE ZAVLE3E IS Sidsdaade oFf THI3

¢ OCUERS THE MESSEGF MALGOTITLY FAILSYW 15 fxiiifzl.

C L F RS E TR I R R LTI EEEEFESEEE S 2 RS RS EETETEFE RS EE LR E S

I6PL ICIT COMDLEX*B (81,0, v—a)
DINENSION HIE,4) ,T(N,d) , 0 (8,N) T8 d,1) (JalsA (NN,
1 g\L,N),g11{ﬂ,1),¥12fu,1),Q2?’”,lj,auJ daa) BN,

- mi1ITma ATy
i Al .Lh\l.\ L}

EATA PI/3.1415929/,RER50E/a0uuuily/
LAITIALIZE MATFIX CONSTANTS
INITIALIZE T MATERIX
DO 200 K=1,H
T(K,MN)=H!K,1)
3y CONTINUE
M1=M+1
DO 4UU K=M1,N
T(K,M) =CONJG {H {¥+2-K,
000 CONTINUE
M1=M-1
¢ FPFIND SUOCCESSIVE DFS
DO 500 EME=1,M1
HH=B+i-nlY
NN=2.*%MM=1
C COMPUTE DFS HATZEIX OF Q%DIR NN
A1=-2.%PI/NK
DO 60U K=1,NX
DO 70U L=1,NN
AC=COS { (K~1) ¥ {L—1) *a1)
AS=SIN ({K~1)% {(i~1)%A1)
F(K,L) =CMPLX{AC ,AS)

L]

11
£ £
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TJuu LeniIINUE
600 CONTINUZ
20 3000 K=1,nN
300U TT (K, 1)= m(«,MM)
C FIND DFS OF TP
Do 3200 #=1,H5¥
L (K,1) =CHPLX{0.,0.}
DS 3300 L=1,88
3390 E(R)=R(K,1)+T{K,1) ¥TFIL, 1)
2200 CONTINUE

“-‘r‘l £ i — G
PO 8uU K=1, NN

r

500 1= 1

D{k,1)=TP iy }}+E{K,L}*3(L:3}
A= AbS{_EAL(TP(K,E}))
IF{A.LT-AEREOR) TYPE 10U

BY FAILSY)

109 FOEMAT (1X, 'R LGORIT
IE{A.LT.AFRFOE} RETURA

400 COHNTINUE
TR {1 ,1)=§iﬁk1;2"{=,13}
T{T,EM=TE(1,)
D0 YUU K=2, NN
TPLK,1)=CONAG (TR (K, 1))
T{K AN =TF(K,1}
900 CONTINUE
MMT=48-1
DO 1060 &=1,Mn1
T{K,uB1y=TP(4,1)
100U CONTINUE
NE t=2. %08 11
DO 1Y00 K=i#M, NN
L(K,uu1}*C0th{mP(Nk‘+°~ﬁ,n))
110U CCNTIMUE
500 CONTINUE
C COMPUTE IBVERSE MATEHIX
QREGA(YT M =1 /77,2
Lo 1200 MM=2Z,0
AN=2.%0M~1
C FIND Q MA”EIX
1 L1)=T {1, 80)
po 1300 K=2,88
T30y QY SRy = CDI‘WJG'—.{K,&FJ})
O 1u0u E=2 ,NR
“LO0 g{ﬁ,1)=CCNJG(Q{1,K})
LD 150y =2 NN
0 1800 I=2,N¥
¢(I,d)=0(I-1,d-1)
TE0u CONTINUT
Y500 CCNTINUE



NRL REPORT 8539

¢ FIND Q11,012,021
M@ 1=HHu-1
MMPI= M+
DO 3600 K=1,uM
DO 3700 I=1,MH
3700 911 (K,L)=0Q(K,L)
3600 CONTINUE

I a b I I e
LA AN V= g Likl

DO 3900 L=1,MM1
3900 Q12(K,L)=C[K,MH+L)
3800 CONTINUE
DO 4000 K=1,MM1
D0 8100 L=1,HH
4100 Q21{K,L)=0Q (RM+K,L)
40u0 CCNTINUZ
C COMPUTE INVEERSFE
DO 4200 I=1,MH1
DO 4330 J=",HMM
REG (I,J)=CMELX (0w, 0.)
DO 44G0 K=1,M¥1
480U RHO(I,J)=EHO(I,J) +OHEGA (I, K) *u21 (K, J)
4300 CONTINUE
4200 CONTINUE

DO 4500 I=1,HM
DO 4600 J=1, 1k
THETA (T ,J)=CMPLX {0.,0.)
IO 4700 K=1,%N1
6760 THETA(I,d)=THETA{I,J)+u12(I,K)*FUC{K J)

4600 CCNTINUT
4500 CONTIKUE

DO 4800 I=1,MH

DO 4300 J=1,M¥
4900 OMEGA (I,J)=Q11(I,J)=TEETA{I,J)
4800 CONTINUT
1200 CONTINUE

RETURN
END
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