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1. INTRODUCTION

From their discovery over a century ago (Russell, 1845) to now (see the review by Miles, 1980),
many scientists and mathematicians have studied solitary waves in water. Although a "pure" solitary
wave described by the mathematician is only a simplified construct, even a casual observer on a beach
wanally viawea at lasgt tha lamgo.narind wavac naminag at him ag individual (ealitarv) mounds Qf wﬂtﬁ!‘
WUBUALLY VIUWD at 1vaddl LIV IVHETPWIIUVUL WAV Vo VULLILLE Wi 1Ll G0 HAMLITIMWLOL WWLRbML g/ addreides -

separated by relative quiescence. Because these waves break at some depths, they cannot be described
solely in terms of small-amplitude theory.

Solitary waves are a basic ingredient in some descriptions of waves on a beach (Munk, 1949).
Modern descriptions of periodic waves can use solitaty waves as the basic ingredient (Stiassnie and
Peregrine, 1980; Witting, 1981). Many theories describe the properties of solitary waves. Some recent
studies pay attention to very high waves and the highest wave. We now have several published reports
that give solitary wave properties to several significant figures throughout the entire range from small

amplitude to the highest wave. Unhapnily, these nublished renorts do not agree with each nthar tn the
. y, 11ese publ POrLs 4O NnOt agrec wiill Sach oiher 10 1ng

a
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accuracies claimed.

Two independent sets of calculations agree fairly closely: one involving an expansion about a
small parameter and the use of Padé approximants to find the limit of slowly converging or diverging
series {Longuet-Higgins and Fenton, 1974}, and another involving the solution of an integral equation
(Byatt-Smith and Longuet-Higgins, 1976). These investigations indicate that there is a maximum in
the wave speed and certain integral properties of solitary waves thai occurs short of the wave of max-

imum amplitude. The maximum in the total energy of a solitary wave leads to important consequences
in understanding how solitary waves break as they come up onto a beach (Longuet-Higgins and Fenton

Wil W aavriay

1974). Longuet-Higgins and Fenton (1974) also report that the amplitude-depth ratio of the highest
wave in water is 0.827.

For the highest wave Witting (1975) identifies a singularity in an incomplete mathematical expan-
sion of the fluid field that leads to an amplitude-depth ratio of 3+/3/2# = 0.82699 ... , subject to the
validity of the conjecture that the singularity retains its location in computation for the complete solu-
tion. The governing parameter distinguishing one wave from another is the falloff rate of amplitude at
large distances from the crest. This conjecture must be rejected if the wave speed is a double-valued
function of amplitude —the result found by Longuet-Higgins and Fenton (1974) and by Byatt-Smith and
Longuet-Higgins (1976).

A series of numerical investigations not dissimilar from those described here also leads to limiting
amplitudes of approximately 0.827 (Yamada, 1957, Yamada et al, 1968; Sasaki and Murakami, 1973).
Over a range of very high waves that does not inctude the highest, Sasaki and Murakami (1973) report
wave speeds that are up to a percent or so lower than those reported by Longuet-Higgins and Fenton
(1974) and Byatt-Smith and Longuet-Higgins (1976). In the NRL Report 8504, Witting and Bergin
question the accuracy of these numerical investigations.

Manuscript submitted on June 24, 1981.
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Longuet-Higgins and Fox {19,’!‘?.2 show that the highest wave in water, which has a maximum sur-
face angle of inclination of 30°, does not*possess the highest angle of inclination. Rather, the almost-
highest wave has a maximum angle of inclination of 30.37°. Data presented by Sasaki and Murakami
(1973} hint that the maximum angle of inclination is greater than 30°.

In NRL Repori 8504, Witting and Bergin describe a refined numerical method which vields about
4-6 place accuracy of the properties of solitary waves of intermediate and high amplitude, up ic the
nighest wave. This paper reports the resulty of the calculations based on the method of NRL Report

Q&N A

DIUS.

The results closely match those of Byati-Smith and Longuet-Higgins {1976) and lead to maximum
slopes near 30.37° by extrapolation. They show, however, that the highest wave has an amplitude of
(.8332, considerably above the range of values produced hv other theories claiming high accuracy. This
llrmtmg amplitude of 0.8332 was reported (Wlthout suhstanttatmﬁ} by Witting (19?5). Dietails are given
here. The calculations include the evaluation of solitary wave amplitudes at their flanks, information
necessary to use solitary waves as the material for constructing accurate solutions for long periodic
waves (Witting, 1981). The calculations also give profiles and other information about very high waves
not previously available. '

This report is organized as follows: SBection 2 defines various solitary wave parameters angd sum-
marizes known reiationships among them. Section 3 describes the process by which wave speeds are

avaliiatad fn wravao Qa A aoanta tha nuarall reontic far tha antire ranga ~f wava amnli.
Uvaluulhu .I.Ui lilE}.i wayuo, L’\du\-lull - ylba‘-’lll«a Ll UVLWiIidil 1WwOuwisoe 1w L.\lU \d.lll-l.l\{ Lalifpw VI WA TW IR

tudes. Section 5 gives details of the solution for the highest wave in water, and notes striking similari-
ties in these details with the results of Yamada et af (1968}, with the exception of the wave speed.
Section 6é provides the information necessary to construct the profiles of high and very high waves, It
also discusses the limiting maximum surface angle of inclination. Finally, Section 7 summarizes the
results and offers some conclusions.

2. SOLITARY WAVE PARAMETERS AND RELATIONSHIPS AMONG THEM

enton (1974), let us distin

L)

Following Longuet-Higging and

aiipiaitl

by the ”strength" w defined by:

o=1-ugh {1}

where #, is the speed of the fluid at the crest in wave coordinates, g is the acceieration of gravity, and A
is the fluid depth away from the wave, Wave coordinates are thase in which the wave profile is station-
ary,

The nondimensional wave speed, a Froude Number F, is defined by:
F2 = ¢l gh, {2}
where ¢ is the speed of the wave relative to still water (alternatively, c is the fluid speed at infinity in

wave coordinates). The application of Bernoulli’s faw along the surface streamline gives the wave
amptitude:

a=alh=1 (F+e-1), 3)

At the flanks of the solitary wave the surface eievaiion tends to the constant A with an exponential

decay, so that the etevation above the mean surface level n « exp (~8lx!/#). The falioff rate § can be
found from:

nf _ g (4)

3
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O'ther parameters possessed by the flanks of t'he solitary wave are a "displacement” xp and an "amplitude
parameter” B. These are defined by:

xg = limn E— — qb] {5
and
B= lim 1 oAkl ' 6
x|~ A

\;Vhere ¢ is the velocity potential, and Q is the volume flux per unit span. In Egs. (5) and (6)
x = ¢ = 0 at the crest.

Various integral properties of solitary waves have physical interest. Longuet-Higgins {1974)
defines them and rederives certain relationships among them. These are the circulation C, the potential
energy V, the mass M, the impulse /, the kinetic energy T, and the total energy E. These are defined
and some relationships between them are made explicit:

— 1 o
ng-'z;j/—zf_m“'dS:szE (7)
i/ = .L. re _1... ax (g)
M= " nax=3v/(P -0, ©)
I T L ~
= ghhs? f_w fo udydx = FM, 1o
00 h+
r=—=J_J, "2 W+ ) dvde = 3 FU - O), o an
and
E=T+V (12)

The order in which the integral relationships are written is the order in which they are computed,
Note that values of F, xg, and V are sufficient to determine all of the integral properties. Of course,
any three of them are sufficient to determine all of them; the choice of F?, x,, and ¥ is made because
the numerical techniques developed in NRL Report 8504 determine these three more precisely than
any other trio of parameters.

3. THE LIMITING PROCESS FOR HIGH WAVES

As described in NRL Report 8504, calculations are performed at a variety of resolutions, specified
by #. There are ¥ + i grid points at which the free pressure boundary condition is satisfied. For the
material presented in this report, N = 90, N = 180, N = 360, N = 720, and N = 1440 specifies the
resolution. Figure 1 shows the results for the calculation of F2 at the various resolutions. The solid
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Fig. ! — The limiting process in the computation of the square of the wave speed, F2, The open circles are the vatues
found at the resolutions specified by N = 90, 180, 380, 720, and 1440, resolution increasing toward the right. The dashed
line is the extrapolation based on the points at N = 180, 360, and 720. The solid line is the extrapolation based on the
points at N = 360, 720, and 1440. Each solid circle is the estimate of Byatt-Smith and Longuet-Higging (1976}, Each cross
is the estimate of Longuet-Higging and Fenton (1974). Strengths are: {a) 0.80, (b} O8S, {) 096, &) 0.95, () 0.96, ()

{e}

0.97, (g 6.98, (h} 0.99, (B L.00.
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line is an extrapolation to the estimated limit N — oo using the N = 360, 720, and 1440 data. The
dashed line is an extrapolation to the limit using the N = 180, 360, and 720 data. The cases w = 0.80,
0.85, 0.90, and 1.00 are the best behaved. This behavior is demonstrated by four features: There is an
orderly approach to a limit that is obvious to the eye, even including the N = 90 estimate. The solid
line and the dashed line are aligned, indicating that the two estimated extrapolations are almost identi-
cal. The estimates from N = 1440 alone are good ones, lying within 0.0001 of the extrapolations. The
extrapolations are close to the independent calculations of Longuet-Higgins and Fenton (1974) and with
Byatt-Smith and Longuet-Higgins (1976) for w = 0.80, 0.85, and 0.90.

For the strengths w = 0.95, 0.96, and 0.97 the extrapolations differ a little from each other, but
the data at least for N > 180 appear satisfactory. At o = 0.98 the extrapolation based on N = 180,
360, and 720 is smaller than any of the three data points (this occurs when the curvature is positive). I
reject any such estimate. For w = 0.99 I do not even display an estimate using the ¥ = 180, 360, 720
data.

The data shown in Fig. 1 indicate that the estimates of F2? become less reliable as the strength
increases to w = 0.99, and then hop back to "reliable” for the highest wave @ = 1. These results are
consistent with the interpretation that for high waves the singularity at § is the most serious factor lim-
iting accuracy (see NRL Report 8504). This singularity approaches the domain of the computations as
w — 1. We account for the singularity well at w = 1, because we know its nature there and account for
it explicitly; we do not account for the singularity so well for other high waves.

The behavior displayed by Fig. 1 is characteristic of all of the calculated parameters. The calcula-
tions lose some accuracy as the highest wave is approached, but generally revert to very high accuracy
for the highest wave.

4. OVERALL RESULTS

Tables 1 to 4 present the overall results for all cases run and are sufficient to determine all of the
solitary wave properties appearing on the left side of Eqs. (1 to 12). When the data are well-behaved,
as described in the last section, there will be entries in each of columns 2, 3, and 4 of the tables. The
extrapolation to N — oo using the data from N = 360, 720, and 1440 is taken as the best estimate.
This is shown in column 2 of each table.  Two other estimates come from the N = 1440 computation
(column 3) and from the extrapolation using the data from N = 180, 360, and 720 (column 4). The
error estimate in columnn 5 of each table is quoted as the greater of two comparisons: the difference
between the two extrapolations, and one-half the difference between the N = 360, 720, and 1440 extra-
polation and the N = 1440 value itself.

As shown in Fig. 1 for @ = 0.98 and 0.99, the N = 180, 360, 720 extrapolation cannot be used.
Under these circumstances the entry in.column 4 of Tables (1 to 4) is a question mark. If the
N = 360, 720, 1440 extrapoiation is useful, it is quoted, but an error is not. Sometimes the N = 360,
720, 1440 extrapolation is also unlikely to be reliable, as in Table 2, @ = 0.99. Columns 2 and 3
receive a question mark. Only the N = 1440 value is used as an estimate; the error quoted is the
difference between the N = 720 and N = 1440 values. Although the criteria used to estimate errors
are not uniform over the data set, they are as fair as I can manage. For solitary wave strengths that are:

not too small, the results appear to be very accurate. This includes, in particular, those for the highest
wave.

Table 5 lists the estimates of the value of velocity potential at which the surface angle of inclina-
tion is a maximum and the angle itself. ‘
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Table 1 —Calculations of the Square of the Wave Speed, F2. These are the most direct
caiculations, based o ihe iieraiive procedure described in WRL Repori 8504 for each
resolution N. In this and the four following tables a dash indicates essentially no arror.
The text describes the meaning of 2 question mark,

1440, 720, | Departure, Departure, Estimate of Longuet-Higgins Byaut-Smith and
a . 720, 360, z Longuet-Higgins
366 triad 1440 run 180 triad F and Fenton {19741 ng{w%)igsm
0.10 1.09934 (.00800 000029 1.09934 + 0.00400 1.098%1
420 1.1933% .00744 0.00002 1.19538 + 6.00122 1.19537
.30 1.28846 0.60068 6.00002 1.28846 + 0.00034 128845
0.40 1.37741 0.00024 G.00001 1.37741 + 0.00012 1.37741
043 1.41990 0.00016 6.00001 1.4199% + 0.00008 1.41991
0.50 1.46080 £.00012 0.00001 1.46080 + 0.00008 i 46081
0.55 1.49981 {1,00009 — 1.49981 + 0.00065 1.49532
0,60 1.53639 {.00006 - 1.5365% £ 0.00003 1.53658
.65 157671 8.00004 — 157071 + 0.00002 157074
0.70 1.60162 0,00004 — 1.60162 = 0.00002 1.60167
(.78 1.62858 0.60003 - 1.62858 + 0.00002 162851
.86 1.65063 0,00003 - 1.65083 = 0.00002 1.6507 1.6567
0.85 1.66646 0.60002 — 1.66646 + €.06601 1.6664
4,90 1.67441 0.06002 - 1.67441 + £.00001 1.6742 1.67428
0,95 1.67273 £.00001 0,00001 187273 £ 0.00001 14711
0.96 1.67141 000014 0.0G009 1.67141 + §.00609 1.6708
0.97 1.66960 — 0.006608 1.66%60 £+ 0.00604
.98 1.66751 0.00003 ? 1.688
0.99 1.66705 0.00053 1.667
1.00 1.66640 0.00603 - 1.66648 + (.00002 1854

Table 2--Calculations of the Potential Energy, ¥. This parameter is computed by
numerical integration over the wave. Integration is stopped at o = 177°, and is
extended to infinity by analytic integration using the exponeniial decay of the amplitude
and the vaine of n/hato = 177°,

1440, 720, | Departure, | DCPerture Estimate of Longuet-Higging | Dyatt-Smith and
@ g 720, 360, Longuet-Higgins

360 triad 1440 run 190 tring 4 and Fenton (1974} (1976)
0.10 0.02470 0.00403 0.00131 0.02470 £ 0.00202 0.02434
0.20 G.07669 0.60135 0.60036 0.07069 = 0.00068 007100
0.30 0.13025 0.00051 0.0001 1 0.13025 £ 6.00026 0.13041
.40 {1,19824 0.00023 0.000035 §.19824 = 0.00012 0.19833
.45 & 23393 680616 500004 $.233931 + (00008 073399
0.50 0.26986 0.00012 0.00003 0.26386 = 0.0000& 0.26991
453 (.30529 0. GG00% 0.066G2 G.30529 + 6.60005 £.30532
0.60 0.3393¢6 6.60006 6.00002 0.33936 £ 0.00003 0.33939
0.65 037115 0.00004 0.00002 0371135 £ G.00002 .37
070 {1,39987 0.00005 100001 0.39957 + §.00003 0.39956
0.75 0.42338 0.00004 0.00001 0.42338 + 0.00002 042332
0.80 0.44123 0.00003 0.00G01 0.44123 £ G.00002 0.441G G441
0.83 45162 0.00003 {1.00001 0.45162 & 6.00062 0.4510
0.90 .45313 8.000603 - 0.45313 & 0.00002 0.4312 1453
8.95 0.44546 - 0.00008 3.44544 % 000008 {1.4394
8.5 4.44328 0.00G03 4.G0011 0.44328 + 6.00011 9,443
0.97 0.44056 §.00001 8.06011 £.44090 = 0.00011
.98 0.43894 0.00007 7 0.439
499 7 7 7 (1.43750 + 0.00080
1.00 0.43758 4.60019 £.00022 (.43758 = 0.00022 0413

6
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Table 3—Calculations of the Displacement, x;. This parameter varies nearly linearly
with o near ¢ = 180°. Each estimate of the parameter is a linear extrapolation of
x/h — ¢/ 0 from data at 176° and 178°.

o 1440, 720, | Departure, I;;gagtg{;e Estimate of Longuet-Higgins Egz:;i?ﬁ?g::g
| 360 tiad | 1440run | (o0 20% v and Fenton (1974) (1978)

0.10 0.3682 0.0512 0.0531 0.3682 + 0.0531 0.3532

0.20 0.4819 0.0080 0.0001 0.4819 + 0.0040 0.4817

0.30 0.5671 0.0026 0.0017 0.5671 = 0.0017 0.5667

0.40 0.6297 0.0026 0.0053 0.6297 + 0.0053 0.62592

0.45 ? ? ? 0.6475 + 0.0007 0.64799

0.50 ? ? ? 0.6655 + 0.0002 0.66583

0.55 ? ? ? 0.6794 + 0.0002 0.67961

0.60 ? ? 7 0.6894 + 0.0001 0.68962

0.65 ? ? ? 0.6958 + 0.0001 0.69593

0.70 ? ? ? 0.6986 + 0.0001 0.69866

0.75 ? ? ? 0.6980 + 0.0001 0.69795

0.80 ? ? ? 0.6940 + 0.0001 0.6935 0.694

0.85 ? ? 7 0.6870 + 0.0001 0.6860

0.50 7 ? ? 0.6774 + 0.0001 0.6747 0.677

0.95 0.6674 - 0.0001 0.6674 + 0.0001 0.6603

096 ? ? ? 0.6659 + 0.0002 0.666

0.97 0.6646 - 0.0001 0.6646 = 0.0001

0.98 ? ? ? 0.6638 + 0.0004

0.99 0.66453 0.0009 ? 0.664

1.00 0.6641 0.0002 0.0001 0.6641 + (.0001 0.643

Table 4 —Calculations of the Amplitude at the Tail, B. This para-
meter varies nearly linearly with o near o = 180°. Each esti-
mate of B is a linear extrapolation from data at 176° and 178°.

1440, 720, | Departure, | DEPArUre, | poioate of
© | 360 triad | 1440 run | 120> 360, B
180 triad

0.10 0.426 0.203 - 0.062 0.426 + 0,102
0.20 0.670 0.079 0.012 0.670 + 0.040
0.30 0.940 0.051 0.005 0.940 = 0.026
0.40 1.153 0.030 0.002 1.153 + 0.015
0.45 1.242 0.025 0.002 1.242 + 0.013
0.50 1.317 0.022 0.001 1.317 + 0.011
0.55 1.378 0.018 0.001 1.378 = 0.009
(.60 1.425 0.016 0.002 1.425 + 0.008
0.65 1.457 0.016 0.001 1.457 + 0.008
0.70 1.475 0.012 0.001 1.475 = 0.006
0.75 1.478 0.011 0.001 1.478 + 0.006
0.80 1.466 0.009 0.001 1.466 + 0.005
0.85 1.441 0.009 - 1.441 + 0.005
0.99 1.405 0.017 - 1.405 = 0.009
0.95 1.356 —_— 0.009 1.356 = 0.009
0.96 1.355 0.003 0.003 1.355 + 0.003
0.97 1.350 0.003 0.001 1.350 + 0.002
0.98 1.347 0.003 0.016 1.347 + 0.016
0.99 1.352 . 0.019 ? 1.35

1.00 1.349 0.004 0.021 1.349 + 0.021
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Table 5—Calculations of the Maximum Angie of Inclination,
8, and the Velocity Potential at the Maximum Angle
of Inclination, ¢,,.

1440, 720, | Departure, | Departure Estimate of Byatt-Smith and
w |4, /0 : 720, 360, Longuet-Higgins

360 triad 1448 run 180 triad 8, (1576}

0.10 1 2.2 1.157° 0.028° 7 1.157°x 0.814° i.15° !

Q.20 [ 1.46 3.150 {J.0i0 — 3.150 + 0.003% 3.15

0.30 1 1.08 5.590 0,004 .00t 5.590 + 0,002 5.59

0.40 | 0.34 3.341 0,001 - 8.341 + 0.001 £.35

0.45 | 0740 9.810 0.601 - 9810 + (.001

0.50 | 0.643 11.335 ¢.001 - 11.335 % 0.001 11.34

0.55 1 0.374 12.911 0.001 - 12911 + 0.601

0.60 | 0.501 14.537 0.001 - 14.537 + 0.601 14.54

0.65 | 0,432 16.213 0.001 —_ 16.213 = 0.001

070 [ 0.367 17.942 - -— 17.942 £ - 17.95

0.75 | ©.304 19.726 4,001 {.001 19.726 x 0,001

0.80 | 0.243 21.577 -_ — 21577 + — 21.60

.85 | 0.182 23,508 0.002 0.002 23508 + Q.002

090 | 6.121 25.557 (0.001 - 25,557 « 0.001 25.6

695 | 0.059 27,792 - - 3719 £ —

| 1.60 | 0.000 30.000 exacily 30.00, exactly

Figure 2 plots the various integral properties of solitary waves that can be derived from the
knowledge of F2, V, and x,, using Egs. (7, 9, 10, 11, and 12). The estimated accuracy of each of the
solid circles is much smaller than the size of the circle. For o = 0.98 and 0.99 there is a littie more
uncertainty, error bars indicate this uncertainty, based on the uncertainties cited in Tables 1 to 3. The
results agree perfectly with those of Byatt-Smith and Longuet-Higgins {1976} where comparisons can be
made, ie., through w = {} 96 The data fall somewhat ahove the results of Longuet-ﬁiggins and Fen-
ton (lgrér) for the very high and highest waves. The feature that the integral properties have a max-

imum at less than the highest wave is verified by the calculations. That the total energy has such a
maximum is particufarly important in the fate of waves propagating onto a beach {see Longuet-Higgins

and Fenton, 1974).

5. SPECIFICS FOR THE HIGHEST WAVE IN WATER

The previous sections demonstrate a close agreement with resuits of the completely independent
theory of Byait-Smith and Longuet-Higgins (1976) where they can be compared. No problem is
apparent for the calculations of the highest wave, at least by comparison with those of almost highest
waves; indeed, the highest wave should be very accurately computed (Fig. 1). It thus makes sense to
present detailed results for the highest wave, with confidence that they are probably correct. Table 6
shows these detailed results, The velocity potential is exact. The angle of inclination 8 and the fluid
speed g are the quantities most directly arising from the calculations,

Yamada et ol {1968) present much of the same information. Figure 3 compares the results of the
caleuiations given here wﬁ,h their results for ¢ and g Over almost the entire range of o, the angles of
inclination are within 107* of each other. Also over almost the entire range of o, the speeds bear the
constant ratio of the 2/3 power of the reported wave Froude Numbers {there Fis 1.2854; here Fis
1.2909). Even though the Froude Numbers differ in the third decimal place, there is an essential same-
ness about # and g that merits some discussion.
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Fig. 2 — Integral properties of high solitary waves. These are (a) the circulation C; (b) the mass M; (¢) the impulse I; {(d)
the kinetic energy T; (e) the total energy E. In each plot, solid points and errors bars are the results of this report, the x's
are those of Byatt-Smith and Longuet-Higgins (1976), and the +’s are those of Longuet-Higgins and Fenton (1974).
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Table 6—Results of the Calculation of the Highest
Solitary Wave in Water. The resolution is N = 1440;

no extrapolation

g hnua haon tabran
1Y 1A VW Uil (Gheil.

o | $/0 | 0 &0/ [ [k | Ik

el — | 052360 - - 1.83319

2 | D.OIIIT | 0.51433 | 021482 | 0.06725 | 1.79474

4 | 002223 | 0.50744 | 027007 | 0.10706 | 1.77242

6 | 0.03335 | 0.50124 | ©0.30855 | 0.14067 | 1.75387

8 | 0.04448 | 0.49544 | 0.33898 | 0.17084 | 1.7374S
10 | 0.05563 | 048993 [ 0.3645¢ | 0.19875 | 1.72247
12 | 0.06679 | 0.48464 | 0.38676 | 022499 | 1.70856
14 | 0.07797 | 0.47952 | 0.40653 | 0.24997 | 1.69549
16 | 0.08017 | 0.47454 [ 0.42441 | 027393 | 1.68311
18 0.10041 | 0.46968 | 0.44080 | 029705 | 1.67130
20 | 0.11168 | 0.46492 | 0.45595 | 0.31948 | 1.65998
22 | 0.12298 | 0.46024 | 047006 | 034132 | 1.64909
24 | 0.13432 | 0.45565 | 048329 | 0.36266 | 1.63858
26 | 0.14570 [ 0.45112 | 0.49578 | 0.38356 | 1.62839
28 | 0.15713 | 0.44666 | 0.50760 | 0.40408 | 1.61851
30 | 016860 | 0.44224 | 051884 | 0.42427 | 1.60890
32 | 0.18013 | 0.43788 | 0.52957 | 0.44416 | 1.59953
34 | 019172 | 0.43355 | 0.53984 | 0.46381 | 1.59038
36 | 020337 | 042927 | 0.54968 | 0.48324 | 1.58144
38 | 021509 | 042501 | 0.55917 | 0.50247 | 1.57268
40 | 0.22688 | 0.42079 | 0.56830 | 0.52154 | 1.56410
42 | 0.23874 | 0.41660 | 0.57712 | 0.54046 | 1.55568
44 | 0.25068 | 0.41242 | 0.58566 | 0.53926 | 1.54741
46 | 0.26271 | 0.40827 | 059394 | 037796 | 1.53927
48 | 027483 | 0.40414 | 0.60197 | 0.59657 | 1.53127
56 7} 0.28704 | 0.40002 | 0.60978 | 0.61512 | 1.52338
52 | 0.29935 | 0.39591 | 061738 | 0.63362 | 1.51561
54 | 031176 | 0.39181 | 0.62480 | 0.65208 | 1.50793
56 | 0.32429 | 038773 | 0.63203 | 0.67051 | 1.50036
58 | 0.33693 | 0.38364 | 0.63909 | 0.68835 | 1.49288
60 | 0.34970 | 0.37957 | 0.64601 | 0.70738 | 1.48548
62 | 0.36259 | 0.37549 | 0.65277 | 0.72584 | 1.47816
64 | 037563 | 0.37141 | 0.65940 | 074434 | 1.47091
66 | 0.388%0 | 0.36734 | 0.66590 | 0.76288 | 146373
68 | 0.40213 | 0.36326 | 0.67228 | 0.78148 | 1.45662
70 | 0.41561 | 0.35917 | 0.67855 | 0.3001S | 1.44956
72 | 0.42926 | 0.35507 | 0.68472 | 0.81891 | 1.44256
74 | 044308 | 0.35097 | 0.69077 | 0.83777 | 143562
76 | 0.45709 | 0.34685 | 0.69675 | 0.83674 | 1.42871
78 | 0.47128 | 034273 | 070262 | 0.87584 | 1.42186
80 | 0.48568 | 0.33858 | 0.70843 | 0.89508 | 1.41504
82 | 0.50030 | 033442 | 0.71415 | 0.91447 | 1.40825
8¢ | 051513 | 0.33025 | 0.71980 | 0.93403 | 1.40150
86 | 0.53020 | 0.32605 | 072538 | 0.95377 | 1.39478
88 | 0.54552 | £32183 | 073091 | 0.97371 | 1.38808
90 | 0.56110 | 031758 | 073636 | 0.99387 | 1.38141
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Table 6 (Continued) —Results of the Calculation of the Highest
Solitary Wave in Water. The resolution is N = 1440;
no extrapolations have been taken.

s 1 ¢/0 7T/ | xTk | ik

92 § 0.57695 | 0.31331 0.74176 1.01426 | 1.37476
94 | 0.59310 | 0.30901 0.74711 1.03491 | 1.36812
36 | 0.60954 | 0.30469 | 0.75242 1.05582 | 1.3614%
98 | 0.62631 | 0.30032 | 0.75768 1.07702 | 1.35487
100 | 0.64342 | 0.29593 | 0.76290 1.09853 | 1.34826

102 | 0.66089 | 0.29149 | 0.76807 1.12037 | 1.34166
104 | 0.67874 | 0.28702 | 0.77322 1.14257 | 1.33505
106 | 0.69699 | 0.28250 | 0.77833 1.16515 | 1.32844
108 | 0.71567 | 0.27794 | 0.78341 1.18814 | 1.32183
110 | 0.73481 [ 0.27333 | 0.78848 1.21157 | 1.31520

112 | 0.75443 | 0.26867 | 0.79351 1.23547 | 1.30856
114 | 0.77456 | 0.26396 § 0.79853 1.25987 | 1.30150
116 | 0.79524 | 0.25919 | 0.80353 1.28481 | 1.29523
118 | 0.81651 | 0.25436 | 0.80852 1.31032 | 1.28853
120 | 0.83840 | 0.24946 | 0.81350 | 1.33647 | 1.28180

122 | 0.86097 | 0.24450 | 0.81847 1.36328 | 1.27504
124 | 0.88426 | 0.23%946 | 0.82344 1.39082 | 1.26824
126 | 0.90832 | 0.23435 | 0.82841 141915 | 1.26140
128 | 0.93323 | 0.22915 | 0.83338 1.44832 | 1.25452
130 | 0.95904 | 0.22387 | 0.83836 1.47841 | 1.24758

132 ] 0.98584 | 0.21850 | 0.84335 1.50950 | 1.24059
134 | 1.01370 | 0.21302 | 0.84835 1.54169 | 1.23354
136 | 1.04274 | 0.20744 | 0.85338 1.57506 | 1.22642
138 | 1.07307 | 0.20175 | 0.85842 1.60975 | 1.21922
140 | 1.10480 | 0.19593 | 0.86350 | 1.64588 | 1.21194

142 | 1.13809 | 0.18999 | 0.86860 1.68361 | 1.20457
144 | 117312 | 0.18390 { 0.87376 | 1.72311 | 1.19709
146 | 1.21008 | 0.17766 | 0.87895 1.76460 | 1.18951
143 | 1.24921 | 0.17126 | 0.88419 " | 1.80832 | 1.18181
150 | 1.29080 | 0.16467 | 0.88949 1.85456 | 1.17397

152 1.33520 | 0.15789 | 0.89487 1.90367 | 1.16598
154 | 1.38282 | 0.15090 | 0.90032 1.95609 | 1.15782
156 | 1.43418 | 0.14366 | 090587 | 2.01234 | 1.14948
158 | 1.48995 | 0.13616 | 0.91152 | 2.07311 | 1.14092
160 | 1.55096 | 0.12836 | 091729 | 2,13926 | 1.13212

162 1 1.61835 | 0.12022 | 0.92321 2.21191 | 1.12305
164 1.69360 | G.11169 | 0.92930 | 2.29261 | 1.11365
166 | 1.77886 | 0.10270 | 0.93559 | 2.38351 | 1.10387
168 1.87720 | 0.09317 | 094213 | 2.48775 | 1.09364
170 | 1.99345 | 0.08297 { 0.94899 | 2.61021 | 1.08283

172} 2.13565 | 0.07193 | 0.95626 | 2.75902 | 1.07130
174 | 231891 | 0.05976 | 0.96409 | 2.94944 | 1.05877
176 | 2.57712 | 0.04592 | 097277 | 3.21565 | 1.04476
178 [ 3.01844 | 0.02914 | 0.98300 | 3.66646 | 1.02809

180° ©0 - 1.00000 oo 1.00000
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Fig. 3 — Comparison of the basic parameters of the highest solitary wave in water as comput-
ed here with those computed by Yamada er of (1968): {a) & from these calculations minus 2
from Yamada ef af; (b} ¢/{Q/h) from Yamada er ! divided by ¢/(Q/#) from these calcuia-
tions.

Grant (1973} has examined the nature of the singularity at the crest of the highest irrotational
progressive waves. Let z’ = x + " and w' = ¢ + i’ in some nondimensionalization. For the highest
waves one can write, e.g., the function dz2'/dw’ is as follows:

a
de'fdw = —2 [1 + oy (aw YT + ayy (W)™ + a () + ... {13
(o' YV3

. T f. pHaTE R e T
tapiiw)“+anw)™ T tapw)™ T+

+ more},

where w’vanishes at the crest, The coefficients a,y, @y,, a;3, 4y, are set to satisfy boundary conditions
other than the free pressure boundary condition; all the other coefficients are determined by the free

12
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surface boundary condition. The first two exponents are: u; = 0.80268 and u, = 2.9066. In the non-
dimensionalization used for both these calculations and those of Yamada er al. (1968), ie., h=u=1,
Bernoulli’s Law determines ay = (2/3 FH'Y3. If the only difference between the calculations of
Yamada et al. and ours lies in a difference in identifying F?, consequently, a,, then at least near the
crest it is not surprising that the angles of inclination are the same, for these do not contain ay, and
that the ratios of g are in the ratios of a5 !. This is precisely what Fig. 3 shows, not only near the crest,
but throughout the entire wave.

The expansion of Eq. (13) can be used to describe the solitary wave near the crest. Applying
Bernoulli’s Law along the free surface one can go through some cumbersome algebra to calculate the
first few coeflicients:

@y, = arbitrary
ay = 0.29042 af)

a3 = — 0.15402 aﬁ ‘ ‘ (14)
4 = 0.01030 af a;; = arbitrary
as) ™= 0.14979 G!sl ay™= 0.78934 a2 471

The data in Table 6 out to at least ¢ = 10° {more for some entrees) are consistent to five decimal
places with the assignment a;; = 0.361; a;, = 0. This gives confidence that the calculations, not only
of # and ¢, but also of x/4 and y/h, are accurate, Moreover, we may conclude that ay; lies near 0.361,
and that g, is small.

6. PROFILES OF HIGH WAVES

Figure 4 shows the difference between the surface elevation of each point of a wave to that of the
corresponding point of the highest wave. The display spreads the information sufficiently in elevation
n/h that one can construct accurate profiles by using the figure in conjunction with Table 6. The
pattern is consistent with that found by other investigators. The integral under the difference curve is
positive for every case, indicating that all of the waves displayed have values of M greater than that of
the highest wave (see Fig. 2b).

Figure 5 plots the maximum slope of the very highest waves, along with the values givent by
Sasaki and Murakami (1973). It is probably justifiable to plot these on the same figure, even though
the wave speeds given by them are significantly smaller (at a given amplitude)} than are calculated here.
Their numerical technique is similar to that of Yamada et o/ (1968), and we have seen that the com-
puted angles in Yamada et gl are accurate.

Unfortunately, the calculations with @ = 0.99 are not too accurate, as shown by the error bar.
The two curves drawn make use of the highest accurately computed maximum slopes. The data points
alone suggest that the maximum slope exceeds 30°, the result proved by huugum-niggiﬁs and Fox
(1977). Indeed, both the straight line and quadratic extrapolations intersect @ = 1.00 very close to the

value of 30.37° derived by Longuet-Higgins and Fox (1977).
7. SUMMARY AND CONCLUSIONS

The numerical techniques described in NRL Report 8504 are used to compute properties of soli-
tary waves that are very accurate for intermediate and high waves, a little less accurate for very high
waves, and appear again very accurate for the highest wave. Many results of previous work are verified
"\u thaca calriilatin fan Af tha ¢ Fan tha A ~) Quam i oandler tlnwy wemwtf alow Lotlo ot oo

185¢ caiCuaatlions some of them not ior the arst uum) Dpehilivally, LLCY VOILLY IO 10110WIE CUll-
clusnons. There is a maximum in the integral properties of solitary waves, including the total energy.
The maximum surface inclination as extrapolated from maximum slopes of very high waves does

13
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Fig. 5 — The maximum surface angle of inclination for very £
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exceed 30° and lies at or near 30.37°. The calculations of Byatt-Smith and Longuet-Higgins (1976) are
accurate to their stated precision, possibly excepting their highest reported wave speeds, which might be
a bit low. The calculations of Yamada er al. {1968) bear a very close resemblence in the structure of 6
and g, differences being dominated by a different assignment of the wave speed and amplitude.

Certain new parameters are calculated for high waves. In particular, knowledge of B permits
going beyond the zeroth order of solutions of the properties of long periodic water waves from
corresponding solitary wave properties described by Stiassnie and Peregrine (1980), to the first order
solutions described by Witting (1981), which see for a definition of the ordering. In addition, enough
information is presented to plot accurate profiles of very high waves.

The calculations of the speed and amplitude of the highest wave do not agree well with those of
previous work. Figure 6 shows this graphically. Only with Byatt-Smith and Longuet-Higgins (1976) is
there exceptionally close agreement, and the comparison there can be made only through @ = 0.96.
All other reported highest waves shown lie in the vicinity of F2 = 1.654; a/h = 0.827. I believe that
criticisms of each of the other calculations can be made. The other numerical investigations (Yamada,
1957; Yamada et al 1968; Sasaki and Murakami 1973) employ a much coarser resolution than that
used here. They also rely to some extent on the use of the surface pressure as an indicator of how
error-free are the results. Finally, there may be problems in handling their singularity at ¢ = 180°,
These questions are addressed in NRL Report 8504, and from that discussion it should be evident that
uncertainties in these other numerical calculations leave them suspect, The work of Longuet-Higgins
and Fenton (1974) uses Padé approximants to estimate the limit of slowly-converging or diverging
series. As Byatt-Smith and Longuet-Higgins (1976) show, for the high waves where a comparison with
their integral method can be made, the Padé approximant method can give results for which the error is
a few in the last place cited. Longuet-Higgins and Fenton (1974) cite only three decimal places for
their limiting amplitude, which is about 0.006 away from that given here. Finally, the "exact” value
given by Witting (1975) rests on a conjecture that a mathematical singularity identified by an incom-
plete solution is in the same location as in the complete solution. This is impossible if the wave speed

is a double-valued function of amplitude, which we know from numerous studies to be true. Conse-
quently, the result of Witting (1975) must be rejected.

There are clear uncertainttes associated with the detailed accuracies in previous reports of precise
values of the height and speed of highest wave in water. I ascribe their mutual agreement to coin-

cidence. The calculations reported here suggest that the correct value of the amplitude of the highest
wave in water is 0.8332.
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