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HIGH SOLITARY WAVES IN WATER:
A REFINED NUMERICAL METHOD

This report describes a numerical method for analyzing the properties of solitary waves in water
and assesses the method’s accuracy. A second report (J. M. Witting, "High Solitary Waves in Water:
Results of Calculations," NRL Report 8505) presents detailed and comprehensive results.

Figure 1 presents the motivation for the research and hints at some of the results. The figure
plots the square of the speed of a solitary wave in water against ils amplitude. The plot is nondimen-
sional; speeds are referenced to the speed of long linear waves in water; amplitudes are referenced to
the water depth well away from the solitary wave. To make the figure legible, only high solitary waves
are shown. The complete curve would extend downward to a speed of unity and an amplitude of zero.
It terminates with the highest wave in water. The highest wave has a "kineticity" twice the amplitude.*
Figure 1 shows the limiting relationship as a barrier.
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Fig. 1 — Amplitude-speed relationship. Displayed are sample data from several theories that claim
high accuracy. The numerical results of previous investigators generally fall below those obtained
by other means, except for the highest wave. Our calcutations of the relationship data agree with
those of Longuet-Higgins and Fenton (1974) and with Byaut-Smith and Longuet-Higgins (1976),
except for very high waves,

Manuscript submitied on June 24, 1981,

*This fact has been known since Stokes (see Lamb, 1932 Art. 250), if not before; it is the result of the highest wave's possessing
a sharp crest, ie., a discontinuous slope. The only way that this can occur is if the fluid at the crest moves at the same speed as

the wave itself, The Bernouili Law then demands the limiting-height-speed relationship.
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Methods used to deduce the properties of solitary waves fall into three classes: {a) expansions
about a smail parameter, e.g. the amplitude, (b} numerical methods, and {c) others. No matter what
the method, reliance on numerical compuiaiion is necessary to approach the higher waves. Figure 1
presents the results of our calculation, and displays sample results from each of the three methods
whose authors claim 4 to § figure accuracy. Prior to this work, mutual agreement of the stated accura~
cies could be found only between the results of Longuet-Higgins and Fenton {1974) and those of
Byatt-Smith and Longuet-Higgins (1976). Except for the highest wave, the numerical methods pro-
duced somewhat smaller speeds for a given amplitude than did the others. All previous works claiming
high accuracy give a limiting wave height within 0.0015 of 0.8270,

Figure 1 shows that for all but the very highest waves, perfect {10 the resolution of the figure}
agreement is found between the numerical method presented here (the line), and the resuits of
Longuet-Higgins and Fenton (1974) and of Byaii-Smith and Longuet-Higgins (1976). The dilemma
remains, however, that the method described here also yields a highest wave higher than previously
reported. We feel that a detailed description of our numerical method is celled for to discuss why our
method gives more accurate results than other numericai methods {Miles, 1980 reviews the status of
solitary wave research and points out the unsatisfactory status of knowiedge of high solitary waves}.

 This report is organized as follows: Section 2 develops the basic theory for describing a selitary
wave and defines certain conformal transformations that are useful for numerical calculations. Section
3 describes the representation of the solution and identifies features of the solitary wave which are com-
puted. Section 4 describes the numerical procedures used in obtaining soiutions. Section 5 compares
the results to those of earlier investigators. Section 6 briefly summarizes the results and offers conclu-
sions.

2. BASIC THEGRY AND USEFUL TRANSFORMATIONS
A. The Kind of Solitary Wave Considered

Figure Za shows an idealization of solitary waves in water. Apart from dissipative effects, the
wave propagaies at a constant speed and without change of form over an impermeable and horizontal
bottem. The conventional mathematical model describing the solitary wave takes the fiuid to be
incompressible and inviscid, with all fluid motions irrotational. In addition, the conventiona!l maodel
neglects surface siresses imposed by the relatively undense air, and imposes a constant pressure boun-
dary condition at the air-water interface. Because only pressure gradients appear in the egquatiens of
motion, the upper surface of the water is considered stress-free. The model contemplates only plane
waves, so that motion is confined to the x-y plane (see Fig. 2a). By assuming at the start that the wave
moves at constant speed and shape through still water, one may make a Gaililean transformation to
wave coordinates where the wave is stationary. Viewed from wave coordinates the situation is then one
of a steady, incompressible, irrotational flow in two dimensions,

Two equations completely govern the local motion in the interior of the Auid. These are that
divu = 0 (incompressibility) and {curiu), = 0 (isrotationality). It follows that a velocity potential ¢
and a siream function ¢ are tied to Cauchy-Riemann conditions:

u = 0g/8x = By/dy,
v = 3/dy = —3/dx.

As is customary, define a pair of complex variables z = x + y and w = ¢ + 5. Then the iocal motion
in the interior of the fluid is satisfied by any analytic function w = w{z), or, alternately z = z{w). Fig-
ure 2b is the map to w-space.

it remains io pose boundary conditions. These are the following: the flow at the bottom of the
channel is horizontal; flows away from the wave are horizontal and shear-free, and the same on each

2




NRL REPORT 8504

side of the wave; the pressure along the free surface vanishes. Identifying this upper boundary in
advance is possible in w-space (it corresponds to i = constant). “It is not possible in z-space. There-
fore, most researchers since Stokes (1880) have selected w to be the independent variable, then
z = z(w) is the desired solution. With this choice of independent variable the boundary conditions are:

y=0 along y = 0 (2)
—;%--’LU as ¢ — + oo 3)

1 de IUQ : :
gy+3/17';i =gh+3 along ¢ = ¥, _ - 4)

where g is the acceleration of gravity, h is the water depth away from the wave, and U is the speed of
the wave relative to still water. Like Yamada (1957, 1958), we nondimensionalize in the way that
minimizes external parameters appearing in z and w. This is the system # = U = 1, Equations ),
(3), and (4) then become:

y=10 along ¢ = 0 (5)
dz as ¢ — =+ oo (&
dw

_.1_2 _dil,= _1_ 2 =1
y+2F/'de. 1+2F along N

where F = U//gh is the Froude Number.

Henceforth in this report, solitary waves are defined to be z = z(w) subject to Eqgs. (5), (6), and
(7). As Fig 1 shows, there may be more than one solitary wave that corresponds to a given F, This
remarkable discovery was made by Longuet-Higgins and Fenton (1974), and has been confirmed by
other investigators.

B. A Transformation of tlie Free Surface to a Unit Circle

For the purposes of performing a trustworthy numerical analysis, we found it desirable to move

the domain of the nasty boundary condition, Eq. (7), to the unit circle by a conformal transformation.
Levi-Civita (1925) and Yamada (1957, 1958) show how to do this. The transformation

= —tanh? T w )

4
maps the region occupied by the fluid into the interior of the unit circle (see Figs. 1b, Ic).

The flow can be described with a new dependent variable:

Q = ilnldw/dz) = 0 + ir. )

In Eq. (9) 6 is the angle of surface inclination and r = In g, where ¢ is the fluid speed ﬂ.
Referring to Fig. 2c, the boundary conditions are: .
9=0 along 0, + / | (10)
Q=90 at =+ / (1)
q? Mg cosl o= sin@  on the unit circle. (12)

do 2 T F2
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The last condition is not-self-evident {Yamada 1958 gives a derivation). Hs integral forms an

alternative 1o Eg. {12}: ;

3 T 1 .
3 = 3 s H 4. :
g o) =g’ {0 + 3 j; sin g sec 3 odo on the unit circle, £13)

C. Another Useful Transformation

The transformation described in Section 2B of this repert has the unfortunate side-effect in which: o
the point marked =+ I in Fig. 2c is singular. Although we shall use numerical mathods that CONVErge
despite the singularity, it is possible to improve the accuracy of some of the "derived” (to be defined -
later) quantities by expanding about the point —I The independent variable p is formed by the
transformation: . -

w=etPr=g¢ 4 gy

where 8, a positive real number, is defined later. Figure 2d shows the mapping from 2b.

5
¥ -
/\ is
————— y=l yrl—— —— c ¥t _
_ _ . e
3 % 30
{a) {3
e
: ¥t o
G L
s
. . o o

() (d}

Fig. 2 — Domains of the fluid under various conformai transformations: a. the z = x + {y plane; b. the w = ¢ + #p plane; & ¢ e -~
mapping of the fuid into the inierior of a unit circle; d. the plane appropriaie for sxpansions about & point &t infinity. The point —
marked § marke a singularity that can irouble accurate calculations. it is infinitely far awsy from the fluid in the Bmit of =~ -

infinitesimal waves; it approaches the free surface as the wave ampliinde approaches its highest value. T —
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In an earlier paper making use of this transformation, Witting (1975} was able to estimate the
location and some of the properties of the singularity at S. For the wave of limiting amplitude, the
highest wave in water, S is located on the free surface, and its properties are known (see Lamb, 1932
and Grant, 1973).

3. TREATMENT OF THE SINGULARITIES AND DEVELOPMENT
OF A FOURIER SERIES SOLUTION

A. Basic Relationships
The aim here is to find a solution for Q (Eq. (9)) that satisfies the boundary conditions (Egs.

(10), (11), and (13)). We split the solution into two parts, one of which is an attempt to explicitly
account for some of the singular behavior at S. Thus,

Q) = 0,0 + 8,0 (15}
Qy(2) = 8+ iy (16}
QL =6,+ir,. an

We define €2 to be
Qo= LI el (4 (18)

3 1+r°

where A is a constant to be defined presently. Note that Eq. (18) satisfies the boundary conditions
{Eqs. (10} and (11)), but not necessarily Eq. (13). On the unit circie Eq. (18) gives

_ _A _Sino_
sin (36, T+ @) (19)
2 ve
golo) = [1 - m (1 + cos 0')] (20)

and Egs. (19) and (20) provide the relationship between A and ¢,(0)
Aﬂh—ﬁ@]p+@@[ 1)

In the numerical work A is to be specified, sometimes from specifying g, and using Eq. (21). Hence, -
Qy(2) is determined explicitly. Note that for the highest wave the singular behavior of , matches
that demanded for a sharp corner along a free surface.

Specifically, when g, vanishes, A is unity, and the singularity in Eq. (18) is on the free surface.
Equation (18) goes to:

- 0
owﬂ="6 for0 < o € m, (22)
-7 — T
ogla) = —5 for -7 € o <0, _ (23)
1olo) = Ingin 1 a
3 2
Thig canfarme with the ramniramant that tha $ntal fntariae amale wf slo e 1o 1400 £
LRI I e EEL LIAW WY WLWALIVERE LG LIV LUtal WYL algIC UL WG 1UW IS 120, 101
. 7T . o
lim 8(o) =~ and lim 0(oc)=——,
U—’D 6 o— 0 6
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As qq departs from zero the singularity in Eq. (21) moves away from the free surface, to infinity
when g, = 1. The location of the singularity generally conforms to the estimated locations found by
Witting (1975}, the nature of the singularity conforms only for the highest wave, but should not be in
too much error for almost highest waves. In any case, {1, shouid account for much of the singnlar
behavior of {1 at 5 for high waves.

The remaining parst of the solution, {1 ., is represented as the Fourier series:

R,=i ¥ a,i" 24}

8o} =~ ¥ a,sinac (28}
=1
and o0
r ol = ¥ a,cos no. (26)
n=4

These are the (real) Fourier ¢xpansions of #, and 7,; knowledge of either as a function of o permiis
the calculation of 4, through various techniques; we use the fast Fourier transform.

Specifically, Eq. {13} is the governing eguation used to calculate the g,. Only the intervai (0,m)
is needed. The final boundary condition, 11, is that ¢(%) = 1. Hence, Eq. {13) has the extra informa-
tion that

3 T, o
=470+ — sin 6 sec — deo, 27)
O+ = ) z (
which relates 72 1o g{0) and #{o).
Bernouili’s Law gives the amplitude:

a= 3 Fil - 2O, 28)

and by guadrature it is an easy matier to compuie a profile using the relationship

8o}
dx+i¢fy=~——l-e sec L do (29}
w qla) 2

that arises from Eqgs. (8) and (9) once @ and ¢ are known.

A final check may be made to test for gross programming or other errors. The test is to see
whether the pressure, initially set 1o zero by Eq. (7) is actuaily zero at the end. This (kinematic) pres-
sure pis:

1 i
=={l—-¢g5— = { -1} i}
p=50-4¢) I ) {30
{bvicusly, that p defined above be small is 2 necessary condition for gn accurate solution; however, it iy
not a sufficient condition, as we shall see later,

B. Derived Relationships

The parameter ¢{0) is the input parameter that serves to distinguish one solitary wave from

ettt e XET. Y et .

another. We call those other parameiers basic that arise most directly from the calcuiations and are

&
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computed to the highest precision. These are F?, «, ¢, and 9. Derived parameters are those that come
less directly from the caiculations, or cannot be computed with the highest precision. The first of these
were given in Eq. (29), namely the horizontal and vertical coordinates, from which a profile can be gen-
erated.

Other derived quantities of interest are defined below. The solitary wave mass M is:
M= qax 3D
where 7 is the elevation above still water level. A parameter closely related to the potential energy is
Vo= 1™ a2, (32)

Three parameters are of interest at the flanks of the solitary wave. An expansion in powers of u
(see Eq. (14)) leads to a surface profile specified by:

x=¢ — x5+ a,6f* cos B + O(e%) (33)
n=a1e® sin § + 0(¥*)  as — —oo, (4
In Egs. (33} and (34) B satisfies
Fl= %; B <
The three parameters of interest are 8, x,, and a;, or alternatively, B, defined by:
n — Be P a5 x| — oo, (36)

{1y
7‘1’,/2. \33)

The horizontal drift 2x; is identically the circulation C in the nondimensionalization used here.
Knowledge of M or V, and C is sufficient to determine other integral properties of interest, using the
relations given by Longuet-Higgins (1974). Once profiles have been computed, it is easy to compute
xg, B, and either M or V or both.

4. DEVELOPMENT OF NUMERICAL SOLUTIONS
A. The Solution at a Fixed Resolution

Except for our explicit treatment of the singularity at S with the function Qg, our procedure is
similar to that of Yamada (1957, 1958). Table 1 gives a partial description of the steps required in
forming a basic iterative solution at a given resolution, i.e., value of N. First, a value for g(0) is
specified. This identifies a unique wave. The auxiliary function Q is chosen so that g,(0) = ¢ (0},
which determines A. A total of N + 1 Fourier coefficients a, form a solution. There are N subdivi-
sions in the interval 0 < o < #r. Thus, quantities that are functions of o are determined at points
o,=nm/Nwithn=0, 1, 2, ...., N. At the start we let all the a,’s be zero.

Steps 5 to 13 of Table 1 outline the iterative procedure. From our experience the most delicate
aspect of the procedure occurs at Step 7, because the integral appearing in Eq. (27) is singular at
o = m. It is possible to show that # has a vertical asymptote at o = # but that the singularity is integr-
able (we find no reference to these facts in earlier work). A simple approach is to ignore the singularity

and evaluate the integrand at the endpoint by using the limit

lim sin @ sec -}Z—o* =—20'(w) 37)
where the prime denotes the first derivative. We adopt this simple approach. Even though the singu-
larity is not treated elegantly, the: error should be small for N sufficiently large. We tried to develop
methods to improve our treatment of this singularity, but without success.
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Table 1 — The Numerical Recipe

Equation{s} and
Methods Used

Step
Number

1 Choose g(0), N

Step

2 Set {0} = ¢ (@)

3 Compute (1,(0) = 8,(0) + imp{O) 18,21
4 Setaq, =0 forall ».
This completes initialization.
5 Compute §,{(c) 25
6 Compute § =8+ 6,
7 Obtain F? 27, Simpson’s Rule
b} Compute o 28
g Test to sec whether o has changed

significantly from the previous iteration.
If not, this is the final iteration.

10 Compute g (o) 13

11 Compute 7,{z) = In glo) — r¢{a) -,

i2 Compute a new set of a,’s 26, Fast Fourier Transform
13 Return to step 5 if this is not the final

iteration. Conitinue if it is the final one.

i4 Compute 8, g, the profile, and
other derived guantities,

Rather than specify ¢{0), one can just as weil specify the quaniity w defined by
w =1~ Fq¥(0). {38)

This preduces some stight modifications to Table 1. We use the modified procedure to produce results
that can be compared to those of Longuet-Higgins and Fenton (1974) and Byatt-Smith and Longuet-
Higgins (1976).

The test used to stop the iteration process is that successive values of « differ by less than 1075
Up to 40 iterations are reguired. An example of the convergence process is shown in Table 2. The
results display features found in every case examined: (a) The higher resolution samples (large M)
start much closer to their final value than do the coarser resolution samples. (b) The coarse resolution
samples are more rapidly convergent. Fewer iterations are usually required for the fner resolution cal-
culations. The siowness of convergence for N = 1440 in Table 2 makes it risky to trust the last digit.
The limiting amplitudes and speeds differ significantly between one resolution and the other. Why this
is 30 is addressed later.
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Table 2 — Convergence of Process
to Obtain Solitary Wave Conditions for a
Given w. The value of w is 0.50.

. N=90 N = 1440
Iteration
Number a/h Fz a/h Fz
1 0.506102 | 1.512203 | 0.480272 | 1.460544
2 0.476858 | 1.453715 | 0.480275 | 1.460549
3 0.465467 | 1.430933 | 0.480278 | 1.460556
4 0.463457 | 1.426915 | .480283 | 1.460566
5 0.465758 | 1.431517 | 0.480290 | 1.460579

6 0.469426 | 1.438852 | 0.480297 | 1.460595
7 0.472924 | 1.445847 | 0.480306 | 1.460612
8 0.475618 | 1.451236 | 0.480314 | 1.460628
9 0.477404 | 1.454809 | 0.480321 | 1.460642
0 0.478429 | 1.456858 | 0.480327 | 1.460655

11 0.478917 | 1.457833 | 0.480332-| 1.460664
17 0.479078 | 1.458155 | 0.480336 | 1.460672

1L LTI ZUTO | L.TY0LY Y VTSI

13 0.479070 | 1.458139 | 0.480339 | 1.460677
14 0.478995 | 1.45798% | 0.480340 | 1.460681
15 0.478909 | 1.457818 | 0.480342 | 1.460683

16 0.478839 | 1.457677 | 0.480342 | 1.460685
17 0.478790 | 1.457580
18 0.478761 | 1.457523
19 0.478748 | 1.457495
20 0.478743 | 1.457486

21 0.478743 | 1.457486

As pointed out earlier, a necessary condition for an accurate soluticn is that the pressure found
from Eq. (30) nearly vanishes. Figure 3 displays that pressure, also for w = 0.50. The computed pres-
sures are indeed small, never exceeding 0.6 x 107*, even at the coarse resolution N = 90. They are
largest near ¢ = 180°, the flanks of the solitary wave. A striking feature in Fig. 3 is the oscillation of
the pressure, with an alternating sign at every data point except at 146° to 148°. This oscillation is
characteristic of all of the calculations; except for isolated points, its period is always 2 grid points, and
so is related to the calculations, not to the wave. We ascribe the oscillations to aliasing in the fast
Fourier transform algorithm, though it is possible that it is caused by some other numerical artifact.
Although we find the oscillations unpleasant to look at, we do not believe that they indicate a serious

pLu Ulﬁlll

Figure 4 displays the behavior of the computed pressure. On a log scale it plots the envelope of
pressure curves like that of Fig. 3, for N = 180 and N = 1440. The curves for N = 360° and for N =
720 are nested within the pair shown. The behavior is typical. The computed pressure increases with
o, is always small, and becomes very small as N becomes large.

B. Extrapolation to Infinite NV

Let Q be the exact value of any of the basic or derived variables. The numerical procedures

described in Section 4A estimate Q by ettmg some finite N in advance; call thlS estimate
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Q. Presumably, some information about Q should be present in a sequence of Qy that is absent from
any individual Qy. We guess that a likely behavior is that of a power law, i.e.,

Ov =0 + kN, (39)

------ TL ﬁl

where , 4, and m are unknown. ne

Ci
180, 360, 720, and 1440. If Eq. (39) holds

an P

culations are done in multiples o
s exactly, then Qs given by:

0= 01 @y — QF (40)

Qa1 + Qpy — 207
(see Shanks, 1955). It turns out that (Eq. 39) appears to be a close approximation, in that the esti-
mates of Q from the triads 360, 720, 1440 and 180, 360, 720 usually are much closer together than
Q1440 is to either. Moreover, log-log plots of (Qy — @) versus (N), which must be straight through
the points N = 1440, 720, and 360, also pass through or near the point at N = 180 and usually near

= # tha
the peint at N = 90. We believe that extrapolating results gives a closer approximation to the exact

value than does the result at the finest resolution (N = 1440).

C. Loss of Accuracy Near the Tails: Connecting the Solution to an Exponential Decay

The use of the fast-Fourier-transform algorithm demands that data be equally spaced, i.e., uni-
form intervals in o. As we have seen, this does not produce relatively uniform errors (as measured by
the computed pressures)} throughout the range of . Neither does it reach very far out on the flanks of
the solitary wave; values of m;73- vary between 0.044 (@ = 0.1} to 0.029 (@ = 1.0). For weak waves,
this is a substantial fraction of the amplitude. For all waves we match the Fourier transform solution to
an exponential falloff at the tails using Eqs. (33} and (34). The solutions are matched at o = 177° for
N 2 180.

5. SAMPLE COMPARISONS WITH OTHER WORK

Longuet-Higgins and Fenton (1974}, by a method totally different from ours (an expansion
method), use w to specify wave properties. They cite 5-place accuracy in wave speed and amplitude up
to w = 0.75. Through this region (and somewhat beyond, but where comparisons can be made only to
4-place accuracy) near-perfect agreement between their results and ours exists. Figure 1 shows agree-
ment, but does not indicate how remarkable the agreement actually is. We claim about 5-place accu-
racy from w = 0.45 to breaking. Figure 5 shows the wave-speed results as a function of N for @ =
0.45 and = 0.75 along with the results of Longuet-Higgins and Fenton (1974). These wave strengths
lie at the ends of the range where both theories claim about 5-place accuracy (six significant figures in

).

It is evident from the figure that the limiting values are close—between 0 x 1075 and 3 x 1075, It
is also evident that the extrapolation procedure helps a little when w = 0.75 and helps greatly when w
= 0.45. This is characteristic. The extrapolated value of all parameters lies closer to the N = 1440
value the closer w is to unity. The caicuiations over the range 0< @ < 0.75 agree with those of
Longuet-Higgins and Fenton (1974) for all variables given by them. For w = 0.80 and above there are
small (but mathematically significant) differences in some of the solitary wave parameters {see NRL
Report 8505 for details). There our calculations agree more closely with the more recent work of

Byatt-Smith and Longuet-Higgins (1976). The detailed comparisons -with high solitary waves are
deferred to NRL Report 8505.

Given the favorable comparison with work using an independent method, the question remains
why the comparison is unfavorable with other numerical methods (see Fig. 1). To provide some

insight, we reduced N to resemble the resolution of Yamada (1957, 1958), whose numerical method
most closely resembles our own, i.e., he used a Fourier Series method of numerical solution.
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Fig. 5 — Caiculation of the wave speed for {2} @ = 0.75 and for {b) w = 0.45. The
points show the speeds resulting Trom calculations at the various resclutions
specified by . The line is the limiting vaiue from Fg. (40) from estimates at ¥ =
366, 720 and 1440, The error barg show the speeds found by Longuet-Higging and
Fenton {1974}, who use 2 tpially independent method. They géve Fto five decimal

NN

pidCﬂS, lﬂe error D&l"b D!'ﬂ&&ﬂl Ll'B;‘» TANge $.0006005 from their stated values,

Specifically, we select N = 12, 24, 48, 90, 180, 360, 720, and 1440 for g{®) = 1/+/3 (Yamada, 1958)
and for {0} = {0 {the highest wave; Yamada, i%?} Yamada used N = 12, probably the limit for the

tiem Blﬂ))f b Arnxun tha RAaricnn Varminde’e racnlt and ours ‘Fhf‘ M = 1? are eﬂmmrahip I(illE Etl‘lfi
Lllil\-l- QWi WU GEGYS %iﬁﬁo‘ HU;.#J.?GI ALAES A QIGUWU 3 1Woldll iy Vg WAL UL U T B

sysiem and numerical procedure differsd somewhat from ours, however, and the agreement is imper-
fect). We conclude from the figure that our results are consistent with Yamada's, but that N = 12 is
insufficient to produce even 2-place accuracy in o or F2 — 1,

Many error estimates of numerical work on the solitary wave problem are based on the smaliness
of the pressure as an indicator of errors in, say, the amplitude. In the example of Table 2 and Fig. 3, w
= {,50, the pressure residuals are small, but errors in the speed and amplitude are not so small
Specifically, for N = 90 Table 2 indicates an error of 0.0016 in amplitude and 0.0032 in F2, although
the residual surface pressures never exceed §.00006 and are much smaller over most of the range of ¢
(Fig. 3).

Figure 7 shows residual pressures and estimated errors in a and F2 for @ = 0.45. We see that the
estimated error exceeds the surface pressure computed at all parts of the wave by two orders of magni-
tude or more, the excess is greatsr than three orders of magnitude for a central point {o = 509.
addition, the siope of the estimated error differs somewhat from that of the computed pressures {which
themselves are paraliel). This means that a simple multiplicative factor is insufficient to relate com-
puied surface pressure to errors in solitary wave properiies. We find that residual pressures are always
much less than estimated errors in wave speed and amplitude.
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Fig. 6 — Calculation of the wave speed and amplitude for (a} ¢(0) =
1/+/3 and for (b) ¢{0) = 0, the highest wave. The open points
display the results calculations at the various resolutions specified by
N. The line is the limiting value from Eq. (40) from estimates at N
= 360, 720 and 1440. The error bars show the data from (a)
Yamada (1958) and (b) Yamada (1957). Calculations with resolu-
tions around N = 12 fail to give solutions accurate to two decimal
places in F* or a/h.
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Fig. 7 — Estimated errors for w = 8.43. The uppermost curve estimaies ihe ervor
in FZ, The error in a/h is one-half of this. The estimate is formed by taking the
data at N = 360, 720, and 1440 and applying Eq. {40). This ensures that the last
three poinis fall on a straight ling) that the first two also fail on the same line indi-
cates thai the form of the extrapolation defined by Eq. (40) is a good one. The data
shown with open symbols give the residual pressures ai particular points on the
profile of the solitary wave, It is evident that fhe residual pressures are poor indica-
tors of the errors in speed and amplitude.

6, SUMMARY AND CONCLUSIONS

We have refinad the numerical method developed by Yamada (1957, 1938) to compute the pro-
perties of solitary waves. The major refinements are:  extending the resolution of the calculations to
the fimit of our computer, probing into the nature of the behavior of some of the resuitant parameters
as a function of resolution, and extrapolating to the limit of fine resolution. In addition, an auxiliary
function is included 1o mitigate problems caused by a singularity outside the finid near the crest
Unlike some more recent work, we went to the Fourier series method of sotution for two reasons: (&)

fka Fea! Enur;nr trancfnrm a'lonr;ﬁ-. narmite camantating invnlving vary iornn nimhere of ﬁAurlnr
ransioim agorithun permils COmpuauen Involving very 1arge numaers of prounsd

coefficients, and (b} the properties of Fourier series are well known and favorable. Specificaily, the
Fourier series is convergent even for functions which are singular at & point on the unit citcle,

The agreement with calculations using nonnumerical methods is impressive. Where comparisons
of speed or amplitude can be made to five significant figures, there is disagreement by no more than 3
x 1073, except for very high waves. There is no reason to suspect that the numerical methods used
here deteriorate for very high waves (details are in NRL Report 8505). This is the first numerical {reat-
ment of solitary waves which agrees with independent methods to anywhere near the four decimal
. piaces usually stated.

-
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What went wrong with the other numerical methods? In the case of Yamada (1958) we have
shown that the number of Fourier coefficients used is insufficient to produce highly accurate results.
Moreover, the use of surface pressure as an indicator of errors in wave amplitude and speed can be

ey wmiplao Ao A ~F =) I~ prvosuant Allasmas st

VCly lIllblCdulllE_'Uy I.d.lEU l.d.blUlb \UIUUIB Ul lunguuuuc; ¥Yo auapell l.lld.l- LllU aa:uc plUUlUlllD gy
occur in other numerical treatments, i.c., insufficient resolution and the use of the residual surface
pressure to provide an error estimate. In addition, the singularity at & = 180° may cause unrecog-
nized, perhaps-large errors.
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