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A METHOD FOR SPECIFYING THE
NOISE SUPRESSION-RESOLUTION TRADEOFF IN DIGITAL

IMAGE FILTERING WITH LOCAL STATISTICS

INTRODUCTION

Recently Lee [1] developed a noise-suppression algorithm for digital images composed of a square
array of picture elements, or pixels. In its basic form, this algorithm is based on the theory that the
noise is additive, random (with zero mean), and independent for different pixels, and that it has a
known variance which is the same for all pixels in the image. The algorithm processes each pixel
separately. Except near the image boundaries, where no processing is performed, the output for each
pixel is an estimated gray level which is a nonlinear function of all the pixel gray levels within the
square neighborhood of a user-specified size of which that pixel is the center. The estimated gray level
of such a pixel is computed according to the equation

x =x + nm (z-x), (1)
m + r

where
x = estimated gray level,
z = observed gray level (of this pixel),
x = sample mean of (observed) gray levels in surrounding neighborhood,
r = user-specified noise variance,
m = max {0, v- r, and
v = sample variance of gray levels in surrounding neighborhood.

One justification for this estimate is the fact that x of Eq. (1) would be the conditional mean gray level
of the pixel in question in the underlying noise-free image, given the observed noise-corrupted gray
level z, if this noise-free gray level had a known prior Gaussian distribution with mean x and variance
m. Actually, of course, such an x and m are not known, but if it is further assumed that all the pixel
gray levels in the local neighborhood are independent and have the same distribution, and that the
above local statistics x and m achieve their expected values, then they can be substituted for these
parameters of the prior distribution, as suggested by the notation. These local statistics would typically
fluctuate somewhat about their expected values under these conditions, so a key point here is that these
fluctuations would be relatively minor for this choice of statistics, since these statistics are basically
averages over a large ensemble of pixels.

One requirement of this whole procedure is that the user must specify the variance r of the noise.
In most practical applications, this noise variance is unknown and is also spatially varying. To deal with
this problem, Lee [21 has developed an adaptive refinement of this scheme, in which r is not user-
specified, but rather is estimated for each pixel's local neighborhood from the sample variance of a rela-
tively smooth subneighborhood prior to the aforementioned processing. Beyond this difficulty, how-
ever, there is the somewhat philosophical problem that a given feature in a given image can often play
the role of either signal or noise, depending on what kind of information happens to be of interest. In
an air-search radar, for example, ground clutter is regarded as noise, even though it consists of actual
returns which are neither random nor spurious. Thus there is merit in allowing the user to have some
control over the noise suppression, but in a way which allows efficient discrimination between interest-
ing and superfluous information.

Manuscript submitted August 12, 1980.

1



W. W. WILLMAN

A different modification of the same basic algorithm is developed here as a means of achieving
such discrimination. This modification also uses Eq. (1), with the local mean statistic x computed as
before. The variance estimates m and r, however, are generated by partitioning the local neighborhood,
or window, into a number of subregions in a certain way. Except for some correction factors, the
"noise" variance r is then taken as the average sample variance within these subregions and the "signal"
variance m as the sample variance among the subregion sample means. The only quantity controlled by
the user is the size of the window to be used. To a first approximation, the width of this window sets
an upper limit on the size of features which the algorithm might treat as noise rather than signal. The
algorithm is meant then to suppress noise to the maximum extent that is consistent with this limitation,
essentially by exploiting the difference in spatial correlation between signal and noise. Hence, specify-
ing a larger window size results in more noise suppression, but with a greater loss of resolution for sub-
tle details. Further explanation and elaborations of this tradeoff are given in a later section.

ALGORITHM DEVELOPMENT

The algorithm examined here estimates the gray level of each pixel from the observed gray levels
of the surrounding N x N square neighborhood of pixels. The number N is always chosen as odd, so
the pixel whose gray level is being estimated is at the center of this neighborhood. This local neighbor-
hood of pixels, excluding the one at the center, is then divided into M subregions, which are all
approximately square and equal in size. An example of such a subdivision is shown in Fig. 1 for a
5 x 5 region with four subregions. This pattern of four subregions can clearly be extended to any
N x N region with N odd. For a reason explained later, however, it is better to keep M approximately
equal to N. Thus, if the size of the local neighborhood were increased to 9 x 9, it would be better to
subdivide it into nine 3 x 3 subregions (except that the center subregion would have the center pixel
removed).

Fig. I - Subdivision of 5 x 5 window
into four subregions

The 5Xj and sj statistics (i.e., functions of the observed pixel gray levels) are computed for each
subregion j:

nj

and

s1= n i (z 1-I )2,3
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where
nj= number of pixels in subregion j

4.. 

and
zj= observed gray level of the i th pixel in subregion j.

In addition, the x and s statistics are computed for the region as a whole (excluding the center pixel):

j= M
x= M 7. xj (4)

and

1 M

These statistics are then used to form estimates of the local mean and variance of the image signal and
the local variance of the added noise. These estimates in turn are used in Eq. (1) to estimate the gray
level of the central pixel. This entire process is repeated with each pixel in the image serving as the
central pixel.

Since the observation noise is presumed to have a zero mean, the local mean of the (noise-free)
image is simply estimated as the sample mean of the observed gray levels in the neighborhood sur-
rounding the central pixel, i.e., x as given by Eq. (4). The local variance estimates for the image and
noise are made on the basis that the noise values tend to fluctuate more rapidly with position than do
the gray levels of the underlying image. In such a case, the noise tends to contribute to the Sj statistics
of Eq. (3) relatively more, and the signal relatively more to the s statistic of Eq. (5). The particular
way in which these statistics are used to distinguish between the local signal and noise variance can also
be regarded as an operational definition of which aspects of the observed image constitute noise and
which constitute signal. Some implications of this view will be discussed later.

To determine a way of estimating these variances, we now consider two probabilistic analyses, one
simple and the other more realistic. The simplified analysis leads to serious inaccuracies, but it is
nevertheless instructive because it introduces some basic effects in a more direct way and because it
suggests a way of extending the algorithm to include local third-moment statistics of the image.

Simplified Analysis

Since the noise is considered to fluctuate more rapidly with position than does the signal, we
adopt the crude approximation that the noise values for different pixels in the N x N region are statisti-
cally independent, identically distributed random variables and that the image signal is constant within
each of the M subregions, but that these values are independent, identically distributed random vari-
ables for the different subregions. Of course, it's impossible for all the gray-level changes in an image
to occur exactly at the subregion boundaries for all possible locations of the central pixel, so this
approximation is guaranteed to contain some errors. If these are accepted, however, it follows from
Eqs. (2) and (3) and standard sampling theory that

V~sj)= r, i = 1, ,M, (6)

where E denotes expected value and r is the noise variance. Also, if the observed pixel gray level z,, is
written as

Zji= Uj + wji, (7)

where
uj = the (constant) signal gray level with subregion j
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and
wj, - noise value for pixel i in subregion j,

then it follows from Eq. (2) that

j= wy +-S yj1. (8)

Hence, it follows from decomposing expectations that

EOj) = E[E(xj/uj)]

= E(u) = (9)

and

E(xj2)= E[E(xj2/ul)I

=+2 + r l=/2 + m +- (104 nj n(10)

where tt and m are the mean and variance of yu. Since both signal and noise values are statistically
independent in distinct subregions, the Xj are independent random variables. Assuming that nj is the
same number n for all subregions, these random variables are also identically distributed, with mean A
and variance m + r/n. From standard sampling theory, therefore,

E(s)= m + ' (11)
n

for s as defined by Eqs. (4) and (5).

It follows from Eqs. (6) and (11) that

r I~ E(s,))1Mr=M J, I~;

and

m = E(s) --
n

under the approximations used here, where

r = local noise variance
and

m = local image signal variance.

This suggests that a reasonable procedure for constructing estimates of these variances would be to
ignore fluctuations of the statistics sj and s from their expected values to obtain

iM
r= M Si (12)

and

rkn = S n- (13)

where sj and s are given by Eqs. (2) to (5), and where

P = estimate of r

and
i~n = estimate of m.
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Because of possible fluctuations of the s and sj statistics from their expected values, the estimate A
might assume a negative value on any given implementation of this procedure. However, m is a vari-
ance, and therefore necessarily nonnegative. Also, Eq. (1) is not reasonable for negative values of m.
Hence, it is important in practice to modify this estimate of m slightly to guarantee nonnegativity, for
instance by using the maximum of zero and rh of Eq. (13).

More-Realistic Analysis

As mentioned earlier, the approximations on which the variance estimates of Eqs. (12) and (13)
are based cannot be accurate. A more realistic approach is to base these estimates on the expected
values of the sJ and s statistics, as given by Eqs. (2) to (5), when the gray levels of the noise-free
image have a joint probability distribution with a bona fide correlation function. As a simple but non-
trivial way of doing this, we adopt the approximation that, at least within a region larger than the local
neighborhood being considered, the marginal distribution of each pixel's gray level (without noise) is
identical to that of every other pixel, with mean pu and variance m, and that for two pixels i and j the
correlation coefficient p j for the gray levels is

Ix, - xjI + 'i, - Yjl

P11 = e L (14)

where, in an x-y coordinate system aligned with the pixel grid,

(x,,y1) = location of center of pixel i,
(xj,yj) = location of center of pixel j, and

L = a scale distance (corresponds heuristically to an
average object size in the image).

As before, the noise values are assumed to be zero-mean, independent, identically distributed random
variables for each pixel in the local neighborhood, with variance r.

The form of the correlation function corresponding to Eq. (14) is shown in Fig. 2, where p (xy)
denotes p,1 for x;-xj = x and y,-yj = y. This form is not completely ideal since it is not isotropic.
It does at least have 90-degree symmetry, however, and the anisotropy is relatively mild. This form of
correlation function is used here because it is mathematically convenient and can be specified by the
single distance parameter L, which corresponds roughly to an average object size, or resolution, in the
noise-free image.

p(xy)

HLA 

x

Fig. 2 - Exponential correlation function

5



W. W. WILLMAN

Now consider sj for a particular subregion j, and delete the j subscript in the notation. From Eqs.
(2) and (3),

nz l n ( X + + zn ) ] 2

After some rearrangement of terms, this can be rewritten as

; = l z i- (z. + * * * + Z)2 . (15)n- I I ZiJ n(n -1)

Assuming that the signal and noise are uncorrelated, it follows in this case that

E(z12) = p.2 + m + r

by a standard result of probability theory. Since expectation is a linear operation, therefore,

E|l I zni2J= n (A 2 + m + r). (16)

Also, (z1 + * * * + zn) can be expressed as b y yTbT, where

ZI

Z2

and fl

b =[I I . 1.

From standard results of multivariate probability theory, therefore,

E(z, + + z,) = b E(y YT) bT

= b (a aT+ A + r ) bT, (17)

under the assumptions of this analysis, where In is the n-dimensional identity matrix, a is the n-vector

A

p.

and A is the n x n matrix whose (i,j)th component is mpij. Evaluating Eq. (17) at the component
level then gives n

E(z1 + * + z) = n212 + nr + m A, pa. (18)
armf1

Combining Eqs. (16) and (18) with Eq. (15) for s gives

In 1 _n(n _ In n (n _ _ _n 1n (n PaP

= r + m ) n 1 - 2 n (19)

6
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This expression is difficult to evaluate exactly, but a relatively simple approximation can be a
obtained for the case in which the subregion is square, contains a large number n of pixels, and is '

oriented with its edges at 450 to the pixel grid (which is presumed to be a square array). In this case, v

the summations in Eq. (19) can be approximated by integrals, and the equation reduces to

E (s) = rJJ m - M4 f e L d xdy, (20) F

4R W lyl <IR

where the j subscript has been reinstated in the notation, and where R is one-half the diagonal width of
the subregion j. Evaluating the integral of Eq. (20) gives

E(sj) = r + m - mG(R/L), (21)
where G is used for later convenience to denote the function

G( ) = 4x2 - 6x + 3 + e-2 x (2x2 - 3)]. (22)
2x 4

This approximation is used from now on for the expected value of sj under the conditions of this.
analysis, but it should be borne in mind that it is somewhat in error for subregions which are not quite
square, have a different orientation, or have only a small number of pixels. The anisotropy of the
correlation function p(xy) is rather mild, however, so the accuracy of the approximation should
depend only weakly on orientation.

To find the expected value of the statistic s of Eq. (5), we note from Eq. (2) for x- and a rear-
rangement of terms that

1 M 1 jiM -1 , nj - (j-X2(YEX2
Therefore, if each of the M subregions has an equal number n of pixels,

S = II - 2, (23)

where

M n

= n(M-1) Z (24)
and

12= M_ l £ t n |si. ~~~~~~~~(25)

Taking expected values and using Eq. (21) gives

E(12) = MMl J I [r + m - mG(R/L)], (26)

where 2R is the diagonal width of the subregions. The statistic corresponding to sj for the entire local
neighborhood is

M n 2 Mn-n 
Mn -1I (zj,- Mn - 1

Since this neighborhood is also square except for the exclusion of the central pixel, which is presumed
to have a negligible effect for a large number of pixels, the analysis leading to Eq. (21) can be applied
to this expression to give

7
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E1QI) = Mnn- I [r + m-mG(RVK/L)]. (27)

The diagonal width of this neighborhood is VW times that of the subregions because it is a square con-
sisting of M equally sized square subregions.

Using Eqs. (26) and (27) to evaluate the expected value of Eq. (23), we obtain

E(s) = M(n - 1) m[G(R/L) - G(Rx/2i1L)I + I [r + m - mG(Rv\MA/L)]. (28)
n (M -1) n

Under the assumptions of this analysis, if the estimates P and An are constructed from the local
statistics by Eq. (12) and

n(M- 1) (s -F/n)
M =(Mn - 1) [G(R/L) - G(R /L)] (29)

where sj and s are defined by Eqs. (2) to (5), then it follows from Eqs. (21) and (28) that

E(r) = r + mR - G(R/L)A (30)

and

E(rn)= m. (31)

As before, it is important in practice to modify the estimate of Eq. (29) slightly to insure that it is non-
negative. The estimate P here is biased, since E(r) • r. This defect could be eliminated by the use of
a more complicated estimate, but such procedures seem to make the estimates more sensitive to
fluctuations of the statistics from their average behavior; hence they are not adopted here.

Overall Filtering Procedure

Comparing the more realistic estimate of Eq. (29) with that based on the simplified analysis-i.e.,
Eq. (13) -shows that the only change is multiplication of the more simplistic estimate of m by a correc-
tion factor. The estimate of r is the same in both cases. Unfortunately, this correction factor depends
on the scale distance L in the correlation function for the underlying noise-free image, a quantity which
is not really specified. Hence the approach taken here is to multiply the estimate of Eq. (13) by a
correction factor which depends only on M and n, and to select a value which gives an empirically rea-
sonable contribution to expectations of An and P for values of L in the transition region where G (R IL)
and G (R vrMK/L) change from one to zero. Figure 3 includes a graphical display of G (R IL).

For the case of no noise, it follows from Eqs. (28) and (30) that

EVf(s - F/n)] = n fl I M I + -I] [G(R/L) - G(R fMI/L)]m, (32)

where f is an arbitrary correction factor. Figure 3 shows the ratio of this expectation and that of P ( as
given by Eq. (30)) to m as functions of RIL for the limiting case of large n. This figure shows the
results both for four subregions (M = 4) with f = 5 and for nine subregions with f = 4. These values
of f are judged to give reasonable average behavior of the resulting estimates in these two cases. No
further cases were examined because the corresponding local neighborhoods would be too large for
computational interest. Finally, the variation in Eq. (32) with n is used to compensate for finite n to
yield the following estimation procedure:

=IM (
i-I

8
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Fig. 3 - G, E (mt), and E () as functions of RIL in the transition region

in = max 0°fM( Mn - I (s - P/n)} (34)

and

in = A + I [(z -x (in + r) (35)
Mn

where the statistics sj and s are defined by Eqs. (2) to (5), and where

f 4 = 5
and

f9= 4.
The modification of Eq. (35) is an ad hoc procedure used to give a better response to an isolated pixel
in a locally uniform background with a different gray level.

PERFORMANCE CONSIDERATIONS

Assuming that M is always chosen to be approximately equal to n, the only parameter left to the
discretion of the user in the final noise-suppression algorithm of Eqs. (1) to (5) and (33) to (35), with
m and r in Eq. (1) replaced by in and P, is the size of the square neighborhood from which the local
statistics are formed. Since Eq. (1) would be a Bayesian estimate of the central pixel's gray level if m
and r were known signal and noise variances, the use of the variance estimates ,i and P determined by
Eq. (33) to (35) can be viewed as specifying which features of the observed image will be treated as
signal, i.e., as part of an underlying noise-free image, and which will be treated as noise. This
specification does not follow directly from the derivation of Eqs. (33) to (35), because this derivation is

9
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based on average responses to a statistical property-the effective diameter of a correlation function-of
an ensemble of images, not to particular types of features in any single image. From Eq. (1), however,
it can be seen that features giving rise to large ratios of m/? for pixels in its vicinity will be preserved as
observed, whereas those producing small ratios will be smoothed out by local spatial averaging. This is
because Eq. (1) can be rewritten, with Ao and ? replacing m and r, as

x P A + m

m +? m +P
In turn, Eqs. (33) to (35) show that the A/F ratio is large for a pixel when the statistic s is large com-
pared to the average of the sj statistics for its local neighborhood. From Eqs. (2) to (5), this means
that the gray-level variations among subregions are generally large compared to variations within a
subregion. Roughly speaking, therefore, those features which get smoothed out by local spatial averag-
ing (i.e., that are suppressed as noise) will be those whose gray-levels fluctuate rapidly with position
compared to the user-chosen local neighborhood width and do so consistently over a region whose size
is comparable to or greater than such a neighborhood. Edges of larger scale objects, even though they
constitute a rapid fluctuation, will contribute more to A~i than to P and will not be smoothed out as
noise, because this fluctuation is highly localized and is also associated with a large-scale contrast. The
localization limits the contribution to P by confining the effects of the edge to a minority of the subre-
gions, and the large-scale contrast causes a larger contribution to iAn by creating differences between
many subregion averages. Isolated objects which are small compared to the local neighborhood size
give intermediate values of the ih/P ratio in the absence of noise. The lack of any large-scale contrast
results in a small contribution to A as well as to P.

A feature such as a gridwork pattern of streets with a small spacing tends to get smoothed out as
noise, however, even though it contains large linear components. Evidently, the distinction between
such a pattern and a random gray-level pattern such as television "snow" is too subtle for this algorithm.
Since periodicity is a key aspect of such a feature, however, it might be possible to use frequency-
domain techniques to spare it from suppression. For example, one might proceed as follows for the
local neighborhood of each pixel in turn:

Step 1. Fourier transform the (local) image.

Step 2. "Threshold" step 1 image to retain only high peaks.

Step 3. Inverse transform the image of step 2.

Step 4. Subtract step 3 image from original image.

Step 5. Process step 4 image as described in the preceding sections.

Step 6. Add step 3 image to step 5 image.

Such advanced procedures were not examined here, however.

Figure 4 shows the results obtained if we apply this algorithm to a digitized synthetic aperture
radar image using a variety of local neighborhood or window sizes. This image measures 256 x 256
pixels. The local neighborhoods used were square in each case shown, and they were subdivided into
four subregions in the manner indicated in Fig. 1. This same image is also shown in Fig. 5 for 9 x 9
local neighborhoods divided into both four and nine subregions. Figure 4 shows a general trend toward
progressively greater suppression of noise (such as in the ocean area) and small-scale features (espe-
cially ones which are also complex) as the user-selected window size is increased. Another penalty for
increasing the window size is the greater computational effort required. The case of a 3 x 3 window is
included in Fig. 4 largely for completeness. Each of the four subregions in this case contains only two
pixels, which is a serious departure from the approximations of squareness and large number of pixels
on which the algorithm is based.

10
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Nk.~ .^X,~~~~~ ._

Fig. 4 - Performance vs window size Fig. 5 - Effect of using more subregions

The operation of this algorithm is thus controlled by the user simply by the choice of a window
width that is basically the approximate size of features he is willing to specify as noise rather than signal
(i.e., a resolution limit). To a first approximation, the algorithm then operates to suppress the noise to
the extent that is consistent with this specification. Another obvious way of performing this same kind
of resolution/noise-suppression tradeoff is simply to use local spatial averaging, i.e., to set x = 5~ in the
notation here. The question naturally arises as to whether the added complexity of the current algo-
rithm offers any significant improvement in performance. The algorithm of Lee [1], of which this is an
extension, showed a rather dramatic improvement over local spatial averaging, but the user must also
supply additional information, namely, the measurement noise variance. It is clear from a comparison
of the examples of Fig. 6, however, that there is still a rather dramatic improvement with the current
algorithm, even though the measurement noise variance is now estimated from the data rather than
specified by the user. This improvement is in both the degree of noise suppression and the retention of
detail without blurring. A partial explanation for this improvement is evident from the response to a
semi-infinite edge in the absence of any measurement noise, shown in Fig. 7. The response curve for
local spatial averaging is from Ref. 3. The curve for the current algorithm is for the case of an edge
aligned with a window side, a large number of pixels in the window, and four subregions. In this case,
the summations of Eqs. (2) to (5) can be approximated by integrals, which leads to the equation

u L-u
(x - i)sgn (x - ) _ L L

a f +(2-f)

11
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Fig. 6 - Comparison with local spatial averaging

IDEAL RESP

CURRENT ALGORITHM
WITH FOUR SUBREGIONS

Fig. 7 - Response to semi-infinite edge (large
number of pixels-four subregions) 'LOCAL SPATIAL

AVERAGING WITH
CIRCULAR WINDOW

lm WINDOW WIDTH I
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where
a = gray-level change across edge,
u = distance from window center,
L = RI = one-half window edge width,
x = actual gray level at coordinate u, and
x = estimated gray level at u.

This equation is not quite accurate, because the number of pixels per subregion will not be very large
until the number of subregions is increased beyond four (the two numbers are kept approximately
equal). The case of a larger number of subregions is more difficult to analyze, however.

The rule of thumb that the number of subregions be approximately equal to the number of pixels
per subregion has been adopted because of the occurrence of an undesirable phenomenon when the
local neighborhood is divided into only four subregions, as in Fig. 1, and the number of pixels grows
large. Consider such a case with no measurement noise and a small object within the window, say for
simplicity a square of uniform gray level x on a zero background, such that the sides of the square are
aligned with those of the window. Also assume that the center of the object is displaced, parallel to an
edge for simplicity, a distance u from the center of the window. For values of u such that the object is
entirely within the window, the gray level estimated by the algorithm can be obtained if we approximate
the sums by integrals; this gives

x= Ax,

= [X + X2(1 + 02)]x2,

6i=X2 02X2 ,mn =F222

and finally

x [Fo2 + 1 + X (I + 02) 1
x FX02+ 1 +X(I +02)1

for 0 < 1, where

0 = 2u/D,
X = D2 /L2 (assumed < 1/4),
D = length of object sides,
L = length of window sides, and

F 4 2
F = 4 f4 = 6 26 3

As the number of pixels in the window increases, X decreases, for a fixed object, because L grows and
D stays the same. The limiting behavior as the window grows is therefore

X = |1 + 6 3 o2JX.

From its definition, 0 varies from zero, when the object is centered in the window, to unity when the
object edge is at the window center. Hence, as the window size increases, such a small object will not
only be de-emphasized overall by the algorithm (because X decreases), but it will also be "hollowed out"
in the center, ultimately by a factor of about eight. This hollowing out effect begins to be noticeable
for the ships of Fig. 4 in the cases of the 5 x 5 and 7 x 7 windows.

As a remedy for this effect, we somewhat arbitrarily adopt the procedure of increasing the number
of subregions as the number of pixels in the entire window increases. To suppress random fluctuations
in the estimates of the variances and ultimately the gray level, however, it is also advantageous to have
a large number of pixels in each subregion. Hence, both numbers are increased as roughly the square
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root of the total number of pixels in the window. Arranging the subregions as a square array of squares
is done for simplicity and even distribution. Figure 5 shows the image of Fig. 4 after processing with a
9 x 9 window for the cases of both four subregions and nine subregions. The hollowing out of the ship
continues in the case of four subregions but is eliminated by using nine subregions. As an added
benefit the other small object nearby is brightened considerably. A small price is paid in the form of
less background noise suppression with nine subregions than with four, but the degree of noise
suppression is still greater than in the case of a 7 x 7 window with four subregions (compare with Fig.
4).

A finer subdivision than nine subregions is probably too burdensome computationally to be of
interest at present. The next step would be a 4 x 4 array of 4 x 4 pixel subregions, meaning a 16 x 16
window. At that point there would probably be so little advantage in resolution over processing the
image in 2 x 2 blocks that this refinement would be computationally unattractive.

EXTENSIONS

Use of Third-Moment Estimates

It happens that a perturbation theory exists for the use of the third central moment of a prior
gray-level distribution to refine the computation of a pixel's posterior mean gray level, given a noise-
corrupted observed value. If the prior distribution of a pixel's noise-free gray level is almost normal,
but with a small third central moment X, then the refinement of Eq. (1) for the conditional mean is

an + r (Z -) + rX )3 [(Z-X)2-(m + )]. (36)
m +r 2(m + r

This refinement is developed in Ref. 3 and is based on first-order Edgeworth expansions of the proba-
bility densities involved. The noise is still treated as a zero-mean normal random variable.

We use this refined formula for each pixel by replacing the parameters x, m, X, and r in Eq. (36)
by estimates formed from local statistics of a surrounding square neighborhood. As before, x, m, and r
are estimated according to Eqs. (2) to (5) and (33) to (35). Under the assumptions of the simplified
analysis, the statistics Xj are independent, identically distributed random variables if the number of pix-
els in each subregion is the same. Since the noise is assumed to have no third central moment here,
from standard sampling theory X is the expected value of the local statistic A, where

- ~~M M
WM- 1) (M-2) S (Xj-.J=1

This statistic is not used directly as an estimate of X because the approximations inherent in the
simplified analysis lead to errors of a factor of about five, when compared to the results of a more real-
istic analysis, in estimating the second moment m. In the case of the second-moment estimates, how-
ever, the main change resulting from this greater accuracy is equivalent to multiplication of the quantity
Qj- 5) by the factor

Since it is difficult to define a natural counterpart to a reasonable correlation function for third central
moments of image pixels, compensation for the probable error resulting from the simplifications leading
to the estimate of Eq. (37) is made here simply by application of the same correction factor to (j -x)

in Eq. (37). In this extension, therefore, X in Eq. (36) is replaced by the estimate A, where

fM2 ( Mn | (38)

with f4 = 5 and f9 = 4 as before.
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Figure 8 shows a comparison of this refinement with the basic algorithm. The incorporation of
third-moment estimates produces only a slight change in this example, but it also requires only about
15% more computing time. The advantages seem to be that edges are less blurred and that isolated pix-
els show up better. On the other hand, there seems to be less noise suppresion in relatively uniform
regions, such as the ocean in this example.

Fig. 8 - Effect of using third-moment estimates

Use with Multiplicative Noise

Figures 4 to 6 are in fact synthetic aperture radar images. Investigations by Lee [4] have shown
that the noise in such images is more accurately described as multiplicative noise than additive noise,
i.e., that instead of an equation like Eq. (7) for a given pixel, one should use one of the form

z = U + UW. (39)

where w is approximately normally distributed with zero mean and known variance. Also, the noise
variance for these synthetic aperture radar images has been determined in Ref. 4 to be 0.08. This
reformulation has two implications. One is that Eq. (1) can no longer be interpreted as the Bayes rule
for the conditional mean of u, given z and prior normal densities for u and the noise w. The other is
that subregion statistics are no longer needed to estimate a local variance for u, since the noise variance
is known. Lee [4] has exploited this extra knowledge to implement a noise-suppression filter for syn-
thetic aperture radar images which is based on local statistics (without subregions) and a linear approxi-
mation to the conditional mean filter for multiplicative noise.
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Eq. (39) can be rewritten as

z = u + I + u IV, (40)

where
v = xw, a zero-mean normal random variable with variance r

(r = 0.08x2 for synthetic aperture radar)

and
x = local statistic of Eq. (4).

Now, given u, the expected value of z is just u, from Eq. (39). Since x is a local spatial average of z,
the quantity

u -x (41)

should usually be small compared to unity, by the law of large numbers. Hence, the use of the noise-
suppression algorithm of this report in the context of multiplicative noise can be viewed as the follow-
ing procedure. Make the approximation of deleting the small quantity (41) from Eq. (40), estimate the
variance of v with subregion statistics rather than relying on its relation to x, and then follow the same
rationale as in the case of additive noise. This seems to be a reasonable procedure, the main drawback
being that some known information, the relation of r to x, is not used. Of course if the variance of the
multiplicative noise w is not known, then this is an advantage.

Use with Edge-Detection Refinement

In a refinement of the algorithm of Ref. 1, Lee [2] has improved its operation by using a scheme
to detect the presence and location of any significant edge in the local neighborhood of each pixel being
processed. If such an edge is detected, he then alters the processing for that pixel by using as the
operative local neighborhood only those pixels in the original local neighborhood which lie on the same
side of the estimated edge. The basic procedure of estimating both image signal and noise variances by
use of subregion statistics could be incorporated into this'refinement simply by making the subregions a
partition of such a modified local neighborhood instead of the entire original one. Of course, a more
flexible partitioning scheme would have to be used, because the size and shape of this restricted local
neighborhood is variable.

REFERENCES

1. J.-S. Lee, "Digital Image Enhancement and Noise Filtering by Use of Local Statistics," IEEE
Trans. Pat. Anal. and Mach. Int. PAMI-2, No. 2, 165-168, Mar. 1980.

2. J.-S. Lee, "Refined Filtering of Image Noise Using Local Statistics," NRL Report 8374; Jan. 16,
1980; also Computer Graphics and Image Processing, to be published.

3. W. W. Willman, "A Nonlinear Filtering Technique for Digitized Images Degraded by Film-Grain
Noise," NRL Report 8225, Aug. 30, 1978.

4. J.-S. Lee, "Speckle Analysis and Smoothing of Synthetic Aperture Radar Images," Computer
Graphics and Image Processing; to be published.

16


